diff options
author | Vincent Ambo <tazjin@google.com> | 2020-05-20T01·32+0100 |
---|---|---|
committer | Vincent Ambo <tazjin@google.com> | 2020-05-20T01·32+0100 |
commit | fc8dc48020ac5b52731d0828a96ea4d2526c77ba (patch) | |
tree | 353204eea3268095a9ad3f5345720f32c2615c69 /third_party/abseil_cpp/absl/hash/internal/hash.h | |
parent | ffb2ae54beb5796cd408fbe15d2d2da09ff37adf (diff) | |
parent | 768eb2ca2857342673fcd462792ce04b8bac3fa3 (diff) |
Add 'third_party/abseil_cpp/' from commit '768eb2ca2857342673fcd462792ce04b8bac3fa3' r/781
git-subtree-dir: third_party/abseil_cpp git-subtree-mainline: ffb2ae54beb5796cd408fbe15d2d2da09ff37adf git-subtree-split: 768eb2ca2857342673fcd462792ce04b8bac3fa3
Diffstat (limited to 'third_party/abseil_cpp/absl/hash/internal/hash.h')
-rw-r--r-- | third_party/abseil_cpp/absl/hash/internal/hash.h | 996 |
1 files changed, 996 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/hash/internal/hash.h b/third_party/abseil_cpp/absl/hash/internal/hash.h new file mode 100644 index 000000000000..9e608f7c3c29 --- /dev/null +++ b/third_party/abseil_cpp/absl/hash/internal/hash.h @@ -0,0 +1,996 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// ----------------------------------------------------------------------------- +// File: hash.h +// ----------------------------------------------------------------------------- +// +#ifndef ABSL_HASH_INTERNAL_HASH_H_ +#define ABSL_HASH_INTERNAL_HASH_H_ + +#include <algorithm> +#include <array> +#include <cmath> +#include <cstring> +#include <deque> +#include <forward_list> +#include <functional> +#include <iterator> +#include <limits> +#include <list> +#include <map> +#include <memory> +#include <set> +#include <string> +#include <tuple> +#include <type_traits> +#include <utility> +#include <vector> + +#include "absl/base/internal/endian.h" +#include "absl/base/port.h" +#include "absl/container/fixed_array.h" +#include "absl/meta/type_traits.h" +#include "absl/numeric/int128.h" +#include "absl/strings/string_view.h" +#include "absl/types/optional.h" +#include "absl/types/variant.h" +#include "absl/utility/utility.h" +#include "absl/hash/internal/city.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace hash_internal { + +// Internal detail: Large buffers are hashed in smaller chunks. This function +// returns the size of these chunks. +constexpr size_t PiecewiseChunkSize() { return 1024; } + +// PiecewiseCombiner +// +// PiecewiseCombiner is an internal-only helper class for hashing a piecewise +// buffer of `char` or `unsigned char` as though it were contiguous. This class +// provides two methods: +// +// H add_buffer(state, data, size) +// H finalize(state) +// +// `add_buffer` can be called zero or more times, followed by a single call to +// `finalize`. This will produce the same hash expansion as concatenating each +// buffer piece into a single contiguous buffer, and passing this to +// `H::combine_contiguous`. +// +// Example usage: +// PiecewiseCombiner combiner; +// for (const auto& piece : pieces) { +// state = combiner.add_buffer(std::move(state), piece.data, piece.size); +// } +// return combiner.finalize(std::move(state)); +class PiecewiseCombiner { + public: + PiecewiseCombiner() : position_(0) {} + PiecewiseCombiner(const PiecewiseCombiner&) = delete; + PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete; + + // PiecewiseCombiner::add_buffer() + // + // Appends the given range of bytes to the sequence to be hashed, which may + // modify the provided hash state. + template <typename H> + H add_buffer(H state, const unsigned char* data, size_t size); + template <typename H> + H add_buffer(H state, const char* data, size_t size) { + return add_buffer(std::move(state), + reinterpret_cast<const unsigned char*>(data), size); + } + + // PiecewiseCombiner::finalize() + // + // Finishes combining the hash sequence, which may may modify the provided + // hash state. + // + // Once finalize() is called, add_buffer() may no longer be called. The + // resulting hash state will be the same as if the pieces passed to + // add_buffer() were concatenated into a single flat buffer, and then provided + // to H::combine_contiguous(). + template <typename H> + H finalize(H state); + + private: + unsigned char buf_[PiecewiseChunkSize()]; + size_t position_; +}; + +// HashStateBase +// +// A hash state object represents an intermediate state in the computation +// of an unspecified hash algorithm. `HashStateBase` provides a CRTP style +// base class for hash state implementations. Developers adding type support +// for `absl::Hash` should not rely on any parts of the state object other than +// the following member functions: +// +// * HashStateBase::combine() +// * HashStateBase::combine_contiguous() +// +// A derived hash state class of type `H` must provide a static member function +// with a signature similar to the following: +// +// `static H combine_contiguous(H state, const unsigned char*, size_t)`. +// +// `HashStateBase` will provide a complete implementation for a hash state +// object