about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/container/flat_hash_set.h
diff options
context:
space:
mode:
authorVincent Ambo <tazjin@google.com>2020-05-20T01·32+0100
committerVincent Ambo <tazjin@google.com>2020-05-20T01·32+0100
commitfc8dc48020ac5b52731d0828a96ea4d2526c77ba (patch)
tree353204eea3268095a9ad3f5345720f32c2615c69 /third_party/abseil_cpp/absl/container/flat_hash_set.h
parentffb2ae54beb5796cd408fbe15d2d2da09ff37adf (diff)
parent768eb2ca2857342673fcd462792ce04b8bac3fa3 (diff)
Add 'third_party/abseil_cpp/' from commit '768eb2ca2857342673fcd462792ce04b8bac3fa3' r/781
git-subtree-dir: third_party/abseil_cpp
git-subtree-mainline: ffb2ae54beb5796cd408fbe15d2d2da09ff37adf
git-subtree-split: 768eb2ca2857342673fcd462792ce04b8bac3fa3
Diffstat (limited to 'third_party/abseil_cpp/absl/container/flat_hash_set.h')
-rw-r--r--third_party/abseil_cpp/absl/container/flat_hash_set.h503
1 files changed, 503 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/container/flat_hash_set.h b/third_party/abseil_cpp/absl/container/flat_hash_set.h
new file mode 100644
index 000000000000..94be6e3d13f1
--- /dev/null
+++ b/third_party/abseil_cpp/absl/container/flat_hash_set.h
@@ -0,0 +1,503 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: flat_hash_set.h
+// -----------------------------------------------------------------------------
+//
+// An `absl::flat_hash_set<T>` is an unordered associative container designed to
+// be a more efficient replacement for `std::unordered_set`. Like
+// `unordered_set`, search, insertion, and deletion of set elements can be done
+// as an `O(1)` operation. However, `flat_hash_set` (and other unordered
+// associative containers known as the collection of Abseil "Swiss tables")
+// contain other optimizations that result in both memory and computation
+// advantages.
+//
+// In most cases, your default choice for a hash set should be a set of type
+// `flat_hash_set`.
+#ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_
+#define ABSL_CONTAINER_FLAT_HASH_SET_H_
+
+#include <type_traits>
+#include <utility>
+
+#include "absl/algorithm/container.h"
+#include "absl/base/macros.h"
+#include "absl/container/internal/container_memory.h"
+#include "absl/container/internal/hash_function_defaults.h"  // IWYU pragma: export
+#include "absl/container/internal/raw_hash_set.h"  // IWYU pragma: export
+#include "absl/memory/memory.h"
+
+namespace absl {
+ABSL_NAMESPACE_BEGIN
+namespace container_internal {
+template <typename T>
+struct FlatHashSetPolicy;
+}  // namespace container_internal
+
+// -----------------------------------------------------------------------------
+// absl::flat_hash_set
+// -----------------------------------------------------------------------------
+//
+// An `absl::flat_hash_set<T>` is an unordered associative container which has
+// been optimized for both speed and memory footprint in most common use cases.
+// Its interface is similar to that of `std::unordered_set<T>` with the
+// following notable differences:
+//
+// * Requires keys that are CopyConstructible
+// * Supports heterogeneous lookup, through `find()` and `insert()`, provided
+//   that the set is provided a compatible heterogeneous hashing function and
+//   equality operator.
+// * Invalidates any references and pointers to elements within the table after
+//   `rehash()`.
+// * Contains a `capacity()` member function indicating the number of element
+//   slots (open, deleted, and empty) within the hash set.
+// * Returns `void` from the `erase(iterator)` overload.
+//
+// By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All
+// fundamental and Abseil types that support the `absl::Hash` framework have a
+// compatible equality operator for comparing insertions into `flat_hash_map`.
+// If your type is not yet supported by the `absl::Hash` framework, see
+// absl/hash/hash.h for information on extending Abseil hashing to user-defined
+// types.
