about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/container/internal/layout.h
diff options
context:
space:
mode:
authorVincent Ambo <mail@tazj.in>2022-02-07T23·05+0300
committerclbot <clbot@tvl.fyi>2022-02-07T23·09+0000
commit5aa5d282eac56a21e74611c1cdbaa97bb5db2dca (patch)
tree8cc5dce8157a1470ff76719dd15d65f648a05522 /third_party/abseil_cpp/absl/container/internal/layout.h
parenta25675804c4f429fab5ee5201fe25e89865dfd13 (diff)
chore(3p/abseil_cpp): unvendor abseil_cpp r/3786
we weren't actually using these sources anymore, okay?

Change-Id: If701571d9716de308d3512e1eb22c35db0877a66
Reviewed-on: https://cl.tvl.fyi/c/depot/+/5248
Tested-by: BuildkiteCI
Reviewed-by: grfn <grfn@gws.fyi>
Autosubmit: tazjin <tazjin@tvl.su>
Diffstat (limited to 'third_party/abseil_cpp/absl/container/internal/layout.h')
-rw-r--r--third_party/abseil_cpp/absl/container/internal/layout.h743
1 files changed, 0 insertions, 743 deletions
diff --git a/third_party/abseil_cpp/absl/container/internal/layout.h b/third_party/abseil_cpp/absl/container/internal/layout.h
deleted file mode 100644
index 233678331543..000000000000
--- a/third_party/abseil_cpp/absl/container/internal/layout.h
+++ /dev/null
@@ -1,743 +0,0 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//      https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-//                           MOTIVATION AND TUTORIAL
-//
-// If you want to put in a single heap allocation N doubles followed by M ints,
-// it's easy if N and M are known at compile time.
-//
-//   struct S {
-//     double a[N];
-//     int b[M];
-//   };
-//
-//   S* p = new S;
-//
-// But what if N and M are known only in run time? Class template Layout to the
-// rescue! It's a portable generalization of the technique known as struct hack.
-//
-//   // This object will tell us everything we need to know about the memory
-//   // layout of double[N] followed by int[M]. It's structurally identical to
-//   // size_t[2] that stores N and M. It's very cheap to create.
-//   const Layout<double, int> layout(N, M);
-//
-//   // Allocate enough memory for both arrays. `AllocSize()` tells us how much
-//   // memory is needed. We are free to use any allocation function we want as
-//   // long as it returns aligned memory.
-//   std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
-//
-//   // Obtain the pointer to the array of doubles.
-//   // Equivalent to `reinterpret_cast<double*>(p.get())`.
-//   //
-//   // We could have written layout.Pointer<0>(p) instead. If all the types are
-//   // unique you can use either form, but if some types are repeated you must
-//   // use the index form.
-//   double* a = layout.Pointer<double>(p.get());
-//
-//   // Obtain the pointer to the array of ints.
-//   // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
-//   int* b = layout.Pointer<int>(p);
-//
-// If we are unable to specify sizes of all fields, we can pass as many sizes as
-// we can to `Partial()`. In return, it'll allow us to access the fields whose
-// locations and sizes can be computed from the provided information.
-// `Partial()` comes in handy when the array sizes are embedded into the
-// allocation.
-//
-//   // size_t[1] containing N, size_t[1] containing M, double[N], int[M].
-//   using L = Layout<size_t, size_t, double, int>;
-//
-//   unsigned char* Allocate(size_t n, size_t m) {
-//     const L layout(1, 1, n, m);
-//     unsigned char* p = new unsigned char[layout.AllocSize()];
-//     *layout.Pointer<0>(p) = n;
-//     *layout.Pointer<1>(p) = m;
-//     return p;
-//   }
-//
-//   void Use(unsigned char* p) {
-//     // First, extract N and M.
-//     // Specify that the first array has only one element. Using `prefix` we
-//     // can access the first two arrays but not more.
-//     constexpr auto prefix = L::Partial(1);
-//     size_t n = *prefix.Pointer<0>(p);
-//     size_t m = *prefix.Pointer<1>(p);
-//
-//     // Now we can get pointers to the payload.
-//     const L layout(1, 1, n, m);
-//     double* a = layout.Pointer<double>(p);
-//     int* b = layout.Pointer<int>(p);
-//   }
-//
-// The layout we used above combines fixed-size with dynamically-sized fields.
