diff options
author | Vincent Ambo <tazjin@google.com> | 2020-05-20T01·32+0100 |
---|---|---|
committer | Vincent Ambo <tazjin@google.com> | 2020-05-20T01·32+0100 |
commit | fc8dc48020ac5b52731d0828a96ea4d2526c77ba (patch) | |
tree | 353204eea3268095a9ad3f5345720f32c2615c69 /third_party/abseil_cpp/absl/container/btree_test.cc | |
parent | ffb2ae54beb5796cd408fbe15d2d2da09ff37adf (diff) | |
parent | 768eb2ca2857342673fcd462792ce04b8bac3fa3 (diff) |
Add 'third_party/abseil_cpp/' from commit '768eb2ca2857342673fcd462792ce04b8bac3fa3' r/781
git-subtree-dir: third_party/abseil_cpp git-subtree-mainline: ffb2ae54beb5796cd408fbe15d2d2da09ff37adf git-subtree-split: 768eb2ca2857342673fcd462792ce04b8bac3fa3
Diffstat (limited to 'third_party/abseil_cpp/absl/container/btree_test.cc')
-rw-r--r-- | third_party/abseil_cpp/absl/container/btree_test.cc | 2410 |
1 files changed, 2410 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/container/btree_test.cc b/third_party/abseil_cpp/absl/container/btree_test.cc new file mode 100644 index 000000000000..bbdb5f42a621 --- /dev/null +++ b/third_party/abseil_cpp/absl/container/btree_test.cc @@ -0,0 +1,2410 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/container/btree_test.h" + +#include <cstdint> +#include <map> +#include <memory> +#include <stdexcept> +#include <string> +#include <type_traits> +#include <utility> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/base/internal/raw_logging.h" +#include "absl/base/macros.h" +#include "absl/container/btree_map.h" +#include "absl/container/btree_set.h" +#include "absl/container/internal/counting_allocator.h" +#include "absl/container/internal/test_instance_tracker.h" +#include "absl/flags/flag.h" +#include "absl/hash/hash_testing.h" +#include "absl/memory/memory.h" +#include "absl/meta/type_traits.h" +#include "absl/strings/str_cat.h" +#include "absl/strings/str_split.h" +#include "absl/strings/string_view.h" +#include "absl/types/compare.h" + +ABSL_FLAG(int, test_values, 10000, "The number of values to use for tests"); + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { +namespace { + +using ::absl::test_internal::CopyableMovableInstance; +using ::absl::test_internal::InstanceTracker; +using ::absl::test_internal::MovableOnlyInstance; +using ::testing::ElementsAre; +using ::testing::ElementsAreArray; +using ::testing::IsEmpty; +using ::testing::Pair; + +template <typename T, typename U> +void CheckPairEquals(const T &x, const U &y) { + ABSL_INTERNAL_CHECK(x == y, "Values are unequal."); +} + +template <typename T, typename U, typename V, typename W> +void CheckPairEquals(const std::pair<T, U> &x, const std::pair<V, W> &y) { + CheckPairEquals(x.first, y.first); + CheckPairEquals(x.second, y.second); +} +} // namespace + +// The base class for a sorted associative container checker. TreeType is the +// container type to check and CheckerType is the container type to check +// against. TreeType is expected to be btree_{set,map,multiset,multimap} and +// CheckerType is expected to be {set,map,multiset,multimap}. +template <typename TreeType, typename CheckerType> +class base_checker { + public: + using key_type = typename TreeType::key_type; + using value_type = typename TreeType::value_type; + using key_compare = typename TreeType::key_compare; + using pointer = typename TreeType::pointer; + using const_pointer = typename TreeType::const_pointer; + using reference = typename TreeType::reference; + using const_reference = typename TreeType::const_reference; + using size_type = typename TreeType::size_type; + using difference_type = typename TreeType::difference_type; + using iterator = typename TreeType::iterator; + using const_iterator = typename TreeType::const_iterator; + using reverse_iterator = typename TreeType::reverse_iterator; + using const_reverse_iterator = typename TreeType::const_reverse_iterator; + + public: + base_checker() : const_tree_(tree_) {} + base_checker(const base_checker &other) + : tree_(other.tree_), const_tree_(tree_), checker_(other.checker_) {} + template <typename InputIterator> + base_checker(InputIterator b, InputIterator e) + : tree_(b, e), const_tree_(tree_), checker_(b, e) {} + + iterator begin() { return tree_.begin(); } + const_iterator begin() const { return tree_.begin(); } + iterator end() { return tree_.end(); } + const_iterator end() const { return tree_.end(); } + reverse_iterator rbegin() { return tree_.rbegin(); } + const_reverse_iterator rbegin() const { return tree_.rbegin(); } + reverse_iterator rend() { return tree_.rend(); } + const_reverse_iterator rend() const { return tree_.rend(); } + + template <typename IterType, typename CheckerIterType> + IterType iter_check(IterType tree_iter, CheckerIterType checker_iter) const { + if (tree_iter == tree_.end()) { + ABSL_INTERNAL_CHECK(checker_iter == checker_.end(), + "Checker iterator not at end."); + } else { + CheckPairEquals(*tree_iter, *checker_iter); + } + return tree_iter; + } + template <typename IterType, typename CheckerIterType> + IterType riter_check(IterType tree_iter, CheckerIterType checker_iter) const { + if (tree_iter == tree_.rend()) { + ABSL_INTERNAL_CHECK(checker_iter == checker_.rend(), + "Checker iterator not at rend."); + } else { + CheckPairEquals(*tree_iter, *checker_iter); + } + return tree_iter; + } + void value_check(const value_type &v) { + typename KeyOfValue<typename TreeType::key_type, + typename TreeType::value_type>::type key_of_value; + const key_type &key = key_of_value(v); + CheckPairEquals(*find(key), v); + lower_bound(key); + upper_bound(key); + equal_range(key); + contains(key); + count(key); + } + void erase_check(const key_type &key) { + EXPECT_FALSE(tree_.contains(key)); + EXPECT_EQ(tree_.find(key), const_tree_.end()); + EXPECT_FALSE(const_tree_.contains(key)); + EXPECT_EQ(const_tree_.find(key), tree_.end()); + EXPECT_EQ(tree_.equal_range(key).first, + const_tree_.equal_range(key).second); + } + + iterator