+//
+// NOTE: A `flat_hash_set` stores its keys directly inside its implementation
+// array to avoid memory indirection. Because a `flat_hash_set` is designed to
+// move data when rehashed, set keys will not retain pointer stability. If you
+// require pointer stability, consider using
+// `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and
+// you require pointer stability, consider `absl::node_hash_set` instead.
+//
+// Example:
+//
+//   // Create a flat hash set of three strings
+//   absl::flat_hash_set<std::string> ducks =
+//     {"huey", "dewey", "louie"};
+//
+//  // Insert a new element into the flat hash set
+//  ducks.insert("donald");
+//
+//  // Force a rehash of the flat hash set
+//  ducks.rehash(0);
+//
+//  // See if "dewey" is present
+//  if (ducks.contains("dewey")) {
+//    std::cout << "We found dewey!" << std::endl;
+//  }
+template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
+          class Eq = absl::container_internal::hash_default_eq<T>,
+          class Allocator = std::allocator<T>>
+class flat_hash_set
+    : public absl::container_internal::raw_hash_set<
+          absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> {
+  using Base = typename flat_hash_set::raw_hash_set;
+
+ public:
+  // Constructors and Assignment Operators
+  //
+  // A flat_hash_set supports the same overload set as `std::unordered_map`
+  // for construction and assignment:
+  //
+  // *  Default constructor
+  //
+  //    // No allocation for the table's elements is made.
+  //    absl::flat_hash_set<std::string> set1;
+  //
+  // * Initializer List constructor
+  //
+  //   absl::flat_hash_set<std::string> set2 =
+  //       {{"huey"}, {"dewey"}, {"louie"},};
+  //
+  // * Copy constructor
+  //
+  //   absl::flat_hash_set<std::string> set3(set2);
+  //
+  // * Copy assignment operator
+  //
+  //  // Hash functor and Comparator are copied as well
+  //  absl::flat_hash_set<std::string> set4;
+  //  set4 = set3;
+  //
+  // * Move constructor
+  //
+  //   // Move is guaranteed efficient
+  //   absl::flat_hash_set<std::string> set5(std::move(set4));
+  //
+  // * Move assignment operator
+  //
+  //   // May be efficient if allocators are compatible
+  //   absl::flat_hash_set<std::string> set6;
+  //   set6 = std::move(set5);
+  //
+  // * Range constructor
+  //
+  //   std::vector<std::string> v = {"a", "b"};
+  //   absl::flat_hash_set<std::string> set7(v.begin(), v.end());
+  flat_hash_set() {}
+  using Base::Base;
+
+  // flat_hash_set::begin()
+  //
+  // Returns an iterator to the beginning of the `flat_hash_set`.
+  using Base::begin;
+
+  // flat_hash_set::cbegin()
+  //
+  // Returns a const iterator to the beginning of the `flat_hash_set`.
+  using Base::cbegin;
+
+  // flat_hash_set::cend()
+  //
+  // Returns a const iterator to the end of the `flat_hash_set`.
+  using Base::cend;
+
+  // flat_hash_set::end()
+  //
+  // Returns an iterator to the end of the `flat_hash_set`.
+  using Base::end;
+
+  // flat_hash_set::capacity()
+  //
+  // Returns the number of element slots (assigned, deleted, and empty)
+  // available within the `flat_hash_set`.
+  //
+  // NOTE: this member function is particular to `absl::flat_hash_set` and is
+  // not provided in the `std::unordered_map` API.
+  using Base::capacity;
+
+  // flat_hash_set::empty()
+  //
+  // Returns whether or not the `flat_hash_set` is empty.
+  using Base::empty;
+
+  // flat_hash_set::max_size()
+  //
+  // Returns the largest theoretical possible number of elements within a
+  // `flat_hash_set` under current memory constraints. This value can be thought
+  // of the largest value of `std::distance(begin(), end())` for a
+  // `flat_hash_set<T>`.