-// This is quite common. Layout is optimized for this use case and generates
-// optimal code. All computations that can be performed at compile time are
-// indeed performed at compile time.
-//
-// Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
-// ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
-// padding in between arrays.
-//
-// You can manually override the alignment of an array by wrapping the type in
-// `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
-// and behavior as `Layout<..., T, ...>` except that the first element of the
-// array of `T` is aligned to `N` (the rest of the elements follow without
-// padding). `N` cannot be less than `alignof(T)`.
-//
-// `AllocSize()` and `Pointer()` are the most basic methods for dealing with
-// memory layouts. Check out the reference or code below to discover more.
-//
-//                            EXAMPLE
-//
-//   // Immutable move-only string with sizeof equal to sizeof(void*). The
-//   // string size and the characters are kept in the same heap allocation.
-//   class CompactString {
-//    public:
-//     CompactString(const char* s = "") {
-//       const size_t size = strlen(s);
-//       // size_t[1] followed by char[size + 1].
-//       const L layout(1, size + 1);
-//       p_.reset(new unsigned char[layout.AllocSize()]);
-//       // If running under ASAN, mark the padding bytes, if any, to catch
-//       // memory errors.
-//       layout.PoisonPadding(p_.get());
-//       // Store the size in the allocation.
-//       *layout.Pointer<size_t>(p_.get()) = size;
-//       // Store the characters in the allocation.
-//       memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
-//     }
-//
-//     size_t size() const {
-//       // Equivalent to reinterpret_cast<size_t&>(*p).
-//       return *L::Partial().Pointer<size_t>(p_.get());
-//     }
-//
-//     const char* c_str() const {
-//       // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
-//       // The argument in Partial(1) specifies that we have size_t[1] in front
-//       // of the characters.
-//       return L::Partial(1).Pointer<char>(p_.get());
-//     }
-//
-//    private:
-//     // Our heap allocation contains a size_t followed by an array of chars.
-//     using L = Layout<size_t, char>;
-//     std::unique_ptr<unsigned char[]> p_;
-//   };
-//
-//   int main() {
-//     CompactString s = "hello";
-//     assert(s.size() == 5);
-//     assert(strcmp(s.c_str(), "hello") == 0);
-//   }
-//
-//                               DOCUMENTATION
-//
-// The interface exported by this file consists of:
-// - class `Layout<>` and its public members.
-// - The public members of class `internal_layout::LayoutImpl<>`. That class
-//   isn't intended to be used directly, and its name and template parameter
-//   list are internal implementation details, but the class itself provides
-//   most of the functionality in this file. See comments on its members for
-//   detailed documentation.
-//
-// `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
-// `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
-// creates a `Layout` object, which exposes the same functionality by inheriting
-// from `LayoutImpl<>`.
-
-#ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_
-#define ABSL_CONTAINER_INTERNAL_LAYOUT_H_
-
-#include <assert.h>
-#include <stddef.h>
-#include <stdint.h>
-
-#include <ostream>
-#include <string>
-#include <tuple>
-#include <type_traits>
-#include <typeinfo>
-#include <utility>
-
-#include "absl/base/config.h"
-#include "absl/meta/type_traits.h"
-#include "absl/strings/str_cat.h"
-#include "absl/types/span.h"
-#include "absl/utility/utility.h"
-
-#ifdef ABSL_HAVE_ADDRESS_SANITIZER
-#include <sanitizer/asan_interface.h>
-#endif
-
-#if defined(__GXX_RTTI)
-#define ABSL_INTERNAL_HAS_CXA_DEMANGLE
-#endif
-
-#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
-#include <cxxabi.h>
-#endif
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-namespace container_internal {
-
-// A type wrapper that instructs `Layout` to use the specific alignment for the
-// array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
-// and behavior as `Layout<..., T, ...>` except that the first element of the
-// array of `T` is aligned to `N` (the rest of the elements follow without
-// padding).
-//
-// Requires: `N >= alignof(T)` and `N` is a power of 2.