in terms of this method. +// +// Example: +// +// // Use CRTP to define your derived class. +// struct MyHashState : HashStateBase<MyHashState> { +// static H combine_contiguous(H state, const unsigned char*, size_t); +// using MyHashState::HashStateBase::combine; +// using MyHashState::HashStateBase::combine_contiguous; +// }; +template <typename H> +class HashStateBase { + public: + // HashStateBase::combine() + // + // Combines an arbitrary number of values into a hash state, returning the + // updated state. + // + // Each of the value types `T` must be separately hashable by the Abseil + // hashing framework. + // + // NOTE: + // + // state = H::combine(std::move(state), value1, value2, value3); + // + // is guaranteed to produce the same hash expansion as: + // + // state = H::combine(std::move(state), value1); + // state = H::combine(std::move(state), value2); + // state = H::combine(std::move(state), value3); + template <typename T, typename... Ts> + static H combine(H state, const T& value, const Ts&... values); + static H combine(H state) { return state; } + + // HashStateBase::combine_contiguous() + // + // Combines a contiguous array of `size` elements into a hash state, returning + // the updated state. + // + // NOTE: + // + // state = H::combine_contiguous(std::move(state), data, size); + // + // is NOT guaranteed to produce the same hash expansion as a for-loop (it may + // perform internal optimizations). If you need this guarantee, use the + // for-loop instead. + template <typename T> + static H combine_contiguous(H state, const T* data, size_t size); + + using AbslInternalPiecewiseCombiner = PiecewiseCombiner; +}; + +// is_uniquely_represented +// +// `is_uniquely_represented<T>` is a trait class that indicates whether `T` +// is uniquely represented. +// +// A type is "uniquely represented" if two equal values of that type are +// guaranteed to have the same bytes in their underlying storage. In other +// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be +// zero. This property cannot be detected automatically, so this trait is false +// by default, but can be specialized by types that wish to assert that they are +// uniquely represented. This makes them eligible for certain optimizations. +// +// If you have any doubt whatsoever, do not specialize this template. +// The default is completely safe, and merely disables some optimizations +// that will not matter for most types. Specializing this template, +// on the other hand, can be very hazardous. +// +// To be uniquely represented, a type must not have multiple ways of +// representing the same value; for example, float and double are not +// uniquely represented, because they have distinct representations for +// +0 and -0. Furthermore, the type's byte representation must consist +// solely of user-controlled data, with no padding bits and no compiler- +// controlled data such as vptrs or sanitizer metadata. This is usually +// very difficult to guarantee, because in most cases the compiler can +// insert data and padding bits at its own discretion. +// +// If you specialize this template for a type `T`, you must do so in the file +// that defines that type (or in this file). If you define that specialization +// anywhere else, `is_uniquely_represented<T>` could have different meanings +// in different places. +// +// The Enable parameter is meaningless; it is provided as a convenience, +// to support certain SFINAE techniques when defining specializations. +template <typename T, typename Enable = void> +struct is_uniquely_represented : std::false_type {}; + +// is_uniquely_represented<unsigned char> +// +// unsigned char is a synonym for "byte", so it is guaranteed to be +// uniquely represented. +template <> +struct is_uniquely_represented<unsigned char> : std::true_type {}; + +// is_uniquely_represented for non-standard integral types +// +// Integral types other than bool should be uniquely represented on any +// platform that this will plausibly be ported to. +template <typename Integral> +struct is_uniquely_represented< + Integral, typename std::enable_if<std::is_integral<Integral>::value>::type> + : std::true_type {}; + +// is_uniquely_represented<bool> +// +// +template <> +struct is_uniquely_represented<bool> : std::false_type {}; + +// hash_bytes() +// +// Convenience function that combines `hash_state` with the byte representation +// of `value`. +template <typename H, typename T> +H hash_bytes(H hash_state, const T& value) { + const unsigned char* start = reinterpret_cast<const unsigned char*>(&value); + return H::combine_contiguous(std::move(hash_state), start, sizeof(value)); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Basic Types +// ----------------------------------------------------------------------------- + +// Note: Default `AbslHashValue` implementations live in `hash_internal`. This +// allows us to block lexical scope lookup when doing an unqualified call to +// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can +// only be found via ADL. + +// AbslHashValue() for hashing bool values +// +// We use SFINAE to ensure that this overload only accepts bool, not types that +// are convertible to bool. +template <typename H, typename B> +typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue( + H hash_state, B value) { + return H::combine(std::move(hash_state), + static_cast<unsigned char>(value ? 