+  using Base::max_size;
+
+  // flat_hash_set::size()
+  //
+  // Returns the number of elements currently within the `flat_hash_set`.
+  using Base::size;
+
+  // flat_hash_set::clear()
+  //
+  // Removes all elements from the `flat_hash_set`. Invalidates any references,
+  // pointers, or iterators referring to contained elements.
+  //
+  // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
+  // the underlying buffer call `erase(begin(), end())`.
+  using Base::clear;
+
+  // flat_hash_set::erase()
+  //
+  // Erases elements within the `flat_hash_set`. Erasing does not trigger a
+  // rehash. Overloads are listed below.
+  //
+  // void erase(const_iterator pos):
+  //
+  //   Erases the element at `position` of the `flat_hash_set`, returning
+  //   `void`.
+  //
+  //   NOTE: returning `void` in this case is different than that of STL
+  //   containers in general and `std::unordered_set` in particular (which
+  //   return an iterator to the element following the erased element). If that
+  //   iterator is needed, simply post increment the iterator:
+  //
+  //     set.erase(it++);
+  //
+  // iterator erase(const_iterator first, const_iterator last):
+  //
+  //   Erases the elements in the open interval [`first`, `last`), returning an
+  //   iterator pointing to `last`.
+  //
+  // size_type erase(const key_type& key):
+  //
+  //   Erases the element with the matching key, if it exists.
+  using Base::erase;
+
+  // flat_hash_set::insert()
+  //
+  // Inserts an element of the specified value into the `flat_hash_set`,
+  // returning an iterator pointing to the newly inserted element, provided that
+  // an element with the given key does not already exist. If rehashing occurs
+  // due to the insertion, all iterators are invalidated. Overloads are listed
+  // below.
+  //
+  // std::pair<iterator,bool> insert(const T& value):
+  //
+  //   Inserts a value into the `flat_hash_set`. Returns a pair consisting of an
+  //   iterator to the inserted element (or to the element that prevented the
+  //   insertion) and a bool denoting whether the insertion took place.
+  //
+  // std::pair<iterator,bool> insert(T&& value):
+  //
+  //   Inserts a moveable value into the `flat_hash_set`. Returns a pair
+  //   consisting of an iterator to the inserted element (or to the element that
+  //   prevented the insertion) and a bool denoting whether the insertion took
+  //   place.
+  //
+  // iterator insert(const_iterator hint, const T& value):
+  // iterator insert(const_iterator hint, T&& value):
+  //
+  //   Inserts a value, using the position of `hint` as a non-binding suggestion
+  //   for where to begin the insertion search. Returns an iterator to the
+  //   inserted element, or to the existing element that prevented the
+  //   insertion.
+  //
+  // void insert(InputIterator first, InputIterator last):
+  //
+  //   Inserts a range of values [`first`, `last`).
+  //
+  //   NOTE: Although the STL does not specify which element may be inserted if
+  //   multiple keys compare equivalently, for `flat_hash_set` we guarantee the
+  //   first match is inserted.
+  //
+  // void insert(std::initializer_list<T> ilist):
+  //
+  //   Inserts the elements within the initializer list `ilist`.
+  //
+  //   NOTE: Although the STL does not specify which element may be inserted if
+  //   multiple keys compare equivalently within the initializer list, for
+  //   `flat_hash_set` we guarantee the first match is inserted.
+  using Base::insert;
+
+  // flat_hash_set::emplace()
+  //
+  // Inserts an element of the specified value by constructing it in-place
+  // within the `flat_hash_set`, provided that no element with the given key
+  // already exists.
+  //
+  // The element may be constructed even if there already is an element with the
+  // key in the container, in which case the newly constructed element will be
+  // destroyed immediately.
+  //
+  // If rehashing occurs due to the insertion, all iterators are invalidated.