lower_bound(const key_type &key) { + return iter_check(tree_.lower_bound(key), checker_.lower_bound(key)); + } + const_iterator lower_bound(const key_type &key) const { + return iter_check(tree_.lower_bound(key), checker_.lower_bound(key)); + } + iterator upper_bound(const key_type &key) { + return iter_check(tree_.upper_bound(key), checker_.upper_bound(key)); + } + const_iterator upper_bound(const key_type &key) const { + return iter_check(tree_.upper_bound(key), checker_.upper_bound(key)); + } + std::pair<iterator, iterator> equal_range(const key_type &key) { + std::pair<typename CheckerType::iterator, typename CheckerType::iterator> + checker_res = checker_.equal_range(key); + std::pair<iterator, iterator> tree_res = tree_.equal_range(key); + iter_check(tree_res.first, checker_res.first); + iter_check(tree_res.second, checker_res.second); + return tree_res; + } + std::pair<const_iterator, const_iterator> equal_range( + const key_type &key) const { + std::pair<typename CheckerType::const_iterator, + typename CheckerType::const_iterator> + checker_res = checker_.equal_range(key); + std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key); + iter_check(tree_res.first, checker_res.first); + iter_check(tree_res.second, checker_res.second); + return tree_res; + } + iterator find(const key_type &key) { + return iter_check(tree_.find(key), checker_.find(key)); + } + const_iterator find(const key_type &key) const { + return iter_check(tree_.find(key), checker_.find(key)); + } + bool contains(const key_type &key) const { return find(key) != end(); } + size_type count(const key_type &key) const { + size_type res = checker_.count(key); + EXPECT_EQ(res, tree_.count(key)); + return res; + } + + base_checker &operator=(const base_checker &other) { + tree_ = other.tree_; + checker_ = other.checker_; + return *this; + } + + int erase(const key_type &key) { + int size = tree_.size(); + int res = checker_.erase(key); + EXPECT_EQ(res, tree_.count(key)); + EXPECT_EQ(res, tree_.erase(key)); + EXPECT_EQ(tree_.count(key), 0); + EXPECT_EQ(tree_.size(), size - res); + erase_check(key); + return res; + } + iterator erase(iterator iter) { + key_type key = iter.key(); + int size = tree_.size(); + int count = tree_.count(key); + auto checker_iter = checker_.lower_bound(key); + for (iterator tmp(tree_.lower_bound(key)); tmp != iter; ++tmp) { + ++checker_iter; + } + auto checker_next = checker_iter; + ++checker_next; + checker_.erase(checker_iter); + iter = tree_.erase(iter); + EXPECT_EQ(tree_.size(), checker_.size()); + EXPECT_EQ(tree_.size(), size - 1); + EXPECT_EQ(tree_.count(key), count - 1); + if (count == 1) { + erase_check(key); + } + return iter_check(iter, checker_next); + } + + void erase(iterator begin, iterator end) { + int size = tree_.size(); + int count = std::distance(begin, end); + auto checker_begin = checker_.lower_bound(begin.key()); + for (iterator tmp(tree_.lower_bound(begin.key())); tmp != begin; ++tmp) { + ++checker_begin; + } + auto checker_end = + end == tree_.end() ? checker_.end() : checker_.lower_bound(end.key()); + if (end != tree_.end()) { + for (iterator tmp(tree_.lower_bound(end.key())); tmp != end; ++tmp) { + ++checker_end; + } + } + const auto checker_ret = checker_.erase(checker_begin, checker_end); + const auto tree_ret = tree_.erase(begin, end); + EXPECT_EQ(std::distance(checker_.begin(), checker_ret), + std::distance(tree_.begin(), tree_ret)); + EXPECT_EQ(tree_.size(), checker_.size()); + EXPECT_EQ(tree_.size(), size - count); + } + + void clear() { + tree_.clear(); + checker_.clear(); + } + void swap(base_checker &other) { + tree_.swap(other.tree_); + checker_.swap(other.checker_); + } + + void verify() const { + tree_.verify(); + EXPECT_EQ(tree_.size(), checker_.size()); + + // Move through the forward iterators using increment. + auto checker_iter = checker_.begin(); + const_iterator tree_iter(tree_.begin()); + for (; tree_iter != tree_.end(); ++tree_iter, ++checker_iter) { + CheckPairEquals(*tree_iter, *checker_iter); + } + + // Move through the forward iterators using decrement. + for (int n = tree_.size() - 1; n >= 0; --n) { + iter_check(tree_iter, checker_iter); + --tree_iter; + --checker_iter; + } + EXPECT_EQ(tree_iter, tree_.begin()); + EXPECT_EQ(checker_iter, checker_.begin()); + + // Move through the reverse iterators using increment. + auto checker_riter = checker_.rbegin(); + const_reverse_iterator tree_riter(tree_.rbegin()); + for (; tree_riter != tree_.rend(); ++tree_riter, ++checker_riter) { + CheckPairEquals(*tree_riter, *checker_riter); + } + + // Move through the reverse iterators using decrement. + for (int n = tree_.size() - 1; n >= 0; --n) { + riter_check(tree_riter, checker_riter); + --tree_riter; + --checker_riter; + } + EXPECT_EQ(tree_riter, tree_.rbegin()); + EXPECT_EQ(checker_riter, checker_.rbegin()); + } + + const TreeType &tree() const { return tree_; } + + size_type size() const { + EXPECT_EQ(tree_.size(), checker_.size()); + return tree_.size(); + } + size_type max_size() const { return tree_.max_size(); } + bool empty() const { + EXPECT_EQ(tree_.empty(), checker_.empty()); + return tree_.empty(); + } + + protected: + TreeType tree_; + const TreeType &const_tree_; + CheckerType checker_; +}; + +namespace { +// A checker for unique sorted associative containers. TreeType is expected to +// be btree_{set,map} and CheckerType is expected to be {set,map}. +template <typename TreeType, typename CheckerType> +class unique_checker : public base_checker<TreeType, CheckerType> { + using super_type = base_checker<TreeType, CheckerType>; + + public: + using iterator = typename super_type::iterator; + using value_type = typename super_type::value_type; + + public: + unique_checker() : super_type() {} + unique_checker(const