1 : 0)); +} + +// AbslHashValue() for hashing enum values +template <typename H, typename Enum> +typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue( + H hash_state, Enum e) { + // In practice, we could almost certainly just invoke hash_bytes directly, + // but it's possible that a sanitizer might one day want to + // store data in the unused bits of an enum. To avoid that risk, we + // convert to the underlying type before hashing. Hopefully this will get + // optimized away; if not, we can reopen discussion with c-toolchain-team. + return H::combine(std::move(hash_state), + static_cast<typename std::underlying_type<Enum>::type>(e)); +} +// AbslHashValue() for hashing floating-point values +template <typename H, typename Float> +typename std::enable_if<std::is_same<Float, float>::value || + std::is_same<Float, double>::value, + H>::type +AbslHashValue(H hash_state, Float value) { + return hash_internal::hash_bytes(std::move(hash_state), + value == 0 ? 0 : value); +} + +// Long double has the property that it might have extra unused bytes in it. +// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits +// of it. This means we can't use hash_bytes on a long double and have to +// convert it to something else first. +template <typename H, typename LongDouble> +typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type +AbslHashValue(H hash_state, LongDouble value) { + const int category = std::fpclassify(value); + switch (category) { + case FP_INFINITE: + // Add the sign bit to differentiate between +Inf and -Inf + hash_state = H::combine(std::move(hash_state), std::signbit(value)); + break; + + case FP_NAN: + case FP_ZERO: + default: + // Category is enough for these. + break; + + case FP_NORMAL: + case FP_SUBNORMAL: + // We can't convert `value` directly to double because this would have + // undefined behavior if the value is out of range. + // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is + // guaranteed to be in range for `double`. The truncation is + // implementation defined, but that works as long as it is deterministic. + int exp; + auto mantissa = static_cast<double>(std::frexp(value, &exp)); + hash_state = H::combine(std::move(hash_state), mantissa, exp); + } + + return H::combine(std::move(hash_state), category); +} + +// AbslHashValue() for hashing pointers +template <typename H, typename T> +H AbslHashValue(H hash_state, T* ptr) { + auto v = reinterpret_cast<uintptr_t>(ptr); + // Due to alignment, pointers tend to have low bits as zero, and the next few + // bits follow a pattern since they are also multiples of some base value. + // Mixing the pointer twice helps prevent stuck low bits for certain alignment + // values. + return H::combine(std::move(hash_state), v, v); +} + +// AbslHashValue() for hashing nullptr_t +template <typename H> +H AbslHashValue(H hash_state, std::nullptr_t) { + return H::combine(std::move(hash_state), static_cast<void*>(nullptr)); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Composite Types +// ----------------------------------------------------------------------------- + +// is_hashable() +// +// Trait class which returns true if T is hashable by the absl::Hash framework. +// Used for the AbslHashValue implementations for composite types below. +template <typename T> +struct is_hashable; + +// AbslHashValue() for hashing pairs +template <typename H, typename T1, typename T2> +typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value, + H>::type +AbslHashValue(H hash_state, const std::pair<T1, T2>& p) { + return H::combine(std::move(hash_state), p.first, p.second); +} + +// hash_tuple() +// +// Helper function for hashing a tuple. The third argument should +// be an index_sequence running from 0 to tuple_size<Tuple> - 1. +template <typename H, typename Tuple, size_t... Is> +H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) { + return H::combine(std::move(hash_state), std::get<Is>(t)...); +} + +// AbslHashValue for hashing tuples +template <typename H, typename... Ts> +#if defined(_MSC_VER) +// This SFINAE gets MSVC confused under some conditions. Let's just disable it +// for now. +H +#else // _MSC_VER +typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type +#endif // _MSC_VER +AbslHashValue(H hash_state, const std::tuple<Ts...>& t) { + return hash_internal::hash_tuple(std::move(hash_state), t, + absl::make_index_sequence<sizeof...