+  using Base::emplace;
+
+  // flat_hash_set::emplace_hint()
+  //
+  // Inserts an element of the specified value by constructing it in-place
+  // within the `flat_hash_set`, using the position of `hint` as a non-binding
+  // suggestion for where to begin the insertion search, and only inserts
+  // provided that no element with the given key already exists.
+  //
+  // The element may be constructed even if there already is an element with the
+  // key in the container, in which case the newly constructed element will be
+  // destroyed immediately.
+  //
+  // If rehashing occurs due to the insertion, all iterators are invalidated.
+  using Base::emplace_hint;
+
+  // flat_hash_set::extract()
+  //
+  // Extracts the indicated element, erasing it in the process, and returns it
+  // as a C++17-compatible node handle. Overloads are listed below.
+  //
+  // node_type extract(const_iterator position):
+  //
+  //   Extracts the element at the indicated position and returns a node handle
+  //   owning that extracted data.
+  //
+  // node_type extract(const key_type& x):
+  //
+  //   Extracts the element with the key matching the passed key value and
+  //   returns a node handle owning that extracted data. If the `flat_hash_set`
+  //   does not contain an element with a matching key, this function returns an
+  //   empty node handle.
+  using Base::extract;
+
+  // flat_hash_set::merge()
+  //
+  // Extracts elements from a given `source` flat hash map into this
+  // `flat_hash_set`. If the destination `flat_hash_set` already contains an
+  // element with an equivalent key, that element is not extracted.
+  using Base::merge;
+
+  // flat_hash_set::swap(flat_hash_set& other)
+  //
+  // Exchanges the contents of this `flat_hash_set` with those of the `other`
+  // flat hash map, avoiding invocation of any move, copy, or swap operations on
+  // individual elements.
+  //
+  // All iterators and references on the `flat_hash_set` remain valid, excepting
+  // for the past-the-end iterator, which is invalidated.
+  //
+  // `swap()` requires that the flat hash set's hashing and key equivalence
+  // functions be Swappable, and are exchaged using unqualified calls to
+  // non-member `swap()`. If the map's allocator has
+  // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
+  // set to `true`, the allocators are also exchanged using an unqualified call
+  // to non-member `swap()`; otherwise, the allocators are not swapped.
+  using Base::swap;
+
+  // flat_hash_set::rehash(count)
+  //
+  // Rehashes the `flat_hash_set`, setting the number of slots to be at least
+  // the passed value. If the new number of slots increases the load factor more
+  // than the current maximum load factor
+  // (`count` < `size()` / `max_load_factor()`), then the new number of slots
+  // will be at least `size()` / `max_load_factor()`.
+  //
+  // To force a rehash, pass rehash(0).
+  //
+  // NOTE: unlike behavior in `std::unordered_set`, references are also
+  // invalidated upon a `rehash()`.
+  using Base::rehash;
+
+  // flat_hash_set::reserve(count)
+  //
+  // Sets the number of slots in the `flat_hash_set` to the number needed to
+  // accommodate at least `count` total elements without exceeding the current
+  // maximum load factor, and may rehash the container if needed.
+  using Base::reserve;
+
+  // flat_hash_set::contains()
+  //
+  // Determines whether an element comparing equal to the given `key` exists
+  // within the `flat_hash_set`, returning `true` if so or `false` otherwise.
+  using Base::contains;
+
+  // flat_hash_set::count(const Key& key) const
+  //
+  // Returns the number of elements comparing equal to the given `key` within
+  // the `flat_hash_set`. note that this function will return either `1` or `0`
+  // since duplicate elements are not allowed within a `flat_hash_set`.
+  using Base::count;
+
+  // flat_hash_set::equal_range()
+  //
+  // Returns a closed range [first, last], defined by a `std::pair` of two
+  // iterators, containing all elements with the passed key in the
+  // `flat_hash_set`.
+  using Base::equal_range;
+
+  // flat_hash_set::find()
+  //
+  // Finds an element with the passed `key` within the `flat_hash_set`.