unique_checker &other) : super_type(other) {} + template <class InputIterator> + unique_checker(InputIterator b, InputIterator e) : super_type(b, e) {} + unique_checker &operator=(const unique_checker &) = default; + + // Insertion routines. + std::pair<iterator, bool> insert(const value_type &v) { + int size = this->tree_.size(); + std::pair<typename CheckerType::iterator, bool> checker_res = + this->checker_.insert(v); + std::pair<iterator, bool> tree_res = this->tree_.insert(v); + CheckPairEquals(*tree_res.first, *checker_res.first); + EXPECT_EQ(tree_res.second, checker_res.second); + EXPECT_EQ(this->tree_.size(), this->checker_.size()); + EXPECT_EQ(this->tree_.size(), size + tree_res.second); + return tree_res; + } + iterator insert(iterator position, const value_type &v) { + int size = this->tree_.size(); + std::pair<typename CheckerType::iterator, bool> checker_res = + this->checker_.insert(v); + iterator tree_res = this->tree_.insert(position, v); + CheckPairEquals(*tree_res, *checker_res.first); + EXPECT_EQ(this->tree_.size(), this->checker_.size()); + EXPECT_EQ(this->tree_.size(), size + checker_res.second); + return tree_res; + } + template <typename InputIterator> + void insert(InputIterator b, InputIterator e) { + for (; b != e; ++b) { + insert(*b); + } + } +}; + +// A checker for multiple sorted associative containers. TreeType is expected +// to be btree_{multiset,multimap} and CheckerType is expected to be +// {multiset,multimap}. +template <typename TreeType, typename CheckerType> +class multi_checker : public base_checker<TreeType, CheckerType> { + using super_type = base_checker<TreeType, CheckerType>; + + public: + using iterator = typename super_type::iterator; + using value_type = typename super_type::value_type; + + public: + multi_checker() : super_type() {} + multi_checker(const multi_checker &other) : super_type(other) {} + template <class InputIterator> + multi_checker(InputIterator b, InputIterator e) : super_type(b, e) {} + multi_checker &operator=(const multi_checker &) = default; + + // Insertion routines. + iterator insert(const value_type &v) { + int size = this->tree_.size(); + auto checker_res = this->checker_.insert(v); + iterator tree_res = this->tree_.insert(v); + CheckPairEquals(*tree_res, *checker_res); + EXPECT_EQ(this->tree_.size(), this->checker_.size()); + EXPECT_EQ(this->tree_.size(), size + 1); + return tree_res; + } + iterator insert(iterator position, const value_type &v) { + int size = this->tree_.size(); + auto checker_res = this->checker_.insert(v); + iterator tree_res = this->tree_.insert(position, v); + CheckPairEquals(*tree_res, *checker_res); + EXPECT_EQ(this->tree_.size(), this->checker_.size()); + EXPECT_EQ(this->tree_.size(), size + 1); + return tree_res; + } + template <typename InputIterator> + void insert(InputIterator b, InputIterator e) { + for (; b != e; ++b) { + insert(*b); + } + } +}; + +template <typename T, typename V> +void DoTest(const char *name, T *b, const std::vector<V> &values) { + typename KeyOfValue<typename T::key_type, V>::type key_of_value; + + T &mutable_b = *b; + const T &const_b = *b; + + // Test insert. + for (int i = 0; i < values.size(); ++i) { + mutable_b.insert(values[i]); + mutable_b.value_check(values[i]); + } + ASSERT_EQ(mutable_b.size(), values.size()); + + const_b.verify(); + + // Test copy constructor. + T b_copy(const_b); + EXPECT_EQ(b_copy.size(), const_b.size()); + for (int i = 0; i < values.size(); ++i) { + CheckPairEquals(*b_copy.find(key_of_value(values[i])), values[i]); + } + + // Test range constructor. + T b_range(const_b.begin(), const_b.end()); + EXPECT_EQ(b_range.size(), const_b.size()); + for (int i = 0; i < values.size(); ++i) { + CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); + } + + // Test range insertion for values that already exist. + b_range.insert(b_copy.begin(), b_copy.end()); + b_range.verify(); + + // Test range insertion for new values. + b_range.clear(); + b_range.insert(b_copy.begin(), b_copy.end()); + EXPECT_EQ(b_range.size(), b_copy.size()); + for (int i = 0; i < values.size(); ++i) { + CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); + } + + // Test assignment to self. Nothing should change. + b_range.operator=(b_range); + EXPECT_EQ(b_range.size(), b_copy.size()); + + // Test assignment of new values. + b_range.clear(); + b_range = b_copy; + EXPECT_EQ(b_range.size(), b_copy.size()); + + // Test swap. + b_range.clear(); + b_range.swap(b_copy); + EXPECT_EQ(b_copy.size(), 0); + EXPECT_EQ(b_range.size(), const_b.size()); + for (int i = 0; i < values.size(); ++i) { + CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); + } + b_range.swap(b_copy); + + // Test non-member function swap. + swap(b_range, b_copy); + EXPECT_EQ(b_copy.size(), 0); + EXPECT_EQ(b_range.size(), const_b.size()); + for (int i = 0; i < values.size(); ++i) { + CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); + } + swap(b_range, b_copy); + + // Test erase via values. + for (int i = 0; i < values.size(); ++i) { + mutable_b.erase(key_of_value(values[i])); + // Erasing a non-existent key should have no effect. + ASSERT_EQ(mutable_b.erase(key_of_value(values[i])), 0); + } + + const_b.verify(); + EXPECT_EQ(const_b.size(), 0); + + // Test erase via iterators. + mutable_b = b_copy; + for (int i = 0; i < values.size(); ++i) { + mutable_b.erase(mutable_b.find(key_of_value(values[i]))); + } + + const_b.verify(); + EXPECT_EQ(const_b.size(), 0); + + // Test insert with hint. + for (int i = 0; i < values.size(); i++) { + mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]); + } + + const_b.verify(); + + // Test range erase. + mutable_b.erase(mutable_b.begin(), mutable_b.end()); + EXPECT_EQ(mutable_b.size(), 0); + const_b.verify(); + + // First half. + mutable_b = b_copy; + typename T::iterator