(Ts)>()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Pointers +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing unique_ptr +template <typename H, typename T, typename D> +H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) { + return H::combine(std::move(hash_state), ptr.get()); +} + +// AbslHashValue for hashing shared_ptr +template <typename H, typename T> +H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) { + return H::combine(std::move(hash_state), ptr.get()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for String-Like Types +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing strings +// +// All the string-like types supported here provide the same hash expansion for +// the same character sequence. These types are: +// +// - `absl::Cord` +// - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for +// any allocator A) +// - `absl::string_view` and `std::string_view` +// +// For simplicity, we currently support only `char` strings. This support may +// be broadened, if necessary, but with some caution - this overload would +// misbehave in cases where the traits' `eq()` member isn't equivalent to `==` +// on the underlying character type. +template <typename H> +H AbslHashValue(H hash_state, absl::string_view str) { + return H::combine( + H::combine_contiguous(std::move(hash_state), str.data(), str.size()), + str.size()); +} + +// Support std::wstring, std::u16string and std::u32string. +template <typename Char, typename Alloc, typename H, + typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value || + std::is_same<Char, char16_t>::value || + std::is_same<Char, char32_t>::value>> +H AbslHashValue( + H hash_state, + const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) { + return H::combine( + H::combine_contiguous(std::move(hash_state), str.data(), str.size()), + str.size()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Sequence Containers +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing std::array +template <typename H, typename T, size_t N> +typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( + H hash_state, const std::array<T, N>& array) { + return H::combine_contiguous(std::move(hash_state), array.data(), + array.size()); +} + +// AbslHashValue for hashing std::deque +template <typename H, typename T, typename Allocator> +typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( + H hash_state, const std::deque<T, Allocator>& deque) { + // TODO(gromer): investigate a more efficient implementation taking + // advantage of the chunk structure. + for (const auto& t : deque) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), deque.size()); +} + +// AbslHashValue for hashing std::forward_list +template <typename H, typename T, typename Allocator> +typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( + H hash_state, const std::forward_list<T, Allocator>& list) { + size_t size = 0; + for (const T& t : list) { + hash_state = H::combine(std::move(hash_state), t); + ++size; + } + return H::combine(std::move(hash_state), size); +} + +// AbslHashValue for hashing std::list +template <typename H, typename T, typename Allocator> +typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( + H hash_state, const std::list<T, Allocator>& list) { + for (const auto& t : list) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), list.size()); +} + +// AbslHashValue for hashing std::vector +// +// Do not use this for vector<bool>. It does not have a .data(), and a fallback +// for std::hash<> is most likely faster. +template <typename H, typename T, typename Allocator> +typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value, + H>::type +AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { + return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(), + vector.size()), + vector.size()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Ordered Associative Containers +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing std::map +template <typename H, typename Key, typename T, typename Compare, + typename Allocator> +typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, + H>::type +AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) { + for (const auto& t : map) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), map.size()); +} + +// AbslHashValue for hashing std::multimap +template <typename H, typename Key, typename T, typename Compare, + typename Allocator> +typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, + H>::type +AbslHashValue(H hash_state, + const std::multimap<Key, T, Compare, Allocator>& map) { + for (const auto& t : map) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), map.size()); +} + +// AbslHashValue for hashing std::set +template <typename H, typename Key, typename Compare, typename Allocator> +typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( + H hash_state, const std::set<Key, Compare, Allocator>& set) { + for (const auto& t : set) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), set.size()); +} + +// AbslHashValue for hashing std::multiset +template <typename H, typename Key, typename Compare, typename Allocator> +typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( + H hash_state, const std::multiset<Key, Compare, Allocator>& set) { + for (const auto& t : set) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), set.size()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Wrapper Types +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing std::reference_wrapper +template <typename H, typename T> +typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( + H hash_state, std::reference_wrapper<T> opt) { + return H::combine(std::move(hash_state), opt.get()); +} + +// AbslHashValue for hashing absl::optional +template <typename H, typename T> +typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( + H hash_state, const absl::optional<T>& opt) { + if (opt) hash_state = H::combine(std::move(hash_state), *opt); + return H::combine(std::move(hash_state), opt.has_value()); +} + +// VariantVisitor +template <typename H> +struct VariantVisitor { + H&& hash_state; + template <typename T> + H operator()(const T& t) const { + return H::combine(std::move(hash_state), t); + } +}; + +// AbslHashValue for hashing absl::variant +template <typename H, typename... T> +typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type +AbslHashValue(H hash_state, const absl::variant<T...>& v) { + if (!v.valueless_by_exception()) { + hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v); + } + return H::combine(std::move(hash_state), v.index()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Other Types +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing std::bitset is not defined, for the same reason as +// for vector<bool> (see std::vector above): It does not expose the raw bytes, +// and a fallback to std::hash<> is most likely faster. + +// ----------------------------------------------------------------------------- + +// hash_range_or_bytes() +// +// Mixes all values in the range [data, data+size) into the hash state. +// This overload accepts only uniquely-represented types, and hashes them by +// hashing the entire range of bytes. +template <typename H, typename T> +typename std::enable_if<is_uniquely_represented<T>::value, H>::type +hash_range_or_bytes(H hash_state, const T* data, size_t size) { + const auto* bytes = reinterpret_cast<const unsigned char*>(data); + return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size); +} + +// hash_range_or_bytes() +template <typename H, typename T> +typename std::enable_if<!is_uniquely_represented<T>::value, H>::type +hash_range_or_bytes(H hash_state, const T* data, size_t size) { + for (const auto end = data + size; data < end; ++data) { + hash_state = H::combine(std::move(hash_state), *data); + } + return hash_state; +} + +#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \ + ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ +#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1 +#else +#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0 +#endif + +// HashSelect +// +// Type trait to select the appropriate hash implementation to use. +// HashSelect::type<T> will give the proper hash implementation, to be invoked +// as: +// HashSelect::type<T>::Invoke(state, value) +// Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a +// valid `Invoke` function. Types that are not hashable will have a ::value of +// `false`. +struct HashSelect { + private: + struct State : HashStateBase<State> { + static State combine_contiguous(State hash_state, const unsigned char*, + size_t); + using State::HashStateBase::combine_contiguous; + }; + + struct UniquelyRepresentedProbe { + template <typename H, typename T> + static auto Invoke(H state, const T& value) + -> absl::enable_if_t<is_uniquely_represented<T>::value, H> { + return hash_internal::hash_bytes(std::move(state), value); + } + }; + + struct HashValueProbe { + template <typename H, typename T> + static auto Invoke(H state, const T& value) -> absl::enable_if_t< + std::is_same<H, + decltype(AbslHashValue(std::move(state), value))>::value, + H> { + return AbslHashValue(std::move(state), value); + } + }; + + struct LegacyHashProbe { +#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ + template <typename H, typename T> + static auto Invoke(H state, const T& value) -> absl::enable_if_t< + std::is_convertible< + decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)), + size_t>::value, + H> { + return hash_internal::hash_bytes( + std::move(state), + ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value)); + } +#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ + }; + + struct StdHashProbe { + template <typename H, typename T> + static auto Invoke(H state, const T& value) + -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> { + return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value)); + } + }; + + template <typename Hash, typename T> + struct Probe : Hash { + private: + template <typename H, typename = decltype(H::Invoke( + std::declval<State>(), std::declval<const T&>()))> + static std::true_type Test(int); + template <typename U> + static std::false_type Test(char); + + public: + static constexpr bool value = decltype(Test<Hash>(0))::value; + }; + + public: + // Probe each implementation in order. + // disjunction provides short circuiting