+  using Base::find;
+
+  // flat_hash_set::bucket_count()
+  //
+  // Returns the number of "buckets" within the `flat_hash_set`. Note that
+  // because a flat hash map contains all elements within its internal storage,
+  // this value simply equals the current capacity of the `flat_hash_set`.
+  using Base::bucket_count;
+
+  // flat_hash_set::load_factor()
+  //
+  // Returns the current load factor of the `flat_hash_set` (the average number
+  // of slots occupied with a value within the hash map).
+  using Base::load_factor;
+
+  // flat_hash_set::max_load_factor()
+  //
+  // Manages the maximum load factor of the `flat_hash_set`. Overloads are
+  // listed below.
+  //
+  // float flat_hash_set::max_load_factor()
+  //
+  //   Returns the current maximum load factor of the `flat_hash_set`.
+  //
+  // void flat_hash_set::max_load_factor(float ml)
+  //
+  //   Sets the maximum load factor of the `flat_hash_set` to the passed value.
+  //
+  //   NOTE: This overload is provided only for API compatibility with the STL;
+  //   `flat_hash_set` will ignore any set load factor and manage its rehashing
+  //   internally as an implementation detail.
+  using Base::max_load_factor;
+
+  // flat_hash_set::get_allocator()
+  //
+  // Returns the allocator function associated with this `flat_hash_set`.
+  using Base::get_allocator;
+
+  // flat_hash_set::hash_function()
+  //
+  // Returns the hashing function used to hash the keys within this
+  // `flat_hash_set`.
+  using Base::hash_function;
+
+  // flat_hash_set::key_eq()
+  //
+  // Returns the function used for comparing keys equality.
+  using Base::key_eq;
+};
+
+// erase_if(flat_hash_set<>, Pred)
+//
+// Erases all elements that satisfy the predicate `pred` from the container `c`.
+template <typename T, typename H, typename E, typename A, typename Predicate>
+void erase_if(flat_hash_set<T, H, E, A>& c, Predicate pred) {
+  container_internal::EraseIf(pred, &c);
+}
+
+namespace container_internal {
+
+template <class T>
+struct FlatHashSetPolicy {
+  using slot_type = T;
+  using key_type = T;
+  using init_type = T;
+  using constant_iterators = std::true_type;
+
+  template <class Allocator, class... Args>
+  static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
+    absl::allocator_traits<Allocator>::construct(*alloc, slot,
+                                                 std::forward<Args>(args)...);
+  }
+
+  template <class Allocator>
+  static void destroy(Allocator* alloc, slot_type* slot) {
+    absl::allocator_traits<Allocator>::destroy(*alloc, slot);
+  }
+
+  template <class Allocator>
+  static void transfer(Allocator* alloc, slot_type* new_slot,
+                       slot_type* old_slot) {
+    construct(alloc, new_slot, std::move(*old_slot));
+    destroy(alloc, old_slot);
+  }
+
+  static T& element(slot_type* slot) { return *slot; }
+
+  template <class F, class... Args>
+  static decltype(absl::container_internal::DecomposeValue(
+      std::declval<F>(), std::declval<Args>()...))
+  apply(F&& f, Args&&... args) {
+    return absl::container_internal::DecomposeValue(
+        std::forward<F>(f), std::forward<Args>(args)...);
+  }
+
+  static size_t space_used(const T*) { return 0; }
+};
+}  // namespace container_internal
+
+namespace container_algorithm_internal {
+
+// Specialization of trait in absl/algorithm/container.h
+template <class Key, class Hash, class KeyEqual, class Allocator>
+struct IsUnorderedContainer<absl::flat_hash_set<Key, Hash, KeyEqual, Allocator>>
+    : std::true_type {};
+
+}  // namespace container_algorithm_internal
+
+ABSL_NAMESPACE_END
+}  // namespace absl
+
+#endif  // ABSL_CONTAINER_FLAT_HASH_SET_H_