mutable_iter_end = mutable_b.begin(); + for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end; + mutable_b.erase(mutable_b.begin(), mutable_iter_end); + EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2); + const_b.verify(); + + // Second half. + mutable_b = b_copy; + typename T::iterator mutable_iter_begin = mutable_b.begin(); + for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin; + mutable_b.erase(mutable_iter_begin, mutable_b.end()); + EXPECT_EQ(mutable_b.size(), values.size() / 2); + const_b.verify(); + + // Second quarter. + mutable_b = b_copy; + mutable_iter_begin = mutable_b.begin(); + for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin; + mutable_iter_end = mutable_iter_begin; + for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end; + mutable_b.erase(mutable_iter_begin, mutable_iter_end); + EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4); + const_b.verify(); + + mutable_b.clear(); +} + +template <typename T> +void ConstTest() { + using value_type = typename T::value_type; + typename KeyOfValue<typename T::key_type, value_type>::type key_of_value; + + T mutable_b; + const T &const_b = mutable_b; + + // Insert a single value into the container and test looking it up. + value_type value = Generator<value_type>(2)(2); + mutable_b.insert(value); + EXPECT_TRUE(mutable_b.contains(key_of_value(value))); + EXPECT_NE(mutable_b.find(key_of_value(value)), const_b.end()); + EXPECT_TRUE(const_b.contains(key_of_value(value))); + EXPECT_NE(const_b.find(key_of_value(value)), mutable_b.end()); + EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value); + EXPECT_EQ(const_b.upper_bound(key_of_value(value)), const_b.end()); + EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value); + + // We can only create a non-const iterator from a non-const container. + typename T::iterator mutable_iter(mutable_b.begin()); + EXPECT_EQ(mutable_iter, const_b.begin()); + EXPECT_NE(mutable_iter, const_b.end()); + EXPECT_EQ(const_b.begin(), mutable_iter); + EXPECT_NE(const_b.end(), mutable_iter); + typename T::reverse_iterator mutable_riter(mutable_b.rbegin()); + EXPECT_EQ(mutable_riter, const_b.rbegin()); + EXPECT_NE(mutable_riter, const_b.rend()); + EXPECT_EQ(const_b.rbegin(), mutable_riter); + EXPECT_NE(const_b.rend(), mutable_riter); + + // We can create a const iterator from a non-const iterator. + typename T::const_iterator const_iter(mutable_iter); + EXPECT_EQ(const_iter, mutable_b.begin()); + EXPECT_NE(const_iter, mutable_b.end()); + EXPECT_EQ(mutable_b.begin(), const_iter); + EXPECT_NE(mutable_b.end(), const_iter); + typename T::const_reverse_iterator const_riter(mutable_riter); + EXPECT_EQ(const_riter, mutable_b.rbegin()); + EXPECT_NE(const_riter, mutable_b.rend()); + EXPECT_EQ(mutable_b.rbegin(), const_riter); + EXPECT_NE(mutable_b.rend(), const_riter); + + // Make sure various methods can be invoked on a const container. + const_b.verify(); + ASSERT_TRUE(!const_b.empty()); + EXPECT_EQ(const_b.size(), 1); + EXPECT_GT(const_b.max_size(), 0); + EXPECT_TRUE(const_b.contains(key_of_value(value))); + EXPECT_EQ(const_b.count(key_of_value(value)), 1); +} + +template <typename T, typename C> +void BtreeTest() { + ConstTest<T>(); + + using V = typename remove_pair_const<typename T::value_type>::type; + const std::vector<V> random_values = GenerateValuesWithSeed<V>( + absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values), + testing::GTEST_FLAG(random_seed)); + + unique_checker<T, C> container; + + // Test key insertion/deletion in sorted order. + std::vector<V> sorted_values(random_values); + std::sort(sorted_values.begin(), sorted_values.end()); + DoTest("sorted: ", &container, sorted_values); + + // Test key insertion/deletion in reverse sorted order. + std::reverse(sorted_values.begin(), sorted_values.end()); + DoTest("rsorted: ", &container, sorted_values); + + // Test key insertion/deletion in random order. + DoTest("random: ", &container, random_values); +} + +template <typename T, typename C> +void BtreeMultiTest() { + ConstTest<T>(); + + using V = typename remove_pair_const<typename T::value_type>::type; + const std::vector<V> random_values = GenerateValuesWithSeed<V>( + absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values), + testing::GTEST_FLAG(random_seed)); + + multi_checker<T, C> container; + + // Test keys in sorted order. + std::vector<V> sorted_values(random_values); + std::sort(sorted_values.begin(), sorted_values.end()); + DoTest("sorted: ", &container, sorted_values); + + // Test keys in reverse sorted order. + std::reverse(sorted_values.begin(), sorted_values.end()); + DoTest("rsorted: ", &container, sorted_values); + + // Test keys in random order. + DoTest("random: ", &container, random_values); + + // Test keys in random order w/ duplicates. + std::vector<V> duplicate_values(random_values); + duplicate_values.insert(duplicate_values.end(), random_values.begin(), + random_values.end()); + DoTest("duplicates:", &container, duplicate_values); + + // Test all identical keys. + std::vector<V> identical_values(100); + std::fill(identical_values.begin(), identical_values.end(), + Generator<V>(2)(2)); + DoTest("identical: ", &container, identical_values); +} + +template <typename T> +struct PropagatingCountingAlloc : public CountingAllocator<T> { + using propagate_on_container_copy_assignment = std::true_type; + using propagate_on_container_move_assignment = std::true_type; + using propagate_on_container_swap = std::true_type; + + using Base = CountingAllocator<T>; + using Base::Base; + + template <typename U> + explicit PropagatingCountingAlloc(const PropagatingCountingAlloc<U> &other) + : Base(other.bytes_used_) {} + + template <typename U> + struct rebind { + using other = PropagatingCountingAlloc<U>; + }; +}; + +template <typename T> +void BtreeAllocatorTest() { + using value_type = typename T::value_type; + + int64_t bytes1 = 0, bytes2 = 0; + PropagatingCountingAlloc<T> allocator1(&bytes1); + PropagatingCountingAlloc<T> allocator2(&bytes2); + Generator<value_type> generator(1000); + + // Test that we allocate properly aligned memory. If we don't, then Layout + // will assert fail. + auto unused1 = allocator1.allocate(1); + auto unused2 = allocator2.allocate(1); + + // Test copy assignment + { + T b1(typename T::key_compare(), allocator1); + T b2(typename T::key_compare(), allocator2); + + int64_t original_bytes1 = bytes1; + b1.insert(generator(0)); + EXPECT_GT(bytes1, original_bytes1); + + // This should propagate the allocator. + b1 = b2; + EXPECT_EQ(b1.size(), 0); + EXPECT_EQ(b2.size(), 0); + EXPECT_EQ(bytes1, original_bytes1); + + for (int i = 1; i < 1000; i++) { + b1.insert(generator(i)); + } + + // We should have allocated out of allocator2. + EXPECT_GT(bytes2, bytes1); + } + + // Test move assignment + { + T b1(typename T::key_compare(), allocator1); + T b2(typename T::key_compare(), allocator2); + + int64_t original_bytes1 = bytes1; + b1.insert(generator(0)); + EXPECT_GT(bytes1, original_bytes1); + + // This should propagate the allocator. + b1 = std::move(b2); + EXPECT_EQ(b1.size(), 0); + EXPECT_EQ(bytes1, original_bytes1); + + for (int i = 1; i < 1000; i++) { + b1.insert(generator(i)); + } + + // We should have allocated out of allocator2. + EXPECT_GT(bytes2, bytes1); + } + + // Test swap + { + T b1(typename T::key_compare(), allocator1); + T b2(typename T::key_compare(), allocator2); + + int64_t original_bytes1 = bytes1; + b1.insert(generator(0)); + EXPECT_GT(bytes1, original_bytes1); + + // This should swap the allocators. + swap(b1, b2); + EXPECT_EQ(b1.size(), 0); + EXPECT_EQ(b2.size(), 1); + EXPECT_GT(bytes1, original_bytes1); + + for (int i = 1; i < 1000; i++) { + b1.insert(generator(i)); + } + + // We should have allocated out of allocator2. + EXPECT_GT(bytes2, bytes1); + } + + allocator1.deallocate(unused1, 1); + allocator2.deallocate(unused2, 1); +} + +template <typename T> +void BtreeMapTest() { + using value_type = typename T::value_type; + using mapped_type = typename T::mapped_type; + + mapped_type m = Generator<mapped_type>(0)(0); + (void)m; + + T b; + + // Verify we can insert using operator[]. + for (int i = 0; i < 1000; i++) { + value_type v = Generator<value_type>(1000)(i); + b[v.first] = v.second; + } + EXPECT_EQ(b.size(), 1000); + + // Test whether we can use the "->" operator on iterators and + // reverse_iterators. This stresses the btree_map_params::pair_pointer + // mechanism. + EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first); + EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second); + EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first); + EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second); +} + +template <typename T> +void BtreeMultiMapTest() { + using mapped_type = typename T::mapped_type; + mapped_type m = Generator<mapped_type>(0)(0); + (void)m; +} + +template <typename K, int N = 256> +void SetTest() { + EXPECT_EQ( + sizeof(absl::btree_set<K>), + 2 * sizeof(void *) + sizeof(typename absl::btree_set<K>::size_type)); + using BtreeSet = absl::btree_set<K>; + using CountingBtreeSet = + absl::btree_set<K, std::less<K>, PropagatingCountingAlloc<K>>; + BtreeTest<BtreeSet, std::set<K>>(); + BtreeAllocatorTest<CountingBtreeSet>(); +} + +template <typename K, int N = 256> +void MapTest() { + EXPECT_EQ( + sizeof(absl::btree_map<K, K>), + 2 * sizeof(void *) + sizeof(typename absl::btree_map<K, K>::size_type)); + using BtreeMap = absl::btree_map<K, K>; + using CountingBtreeMap = + absl::btree_map<K, K, std::less<K>, + PropagatingCountingAlloc<std::pair<const K, K>>>; + BtreeTest<BtreeMap, std::map<K, K>>(); + BtreeAllocatorTest<CountingBtreeMap>(); + BtreeMapTest<BtreeMap>(); +} + +TEST(Btree, set_int32) { SetTest<int32_t>(); } +TEST(Btree, set_int64) { SetTest<int64_t>(); } +TEST(Btree, set_string) { SetTest<std::string>(); } +TEST(Btree, set_cord) { SetTest<absl::Cord>(); } +TEST(Btree, set_pair) { SetTest<std::pair<int, int>>(); } +TEST(Btree, map_int32) { MapTest<int32_t>(); } +TEST(Btree, map_int64) { MapTest<int64_t>(); } +TEST(Btree, map_string) { MapTest<std::string>(); } +TEST(Btree, map_cord) { MapTest<absl::Cord>(); } +TEST(Btree, map_pair) { MapTest<std::pair<int, int>>(); } + +template <typename K, int N = 256> +void MultiSetTest() { + EXPECT_EQ( + sizeof(absl::btree_multiset<K>), + 2 * sizeof(void *) + sizeof(typename absl::btree_multiset<K>::size_type)); + using BtreeMSet = absl::btree_multiset<K>; + using CountingBtreeMSet = + absl::btree_multiset<K, std::less<K>, PropagatingCountingAlloc<K>>; + BtreeMultiTest<BtreeMSet, std::multiset<K>>(); + BtreeAllocatorTest<CountingBtreeMSet>(); +} + +template <typename K, int N = 256> +void MultiMapTest() { + EXPECT_EQ(sizeof(absl::btree_multimap<K, K>), + 2 * sizeof(void *) + + sizeof(typename absl::btree_multimap<K, K>::size_type)); + using BtreeMMap = absl::btree_multimap<K, K>; + using CountingBtreeMMap = + absl::btree_multimap<K, K, std::less<K>, + PropagatingCountingAlloc<std::pair<const K, K>>>; + BtreeMultiTest<BtreeMMap, std::multimap<K, K>>(); + BtreeMultiMapTest<BtreeMMap>(); + BtreeAllocatorTest<CountingBtreeMMap>(); +} + +TEST(Btree, multiset_int32) { MultiSetTest<int32_t>(); } +TEST(Btree, multiset_int64) { MultiSetTest<int64_t>(); } +TEST(Btree, multiset_string) { MultiSetTest<std::string>(); } +TEST(Btree, multiset_cord) { MultiSetTest<absl::Cord>(); } +TEST(Btree, multiset_pair) { MultiSetTest<std::pair<int, int>>(); } +TEST(Btree, multimap_int32) { MultiMapTest<int32_t>(); } +TEST(Btree, multimap_int64) { MultiMapTest<int64_t>(); } +TEST(Btree, multimap_string) { MultiMapTest<std::string>(); } +TEST(Btree, multimap_cord) { MultiMapTest<absl::Cord>(); } +TEST(Btree, multimap_pair) { MultiMapTest<std::pair<int, int>>(); } + +struct