wrt instantiation. + template <typename T> + using Apply = absl::disjunction< // + Probe<UniquelyRepresentedProbe, T>, // + Probe<HashValueProbe, T>, // + Probe<LegacyHashProbe, T>, // + Probe<StdHashProbe, T>, // + std::false_type>; +}; + +template <typename T> +struct is_hashable + : std::integral_constant<bool, HashSelect::template Apply<T>::value> {}; + +// CityHashState +class ABSL_DLL CityHashState + : public HashStateBase<CityHashState> { + // absl::uint128 is not an alias or a thin wrapper around the intrinsic. + // We use the intrinsic when available to improve performance. +#ifdef ABSL_HAVE_INTRINSIC_INT128 + using uint128 = __uint128_t; +#else // ABSL_HAVE_INTRINSIC_INT128 + using uint128 = absl::uint128; +#endif // ABSL_HAVE_INTRINSIC_INT128 + + static constexpr uint64_t kMul = + sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51} + : uint64_t{0x9ddfea08eb382d69}; + + template <typename T> + using IntegralFastPath = + conjunction<std::is_integral<T>, is_uniquely_represented<T>>; + + public: + // Move only + CityHashState(CityHashState&&) = default; + CityHashState& operator=(CityHashState&&) = default; + + // CityHashState::combine_contiguous() + // + // Fundamental base case for hash recursion: mixes the given range of bytes + // into the hash state. + static CityHashState combine_contiguous(CityHashState hash_state, + const unsigned char* first, + size_t size) { + return CityHashState( + CombineContiguousImpl(hash_state.state_, first, size, + std::integral_constant<int, sizeof(size_t)>{})); + } + using CityHashState::HashStateBase::combine_contiguous; + + // CityHashState::hash() + // + // For performance reasons in non-opt mode, we specialize this for + // integral types. + // Otherwise we would be instantiating and calling dozens of functions for + // something that is just one multiplication and a couple xor's. + // The result should be the same as running the whole algorithm, but faster. + template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0> + static size_t hash(T value) { + return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value))); + } + + // Overload of CityHashState::hash() + template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0> + static size_t hash(const T& value) { + return static_cast<size_t>(combine(CityHashState{}, value).state_); + } + + private: + // Invoked only once for a given argument; that plus the fact that this is + // move-only ensures that there is only one non-moved-from object. + CityHashState() : state_(Seed()) {} + + // Workaround for MSVC bug. + // We make the type copyable to fix the calling convention, even though we + // never actually copy it. Keep it private to not affect the public API of the + // type. + CityHashState(const CityHashState&) = default; + + explicit CityHashState(uint64_t state) : state_(state) {} + + // Implementation of the base case for combine_contiguous where we actually + // mix the bytes into the state. + // Dispatch to different implementations of the combine_contiguous depending + // on the value of `sizeof(size_t)`. + static uint64_t CombineContiguousImpl(uint64_t state, + const unsigned char* first, size_t len, + std::integral_constant<int, 4> + /* sizeof_size_t */); + static uint64_t CombineContiguousImpl(uint64_t state, + const unsigned char* first, size_t len, + std::integral_constant<int, 8> + /* sizeof_size_t*/); + + // Slow dispatch path for calls to CombineContiguousImpl with a size argument + // larger than PiecewiseChunkSize(). Has the same effect as calling + // CombineContiguousImpl() repeatedly with the chunk stride size. + static uint64_t CombineLargeContiguousImpl32(uint64_t state, + const unsigned char* first, + size_t len); + static uint64_t CombineLargeContiguousImpl64(uint64_t state, + const unsigned char* first, + size_t len); + + // Reads 9 to 16 bytes from p. + // The first 8 bytes are in .first, the rest (zero padded) bytes are in + // .second. + static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p, + size_t len) { + uint64_t high = little_endian::Load64(p + len - 8); + return {little_endian::Load64(p), high >> (128 - len * 8)}; + } + + // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t. + static uint64_t Read4To8(const unsigned char* p, size_t len) { + return (static_cast<uint64_t>(little_endian::Load32(p + len - 4)) + << (len - 4) * 8) | + little_endian::Load32(p); + } + + // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t. + static uint32_t Read1To3(const unsigned char* p, size_t len) { + return static_cast<uint32_t>((p[0]) | // + (p[len / 2] << (len / 2 * 8)) | // + (p[len - 1] << ((len - 1) * 8))); + } + + ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) { + using MultType = + absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>; + // We do the addition in 64-bit space to make sure the 128-bit + // multiplication is fast. If we were to do it as MultType the compiler has + // to assume that the high word is non-zero and needs to perform 2 + // multiplications instead of one. + MultType m = state + v; + m *= kMul; + return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2))); + } + + // Seed() + // + // A non-deterministic seed. + // + // The current purpose of this seed is to generate non-deterministic results + // and prevent having users depend on the particular hash values. + // It is not meant as a security feature right now, but it leaves the door + // open to upgrade it to a true per-process random seed. A true random seed + // costs more and we don't need to pay for that right now. + // + // On platforms with ASLR, we take advantage of it to make a per-process + // random value. + // See https://en.wikipedia.org/wiki/Address_space_layout_randomization + // + // On other platforms this is still going to be non-deterministic but most + // probably per-build and not per-process. + ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() { + return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed)); + } + static const void* const kSeed; + + uint64_t state_; +}; + +// CityHashState::CombineContiguousImpl() +inline uint64_t CityHashState::CombineContiguousImpl( + uint64_t state, const unsigned char* first, size_t len, + std::integral_constant<int, 4> /* sizeof_size_t */) { + // For large values we use CityHash, for small ones we just use a + // multiplicative hash. + uint64_t v; + if (len > 8) { + if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { + return CombineLargeContiguousImpl32(state, first, len); + } + v = absl::hash_internal::CityHash32(reinterpret_cast<const char*>(first), len); + } else if (len >= 4) { + v = Read4To8(first, len); + } else if (len > 0) { + v = Read1To3(first, len); + } else { + // Empty ranges have no effect. + return state; + } + return Mix(state, v); +} + +// Overload of CityHashState::CombineContiguousImpl() +inline uint64_t CityHashState::CombineContiguousImpl( + uint64_t state, const unsigned char* first, size_t len, + std::integral_constant<int, 8> /* sizeof_size_t */) { + // For large values we use CityHash, for small ones we just use a + // multiplicative hash. + uint64_t v; + if (len > 16) { + if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { + return CombineLargeContiguousImpl64(state, first, len); + } + v = absl::hash_internal::CityHash64(reinterpret_cast<const char*>(first), len); + } else if (len > 8) { + auto p = Read9To16(first, len); + state = Mix(state, p.first); + v = p.second; + } else if (len >= 4) { + v = Read4To8(first, len); + } else if (len > 0) { + v = Read1To3(first, len); + } else { + // Empty ranges have no effect. + return state; + } + return Mix(state, v); +} + +struct AggregateBarrier {}; + +// HashImpl + +// Add a private base class to make sure this type is not an aggregate. +// Aggregates can be aggregate initialized even if the default constructor is +// deleted. +struct PoisonedHash : private AggregateBarrier { + PoisonedHash() = delete; + PoisonedHash(const PoisonedHash&) = delete; + PoisonedHash& operator=(const PoisonedHash&) = delete; +}; + +template <typename T> +struct HashImpl { + size_t operator()(const T& value) const { return CityHashState::hash(value); } +}; + +template <typename T> +struct Hash + : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {}; + +template <typename H> +template <typename T, typename... Ts> +H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) { + return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke( + std::move(state), value), + values...); +} + +// HashStateBase::combine_contiguous() +template <typename H> +template <typename T> +H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) { + return hash_internal::hash_range_or_bytes(std::move(state), data, size); +} + +// HashStateBase::PiecewiseCombiner::add_buffer() +template <typename H> +H PiecewiseCombiner::add_buffer(H state, const unsigned char* data, + size_t size) { + if (position_ + size < PiecewiseChunkSize()) { + // This partial chunk does not fill our existing buffer + memcpy(buf_ + position_, data, size); + position_ += size; + return state; + } + + // If the buffer is partially filled we need to complete the buffer + // and hash it. + if (position_ != 0) { + const size_t bytes_needed = PiecewiseChunkSize() - position_; + memcpy(buf_ + position_, data, bytes_needed); + state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize()); + data += bytes_needed; + size -= bytes_needed; + } + + // Hash whatever chunks we can without copying + while (size >= PiecewiseChunkSize()) { + state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize()); + data += PiecewiseChunkSize(); + size -= PiecewiseChunkSize(); + } + // Fill the buffer with the remainder + memcpy(buf_, data, size); + position_ = size; + return state; +} + +// HashStateBase::PiecewiseCombiner::finalize() +template <typename H> +H PiecewiseCombiner::finalize(H state) { + // Hash the remainder left in the buffer, which may be empty + return H::combine_contiguous(std::move(state), buf_, position_); +} + +} // namespace hash_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_HASH_INTERNAL_HASH_H_ |