-template <class T, size_t N>
-struct Aligned;
-
-namespace internal_layout {
-
-template <class T>
-struct NotAligned {};
-
-template <class T, size_t N>
-struct NotAligned<const Aligned<T, N>> {
-  static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified");
-};
-
-template <size_t>
-using IntToSize = size_t;
-
-template <class>
-using TypeToSize = size_t;
-
-template <class T>
-struct Type : NotAligned<T> {
-  using type = T;
-};
-
-template <class T, size_t N>
-struct Type<Aligned<T, N>> {
-  using type = T;
-};
-
-template <class T>
-struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {};
-
-template <class T, size_t N>
-struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {};
-
-// Note: workaround for https://gcc.gnu.org/PR88115
-template <class T>
-struct AlignOf : NotAligned<T> {
-  static constexpr size_t value = alignof(T);
-};
-
-template <class T, size_t N>
-struct AlignOf<Aligned<T, N>> {
-  static_assert(N % alignof(T) == 0,
-                "Custom alignment can't be lower than the type's alignment");
-  static constexpr size_t value = N;
-};
-
-// Does `Ts...` contain `T`?
-template <class T, class... Ts>
-using Contains = absl::disjunction<std::is_same<T, Ts>...>;
-
-template <class From, class To>
-using CopyConst =
-    typename std::conditional<std::is_const<From>::value, const To, To>::type;
-
-// Note: We're not qualifying this with absl:: because it doesn't compile under
-// MSVC.
-template <class T>
-using SliceType = Span<T>;
-
-// This namespace contains no types. It prevents functions defined in it from
-// being found by ADL.
-namespace adl_barrier {
-
-template <class Needle, class... Ts>
-constexpr size_t Find(Needle, Needle, Ts...) {
-  static_assert(!Contains<Needle, Ts...>(), "Duplicate element type");
-  return 0;
-}
-
-template <class Needle, class T, class... Ts>
-constexpr size_t Find(Needle, T, Ts...) {
-  return adl_barrier::Find(Needle(), Ts()...) + 1;
-}
-
-constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); }
-
-// Returns `q * m` for the smallest `q` such that `q * m >= n`.
-// Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
-constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); }
-
-constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; }
-
-constexpr size_t Max(size_t a) { return a; }
-
-template <class... Ts>
-constexpr size_t Max(size_t a, size_t b, Ts... rest) {
-  return adl_barrier::Max(b < a ? a : b, rest...);
-}
-
-template <class T>
-std::string TypeName() {
-  std::string out;
-  int status = 0;
-  char* demangled = nullptr;
-#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
-  demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status);
-#endif
-  if (status == 0 && demangled != nullptr) {  // Demangling succeeded.
-    absl::StrAppend(&out, "<", demangled, ">");
-    free(demangled);
-  } else {
-#if defined(__GXX_RTTI) || defined(_CPPRTTI)
-    absl::StrAppend(&out, "<", typeid(T).name(), ">");
-#endif
-  }
-  return out;
-}
-
-}  // namespace adl_barrier
-
-template <bool C>
-using EnableIf = typename std::enable_if<C, int>::type;
-
-// Can `T` be a template argument of `Layout`?
-template <class T>
-using IsLegalElementType = std::integral_constant<
-    bool, !std::is_reference<T>::value && !std::is_volatile<T>::value &&
-              !std::is_reference<typename Type<T>::type>::value &&
-              !std::is_volatile<typename Type<T>::type>::value &&
-              adl_barrier::IsPow2(AlignOf<T>::value)>;
-
-template <class Elements, class SizeSeq, class OffsetSeq>
-class LayoutImpl;
-
-// Public base class of `Layout` and the result type of `Layout::Partial()`.
-//
-// `Elements...` contains all template arguments of `Layout` that created this
-// instance.
-//
-// `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments
-// passed to `Layout::Partial()` or `Layout::Layout()`.
-//
-// `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
-// `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
-// can compute offsets).
-template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq>
-class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>,
-                 absl::index_sequence<OffsetSeq...>> {
- private:
-  static_assert(sizeof...(Elements) > 0, "At least one field is required");
-  static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value,
-                "Invalid element type (see IsLegalElementType)");
-
-  enum {
-    NumTypes = sizeof...(Elements),
-    NumSizes = sizeof...(SizeSeq),
-    NumOffsets = sizeof...(OffsetSeq),
-  };
-
-  // These are guaranteed by `Layout`.
-  static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1),
-                "Internal error");
-  static_assert(NumTypes > 0, "Internal error");
-
-  // Returns the index of `T` in `Elements...`. Results in a compilation error
-  // if `Elements...` doesn't contain exactly one instance of `T`.
-  template <class T>
-  static constexpr size_t ElementIndex() {
-    static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(),
-                  "Type not found");
-    return adl_barrier::Find(Type<T>(),
-                             Type<typename Type<Elements>::type>()...);
-  }
-
-  template <size_t N>
-  using ElementAlignment =
-      AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>;
-
- public:
-  // Element types of all arrays packed in a tuple.