CompareIntToString { + bool operator()(const std::string &a, const std::string &b) const { + return a < b; + } + bool operator()(const std::string &a, int b) const { + return a < absl::StrCat(b); + } + bool operator()(int a, const std::string &b) const { + return absl::StrCat(a) < b; + } + using is_transparent = void; +}; + +struct NonTransparentCompare { + template <typename T, typename U> + bool operator()(const T &t, const U &u) const { + // Treating all comparators as transparent can cause inefficiencies (see + // N3657 C++ proposal). Test that for comparators without 'is_transparent' + // alias (like this one), we do not attempt heterogeneous lookup. + EXPECT_TRUE((std::is_same<T, U>())); + return t < u; + } +}; + +template <typename T> +bool CanEraseWithEmptyBrace(T t, decltype(t.erase({})) *) { + return true; +} + +template <typename T> +bool CanEraseWithEmptyBrace(T, ...) { + return false; +} + +template <typename T> +void TestHeterogeneous(T table) { + auto lb = table.lower_bound("3"); + EXPECT_EQ(lb, table.lower_bound(3)); + EXPECT_NE(lb, table.lower_bound(4)); + EXPECT_EQ(lb, table.lower_bound({"3"})); + EXPECT_NE(lb, table.lower_bound({})); + + auto ub = table.upper_bound("3"); + EXPECT_EQ(ub, table.upper_bound(3)); + EXPECT_NE(ub, table.upper_bound(5)); + EXPECT_EQ(ub, table.upper_bound({"3"})); + EXPECT_NE(ub, table.upper_bound({})); + + auto er = table.equal_range("3"); + EXPECT_EQ(er, table.equal_range(3)); + EXPECT_NE(er, table.equal_range(4)); + EXPECT_EQ(er, table.equal_range({"3"})); + EXPECT_NE(er, table.equal_range({})); + + auto it = table.find("3"); + EXPECT_EQ(it, table.find(3)); + EXPECT_NE(it, table.find(4)); + EXPECT_EQ(it, table.find({"3"})); + EXPECT_NE(it, table.find({})); + + EXPECT_TRUE(table.contains(3)); + EXPECT_FALSE(table.contains(4)); + EXPECT_TRUE(table.count({"3"})); + EXPECT_FALSE(table.contains({})); + + EXPECT_EQ(1, table.count(3)); + EXPECT_EQ(0, table.count(4)); + EXPECT_EQ(1, table.count({"3"})); + EXPECT_EQ(0, table.count({})); + + auto copy = table; + copy.erase(3); + EXPECT_EQ(table.size() - 1, copy.size()); + copy.erase(4); + EXPECT_EQ(table.size() - 1, copy.size()); + copy.erase({"5"}); + EXPECT_EQ(table.size() - 2, copy.size()); + EXPECT_FALSE(CanEraseWithEmptyBrace(table, nullptr)); + + // Also run it with const T&. + if (std::is_class<T>()) TestHeterogeneous<const T &>(table); +} + +TEST(Btree, HeterogeneousLookup) { + TestHeterogeneous(btree_set<std::string, CompareIntToString>{"1", "3", "5"}); + TestHeterogeneous(btree_map<std::string, int, CompareIntToString>{ + {"1", 1}, {"3", 3}, {"5", 5}}); + TestHeterogeneous( + btree_multiset<std::string, CompareIntToString>{"1", "3", "5"}); + TestHeterogeneous(btree_multimap<std::string, int, CompareIntToString>{ + {"1", 1}, {"3", 3}, {"5", 5}}); + + // Only maps have .at() + btree_map<std::string, int, CompareIntToString> map{ + {"", -1}, {"1", 1}, {"3", 3}, {"5", 5}}; + EXPECT_EQ(1, map.at(1)); + EXPECT_EQ(3, map.at({"3"})); + EXPECT_EQ(-1, map.at({})); + const auto &cmap = map; + EXPECT_EQ(1, cmap.at(1)); + EXPECT_EQ(3, cmap.at({"3"})); + EXPECT_EQ(-1, cmap.at({})); +} + +TEST(Btree, NoHeterogeneousLookupWithoutAlias) { + using StringSet = absl::btree_set<std::string, NonTransparentCompare>; + StringSet s; + ASSERT_TRUE(s.insert("hello").second); + ASSERT_TRUE(s.insert("world").second); + EXPECT_TRUE(s.end() == s.find("blah")); + EXPECT_TRUE(s.begin() == s.lower_bound("hello")); + EXPECT_EQ(1, s.count("world")); + EXPECT_TRUE(s.contains("hello")); + EXPECT_TRUE(s.contains("world")); + EXPECT_FALSE(s.contains("blah")); + + using StringMultiSet = + absl::btree_multiset<std::string, NonTransparentCompare>; + StringMultiSet ms; + ms.insert("hello"); + ms.insert("world"); + ms.insert("world"); + EXPECT_TRUE(ms.end() == ms.find("blah")); + EXPECT_TRUE(ms.begin() == ms.lower_bound("hello")); + EXPECT_EQ(2, ms.count("world")); + EXPECT_TRUE(ms.contains("hello")); + EXPECT_TRUE(ms.contains("world")); + EXPECT_FALSE(ms.contains("blah")); +} + +TEST(Btree, DefaultTransparent) { + { + // `int` does not have a default transparent comparator. + // The input value is converted to key_type. + btree_set<int> s = {1}; + double d = 1.1; + EXPECT_EQ(s.begin(), s.find(d)); + EXPECT_TRUE(s.contains(d)); + } + + { + // `std::string` has heterogeneous support. + btree_set<std::string> s = {"A"}; + EXPECT_EQ(s.begin(), s.find(absl::string_view("A"))); + EXPECT_TRUE(s.contains(absl::string_view("A"))); + } +} + +class StringLike { + public: + StringLike() = default; + + StringLike(const char *s) : s_(s) { // NOLINT + ++constructor_calls_; + } + + bool operator<(const StringLike &a) const { return s_ < a.s_; } + + static void clear_constructor_call_count() { constructor_calls_ = 0; } + + static int constructor_calls() { return constructor_calls_; } + + private: + static int constructor_calls_; + std::string s_; +}; + +int StringLike::constructor_calls_ = 0; + +TEST(Btree, HeterogeneousLookupDoesntDegradePerformance) { + using StringSet = absl::btree_set<StringLike>; + StringSet s; + for (int i = 0; i < 100; ++i) { + ASSERT_TRUE(s.insert(absl::StrCat(i).c_str()).second); + } + StringLike::clear_constructor_call_count(); + s.find("50"); + ASSERT_EQ(1, StringLike::constructor_calls()); + + StringLike::clear_constructor_call_count(); + s.contains("50"); + ASSERT_EQ(1, StringLike::constructor_calls()); + + StringLike::clear_constructor_call_count(); + s.count("50"); + ASSERT_EQ(1, StringLike::constructor_calls()); + + StringLike::clear_constructor_call_count(); + s.lower_bound("50"); + ASSERT_EQ(1, StringLike::constructor_calls()); + + StringLike::clear_constructor_call_count(); + s.upper_bound("50"); + ASSERT_EQ(1, StringLike::constructor_calls()); + + StringLike::clear_constructor_call_count(); + s.equal_range("50"); + ASSERT_EQ(1, StringLike::constructor_calls()); + + StringLike::clear_constructor_call_count(); + s.erase("50"); + ASSERT_EQ(1, StringLike::constructor_calls()); +} + +// Verify that swapping btrees swaps the key comparison functors and that we can +// use non-default constructible comparators. +struct SubstringLess { + SubstringLess() = delete; + explicit SubstringLess(int length) : n(length) {} + bool operator()(const std::string &a, const std::string &b) const { + return absl::string_view(a).substr(0, n) < + absl::string_view(b).substr(0, n); + } + int n; +}; + +TEST(Btree, SwapKeyCompare) { + using SubstringSet = absl::btree_set<std::string, SubstringLess>; + SubstringSet s1(SubstringLess(1), SubstringSet::allocator_type()); + SubstringSet s2(SubstringLess(2), SubstringSet::allocator_type()); + + ASSERT_TRUE(s1.insert("a").second); + ASSERT_FALSE(s1.insert("aa").second); + + ASSERT_TRUE(s2.insert("a").second); + ASSERT_TRUE(s2.insert("aa").second); + ASSERT_FALSE(s2.insert("aaa").second); + + swap(s1, s2); + + ASSERT_TRUE(s1.insert("b").second); + ASSERT_TRUE(s1.insert("bb").second); + ASSERT_FALSE(s1.insert("bbb").second); + + ASSERT_TRUE(s2.insert("b").second); + ASSERT_FALSE(s2.insert("bb").second); +} + +TEST(Btree, UpperBoundRegression) { + // Regress a bug where upper_bound would default-construct a new key_compare + // instead of copying the existing one. + using SubstringSet = absl::btree_set<std::string, SubstringLess>; + SubstringSet my_set(SubstringLess(3)); + my_set.insert("aab"); + my_set.insert("abb"); + // We call upper_bound("aaa"). If this correctly uses the length 3 + // comparator, aaa < aab < abb, so we should get aab as the result. + // If it instead uses the default-constructed length 2 comparator, + // aa == aa < ab, so we'll get abb as our result. + SubstringSet::iterator it = my_set.upper_bound("aaa"); + ASSERT_TRUE(it != my_set.end()); + EXPECT_EQ("aab", *it); +} + +TEST(Btree, Comparison) { + const int kSetSize = 1201; + absl::btree_set<int64_t> my_set; + for (int i = 0; i < kSetSize; ++i) { + my_set.insert(i); + } + absl::btree_set<int64_t> my_set_copy(my_set); + EXPECT_TRUE(my_set_copy == my_set); + EXPECT_TRUE(my_set == my_set_copy); + EXPECT_FALSE(my_set_copy != my_set); + EXPECT_FALSE(my_set != my_set_copy); + + my_set.insert(kSetSize); + EXPECT_FALSE(my_set_copy == my_set); + EXPECT_FALSE(my_set == my_set_copy); + EXPECT_TRUE(my_set_copy != my_set); + EXPECT_TRUE(my_set != my_set_copy); + + my_set.erase(kSetSize - 1); + EXPECT_FALSE(my_set_copy == my_set); + EXPECT_FALSE(my_set == my_set_copy); + EXPECT_TRUE(my_set_copy != my_set); + EXPECT_TRUE(my_set != my_set_copy); + + absl::btree_map<std::string, int64_t> my_map; + for (int i = 0; i < kSetSize; ++i) { + my_map[std::string(i, 'a')] = i; + } + absl::btree_map<std::string, int64_t> my_map_copy(my_map); + EXPECT_TRUE(my_map_copy == my_map); + EXPECT_TRUE(my_map == my_map_copy); + EXPECT_FALSE(my_map_copy != my_map); + EXPECT_FALSE(my_map != my_map_copy); + + ++my_map_copy[std::string(7, 'a')]; + EXPECT_FALSE(my_map_copy == my_map); + EXPECT_FALSE(my_map == my_map_copy); + EXPECT_TRUE(my_map_copy != my_map); + EXPECT_TRUE(my_map != my_map_copy); + + my_map_copy = my_map; + my_map["hello"] = kSetSize; + EXPECT_FALSE(my_map_copy == my_map); + EXPECT_FALSE(my_map == my_map_copy); + EXPECT_TRUE(my_map_copy != my_map); + EXPECT_TRUE(my_map != my_map_copy); + + my_map.erase(std::string(kSetSize - 1, 'a')); + EXPECT_FALSE(my_map_copy == my_map); + EXPECT_FALSE(my_map == my_map_copy); + EXPECT_TRUE(my_map_copy != my_map); + EXPECT_TRUE(my_map != my_map_copy); +} + +TEST(Btree, RangeCtorSanity) { + std::vector<int> ivec; + ivec.push_back(1); + std::map<int, int> imap; + imap.insert(std::make_pair(1, 2)); + absl::btree_multiset<int> tmset(ivec.begin(), ivec.end()); + absl::btree_multimap<int, int> tmmap(imap.begin(), imap.end()); + absl::btree_set<int> tset(ivec.begin(), ivec.end()); + absl::btree_map<int, int> tmap(imap.begin(), imap.end()); + EXPECT_EQ(1, tmset.size()); + EXPECT_EQ(1, tmmap.size()); + EXPECT_EQ(1, tset.size()); + EXPECT_EQ(1, tmap.size()); +} + +TEST(Btree, BtreeMapCanHoldMoveOnlyTypes) { + absl::btree_map<std::string, std::unique_ptr<std::string>> m; + + std::unique_ptr<std::string> &v = m["A"]; + EXPECT_TRUE(v == nullptr); + v.reset(new std::string("X")); + + auto iter = m.find("A"); + EXPECT_EQ("X", *iter->second); +} + +TEST(Btree, InitializerListConstructor) { + absl::btree_set<std::string> set({"a", "b"}); + EXPECT_EQ(set.count("a"), 1); + EXPECT_EQ(set.count("b"), 1); + + absl::btree_multiset<int> mset({1, 1, 4}); + EXPECT_EQ(mset.count(1), 2); + EXPECT_EQ(mset.count(4), 1); + + absl::btree_map<int, int> map({{1, 5}, {2, 10}}); + EXPECT_EQ(map[1], 5); + EXPECT_EQ(map[2], 10); + + absl::btree_multimap<int, int> mmap({{1, 5}, {1, 10}}); + auto range = mmap.equal_range(1); + auto it = range.first; + ASSERT_NE(it, range.second); + EXPECT_EQ(it->second, 5); + ASSERT_NE(++it, range.second); + EXPECT_EQ(it->second, 10); + EXPECT_EQ(++it, range.second); +} + +TEST(Btree, InitializerListInsert) { + absl::btree_set<std::string> set; + set.insert({"a", "b"}); + EXPECT_EQ(set.count("a"), 1); + EXPECT_EQ(set.count("b"), 1); + + absl::btree_multiset<int> mset; + mset.insert({1, 1, 4}); + EXPECT_EQ(mset.count(1), 2); + EXPECT_EQ(mset.count(4), 1); + + absl::btree_map<int, int> map; + map.insert({{1, 5}, {2, 10}}); + // Test that inserting one element using an initializer list also works. + map.insert({3, 15}); + EXPECT_EQ(map[1], 5); + EXPECT_EQ(map[2], 10); + EXPECT_EQ(map[3], 15); + + absl::btree_multimap<int, int> mmap; + mmap.insert({{1, 5}, {1, 10}}); + auto range = mmap.equal_range(1); + auto it = range.first; + ASSERT_NE(it, range.second); + EXPECT_EQ(it->second, 5); + ASSERT_NE(++it, range.second); + EXPECT_EQ(it->second, 