-  using ElementTypes = std::tuple<typename Type<Elements>::type...>;
-
-  // Element type of the Nth array.
-  template <size_t N>
-  using ElementType = typename std::tuple_element<N, ElementTypes>::type;
-
-  constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes)
-      : size_{sizes...} {}
-
-  // Alignment of the layout, equal to the strictest alignment of all elements.
-  // All pointers passed to the methods of layout must be aligned to this value.
-  static constexpr size_t Alignment() {
-    return adl_barrier::Max(AlignOf<Elements>::value...);
-  }
-
-  // Offset in bytes of the Nth array.
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   assert(x.Offset<0>() == 0);   // The ints starts from 0.
-  //   assert(x.Offset<1>() == 16);  // The doubles starts from 16.
-  //
-  // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
-  template <size_t N, EnableIf<N == 0> = 0>
-  constexpr size_t Offset() const {
-    return 0;
-  }
-
-  template <size_t N, EnableIf<N != 0> = 0>
-  constexpr size_t Offset() const {
-    static_assert(N < NumOffsets, "Index out of bounds");
-    return adl_barrier::Align(
-        Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1],
-        ElementAlignment<N>::value);
-  }
-
-  // Offset in bytes of the array with the specified element type. There must
-  // be exactly one such array and its zero-based index must be at most
-  // `NumSizes`.
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   assert(x.Offset<int>() == 0);      // The ints starts from 0.
-  //   assert(x.Offset<double>() == 16);  // The doubles starts from 16.
-  template <class T>
-  constexpr size_t Offset() const {
-    return Offset<ElementIndex<T>()>();
-  }
-
-  // Offsets in bytes of all arrays for which the offsets are known.
-  constexpr std::array<size_t, NumOffsets> Offsets() const {
-    return {{Offset<OffsetSeq>()...}};
-  }
-
-  // The number of elements in the Nth array. This is the Nth argument of
-  // `Layout::Partial()` or `Layout::Layout()` (zero-based).
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   assert(x.Size<0>() == 3);
-  //   assert(x.Size<1>() == 4);
-  //
-  // Requires: `N < NumSizes`.
-  template <size_t N>
-  constexpr size_t Size() const {
-    static_assert(N < NumSizes, "Index out of bounds");
-    return size_[N];
-  }
-
-  // The number of elements in the array with the specified element type.
-  // There must be exactly one such array and its zero-based index must be
-  // at most `NumSizes`.
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   assert(x.Size<int>() == 3);
-  //   assert(x.Size<double>() == 4);
-  template <class T>
-  constexpr size_t Size() const {
-    return Size<ElementIndex<T>()>();
-  }
-
-  // The number of elements of all arrays for which they are known.
-  constexpr std::array<size_t, NumSizes> Sizes() const {
-    return {{Size<SizeSeq>()...}};
-  }
-
-  // Pointer to the beginning of the Nth array.
-  //
-  // `Char` must be `[const] [signed|unsigned] char`.
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   unsigned char* p = new unsigned char[x.AllocSize()];
-  //   int* ints = x.Pointer<0>(p);
-  //   double* doubles = x.Pointer<1>(p);
-  //
-  // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
-  // Requires: `p` is aligned to `Alignment()`.
-  template <size_t N, class Char>
-  CopyConst<Char, ElementType<N>>* Pointer(Char* p) const {
-    using C = typename std::remove_const<Char>::type;
-    static_assert(
-        std::is_same<C, char>() || std::is_same<C, unsigned char>() ||
-            std::is_same<C, signed char>(),
-        "The argument must be a pointer to [const] [signed|unsigned] char");
-    constexpr size_t alignment = Alignment();
-    (void)alignment;
-    assert(reinterpret_cast<uintptr_t>(p) % alignment == 0);
-    return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>());
-  }
-
-  // Pointer to the beginning of the array with the specified element type.
-  // There must be exactly one such array and its zero-based index must be at
-  // most `NumSizes`.
-  //
-  // `Char` must be `[const] [signed|unsigned] char`.
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   unsigned char* p = new unsigned char[x.AllocSize()];
-  //   int* ints = x.Pointer<int>(p);
-  //   double* doubles = x.Pointer<double>(p);
-  //
-  // Requires: `p` is aligned to `Alignment()`.
-  template <class T, class Char>
-  CopyConst<Char, T>* Pointer(Char* p) const {
-    return Pointer<ElementIndex<T>()>(p);
-  }
-
-  // Pointers to all arrays for which pointers are known.
-  //
-  // `Char` must be `[const] [signed|unsigned] char`.
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   unsigned char* p = new unsigned char[x.AllocSize()];
-  //
-  //   int* ints;
-  //   double* doubles;
-  //   std::tie(ints, doubles) = x.Pointers(p);
-  //
-  // Requires: `p` is aligned to `Alignment()`.
-  //
-  // Note: We're not using ElementType alias here because it does not compile
-  // under MSVC.
-  template <class Char>
-  std::tuple<CopyConst<
-      Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...>
-  Pointers(Char* p) const {
-    return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>(
-        Pointer<OffsetSeq>(p)...);
-  }
-
-  // The Nth array.
-  //
-  // `Char` must be `[const] [signed|unsigned] char`.
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   unsigned char* p = new unsigned char[x.AllocSize()];
-  //   Span<int> ints = x.Slice<0>(p);
-  //   Span<double> doubles = x.Slice<1>(p);
-  //
-  // Requires: `N < NumSizes`.
-  // Requires: `p` is aligned to `Alignment()`.
-  template <size_t N, class Char>
-  SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const {
-    return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>());
-  }
-
-  // The array with the specified element type. There must be exactly one
-  // such array and its zero-based index must be less than `NumSizes`.
-  //
-  // `Char` must be `[const] [signed|unsigned] char`.
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   unsigned char* p = new unsigned char[x.AllocSize()];
-  //   Span<int> ints = x.Slice<int>(p);
-  //   Span<double> doubles = x.Slice<double>(p);
-  //
-  // Requires: `p` is aligned to `Alignment()`.
-  template <class T, class Char>
-  SliceType<CopyConst<Char, T>> Slice(Char* p) const {
-    return Slice<ElementIndex<T>()>(p);
-  }
-
-  // All arrays with known sizes.
-  //
-  // `Char` must be `[const] [signed|unsigned] char`.
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   unsigned char* p = new unsigned char[x.AllocSize()];
-  //
-  //   Span<int> ints;
-  //   Span<double> doubles;
-  //   std::tie(ints, doubles) = x.Slices(p);
-  //
-  // Requires: `p` is aligned to `Alignment()`.
-  //
-  // Note: We're not using ElementType alias here because it does not compile
-  // under MSVC.
-  template <class Char>
-  std::tuple<SliceType<CopyConst<
-      Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...>
-  Slices(Char* p) const {
-    // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed
-    // in 6.1).
-    (void)p;
-    return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>(
-        Slice<SizeSeq>(p)...);
-  }
-
-  // The size of the allocation that fits all arrays.
-  //
-  //   // int[3], 4 bytes of padding, double[4].
-  //   Layout<int, double> x(3, 4);
-  //   unsigned char* p = new unsigned char[x.AllocSize()];  // 48 bytes
-  //
-  // Requires: `NumSizes == sizeof...(Ts)`.
-  constexpr size_t AllocSize() const {
-    static_assert(NumTypes == NumSizes, "You must specify sizes of all fields");
-    return Offset<NumTypes - 1>() +
-           SizeOf<ElementType<NumTypes - 1>>() * size_[NumTypes - 1];
-  }
-
-  // If built with --config=asan, poisons padding bytes (if any) in the
-  // allocation. The pointer must point to a memory block at least
-  // `AllocSize()` bytes in length.
-  //
-  // `Char` must be `[const] [signed|unsigned] char`.
-  //
-  // Requires: `p` is aligned to `Alignment()`.
-  template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0>
-  void PoisonPadding(const Char* p) const {
-    Pointer<0>(p);  // verify the requirements on `Char` and `p`
-  }
-
-  template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0>
-  void PoisonPadding(const Char* p) const {
-    static_assert(N < NumOffsets, "Index out of bounds");
-    (void)p;
-#ifdef ABSL_HAVE_ADDRESS_SANITIZER
-    PoisonPadding<Char, N - 1>(p);
-    // The `if` is an optimization. It doesn't affect the observable behaviour.
-    if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) {
-      size_t start =
-          Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1];
-      ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start);
-    }
-#endif
-  }
-
-  // Human-readable description of the memory layout. Useful for debugging.
-  // Slow.
-  //
-  //   // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
-  //   // by an unknown number of doubles.
-  //   auto x = Layout<char, int, double>::Partial(5, 3);
-  //   assert(x.DebugString() ==
-  //          "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
-  //
-  // Each field is in the following format: @offset<type>(sizeof)[size] (<type>
-  // may be missing depending on the target platform). For example,
-  // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
-  // int is 4 bytes, and we have 3 of those ints. The size of the last field may
-  // be missing (as in the example above). Only fields with known offsets are
-  // described. Type names may differ across platforms: one compiler might
-  // produce "unsigned*" where another produces "unsigned int *".
-  std::string DebugString() const {
-    const auto offsets = Offsets();
-    const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>()...};
-    const std::string types[] = {
-        adl_barrier::TypeName<ElementType<OffsetSeq>>()...};
-    std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")");
-    for (size_t i = 0; i != NumOffsets - 1; ++i) {
-      absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1],
-                      "(", sizes[i + 1], ")");
-    }
-    // NumSizes is a constant that may be zero. Some compilers cannot see that
-    // inside the if statement "size_[NumSizes - 1]" must be valid.
-    int last = static_cast<int>(NumSizes) - 1;
-    if (NumTypes == NumSizes && last >= 0) {
-      absl::StrAppend(&res, "[", size_[last], "]");
-    }
-    return res;
-  }
-
- private:
-  // Arguments of `Layout::Partial()` or `Layout::Layout()`.
-  size_t size_[NumSizes > 0 ? NumSizes : 1];
-};
-
-template <size_t NumSizes, class... Ts>
-using LayoutType = LayoutImpl<
-    std::tuple<Ts...>, absl::make_index_sequence<NumSizes>,
-    absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>;
-
-}  // namespace internal_layout
-
-// Descriptor of arrays of various types and sizes laid out in memory one after
-// another. See the top of the file for documentation.
-//
-// Check out the public API of internal_layout::LayoutImpl above. The type is
-// internal to the library but its methods are public, and they are inherited
-// by `Layout`.
-template <class... Ts>
-class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> {
- public:
-  static_assert(sizeof...(Ts) > 0, "At least one field is required");
-  static_assert(
-      absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value,
-      "Invalid element type (see IsLegalElementType)");
-
-  // The result type of `Partial()` with `NumSizes` arguments.
-  template <size_t NumSizes>
-  using PartialType = internal_layout::LayoutType<NumSizes, Ts...>;
-
-  // `Layout` knows the element types of the arrays we want to lay out in
-  // memory but not the number of elements in each array.
-  // `Partial(size1, ..., sizeN)` allows us to specify the latter. The
-  // resulting immutable object can be used to obtain pointers to the
-  // individual arrays.
-  //
-  // It's allowed to pass fewer array sizes than the number of arrays. E.g.,
-  // if all you need is to the offset of the second array, you only need to
-  // pass one argument -- the number of elements in the first array.
-  //
-  //   // int[3] followed by 4 bytes of padding and an unknown number of
-  //   // doubles.
-  //   auto x = Layout<int, double>::Partial(3);
-  //   // doubles start at byte 16.
-  //   assert(x.Offset<1>() == 16);
-  //
-  // If you know the number of elements in all arrays, you can still call
-  // `Partial()` but it's more convenient to use the constructor of `Layout`.
-  //
-  //   Layout<int, double> x(3, 5);
-  //
-  // Note: The sizes of the arrays must be specified in number of elements,
-  // not in bytes.
-  //
-  // Requires: `sizeof...(Sizes) <= sizeof...(Ts)`.
-  // Requires: all arguments are convertible to `size_t`.
-  template <class... Sizes>
-  static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) {
-    static_assert(sizeof...(Sizes) <= sizeof...(Ts), "");
-    return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...);
-  }
-
-  // Creates a layout with the sizes of all arrays specified. If you know
-  // only the sizes of the first N arrays (where N can be zero), you can use
-  // `Partial()` defined above. The constructor is essentially equivalent to
-  // calling `Partial()` and passing in all array sizes; the constructor is
-  // provided as a convenient abbreviation.
-  //
-  // Note: The sizes of the arrays must be specified in number of elements,
-  // not in bytes.
-  constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes)
-      : internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {}
-};
-
-}  // namespace container_internal
-ABSL_NAMESPACE_END
-}  // namespace absl
-
-#endif  // ABSL_CONTAINER_INTERNAL_LAYOUT_H_