10); + EXPECT_EQ(++it, range.second); +} + +template <typename Compare, typename K> +void AssertKeyCompareToAdapted() { + using Adapted = typename key_compare_to_adapter<Compare>::type; + static_assert(!std::is_same<Adapted, Compare>::value, + "key_compare_to_adapter should have adapted this comparator."); + static_assert( + std::is_same<absl::weak_ordering, + absl::result_of_t<Adapted(const K &, const K &)>>::value, + "Adapted comparator should be a key-compare-to comparator."); +} +template <typename Compare, typename K> +void AssertKeyCompareToNotAdapted() { + using Unadapted = typename key_compare_to_adapter<Compare>::type; + static_assert( + std::is_same<Unadapted, Compare>::value, + "key_compare_to_adapter shouldn't have adapted this comparator."); + static_assert( + std::is_same<bool, + absl::result_of_t<Unadapted(const K &, const K &)>>::value, + "Un-adapted comparator should return bool."); +} + +TEST(Btree, KeyCompareToAdapter) { + AssertKeyCompareToAdapted<std::less<std::string>, std::string>(); + AssertKeyCompareToAdapted<std::greater<std::string>, std::string>(); + AssertKeyCompareToAdapted<std::less<absl::string_view>, absl::string_view>(); + AssertKeyCompareToAdapted<std::greater<absl::string_view>, + absl::string_view>(); + AssertKeyCompareToAdapted<std::less<absl::Cord>, absl::Cord>(); + AssertKeyCompareToAdapted<std::greater<absl::Cord>, absl::Cord>(); + AssertKeyCompareToNotAdapted<std::less<int>, int>(); + AssertKeyCompareToNotAdapted<std::greater<int>, int>(); +} + +TEST(Btree, RValueInsert) { + InstanceTracker tracker; + + absl::btree_set<MovableOnlyInstance> set; + set.insert(MovableOnlyInstance(1)); + set.insert(MovableOnlyInstance(3)); + MovableOnlyInstance two(2); + set.insert(set.find(MovableOnlyInstance(3)), std::move(two)); + auto it = set.find(MovableOnlyInstance(2)); + ASSERT_NE(it, set.end()); + ASSERT_NE(++it, set.end()); + EXPECT_EQ(it->value(), 3); + + absl::btree_multiset<MovableOnlyInstance> mset; + MovableOnlyInstance zero(0); + MovableOnlyInstance zero2(0); + mset.insert(std::move(zero)); + mset.insert(mset.find(MovableOnlyInstance(0)), std::move(zero2)); + EXPECT_EQ(mset.count(MovableOnlyInstance(0)), 2); + + absl::btree_map<int, MovableOnlyInstance> map; + std::pair<const int, MovableOnlyInstance> p1 = {1, MovableOnlyInstance(5)}; + std::pair<const int, MovableOnlyInstance> p2 = {2, MovableOnlyInstance(10)}; + std::pair<const int, MovableOnlyInstance> p3 = {3, MovableOnlyInstance(15)}; + map.insert(std::move(p1)); + map.insert(std::move(p3)); + map.insert(map.find(3), std::move(p2)); + ASSERT_NE(map.find(2), map.end()); + EXPECT_EQ(map.find(2)->second.value(), 10); + + absl::btree_multimap<int, MovableOnlyInstance> mmap; + std::pair<const int, MovableOnlyInstance> p4 = {1, MovableOnlyInstance(5)}; + std::pair<const int, MovableOnlyInstance> p5 = {1, MovableOnlyInstance(10)}; + mmap.insert(std::move(p4)); + mmap.insert(mmap.find(1), std::move(p5)); + auto range = mmap.equal_range(1); + auto it1 = range.first; + ASSERT_NE(it1, range.second); + EXPECT_EQ(it1->second.value(), 10); + ASSERT_NE(++it1, range.second); + EXPECT_EQ(it1->second.value(), 5); + EXPECT_EQ(++it1, range.second); + + EXPECT_EQ(tracker.copies(), 0); + EXPECT_EQ(tracker.swaps(), 0); +} + +} // namespace + +class BtreeNodePeer { + public: + // Yields the size of a leaf node with a specific number of values. + template <typename ValueType> + constexpr static size_t GetTargetNodeSize(size_t target_values_per_node) { + return btree_node< + set_params<ValueType, std::less<ValueType>, std::allocator<ValueType>, + /*TargetNodeSize=*/256, // This parameter isn't used here. + /*Multi=*/false>>::SizeWithNValues(target_values_per_node); + } + + // Yields the number of values in a (non-root) leaf node for this set. + template <typename Set> + constexpr static size_t GetNumValuesPerNode() { + return btree_node<typename Set::params_type>::kNodeValues; + } +}; + +namespace { + +// A btree set with a specific number of values per node. +template <typename Key, int TargetValuesPerNode, typename Cmp = std::less<Key>> +class SizedBtreeSet + : public btree_set_container<btree< + set_params<Key, Cmp, std::allocator<Key>, + BtreeNodePeer::GetTargetNodeSize<Key>(TargetValuesPerNode), + /*Multi=*/false>>> { + using Base = typename SizedBtreeSet::btree_set_container; + + public: + SizedBtreeSet() {} + using Base::Base; +}; + +template <typename Set> +void ExpectOperationCounts(const int expected_moves, + const int expected_comparisons, + const std::vector<int> &values, + InstanceTracker *tracker, Set *set) { + for (const int v : values) set->insert(MovableOnlyInstance(v)); + set->clear(); + EXPECT_EQ(tracker->moves(), expected_moves); + EXPECT_EQ(tracker->comparisons(), expected_comparisons); + EXPECT_EQ(tracker->copies(), 0); + EXPECT_EQ(tracker->swaps(), 0); + tracker->ResetCopiesMovesSwaps(); +} + +// Note: when the values in this test change, it is expected to have an impact +// on performance. +TEST(Btree, MovesComparisonsCopiesSwapsTracking) { + InstanceTracker tracker; + // Note: this is minimum number of values per node. + SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3> set3; + // Note: this is the default number of values per node for a set of int32s + // (with 64-bit pointers). + SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61> set61; + SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100> set100; + + // Don't depend on flags for random values because then the expectations will + // fail if the flags change. + std::vector<int> values = + GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23); + + EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3); + EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61); + EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100); + if (sizeof(void *) == 8) { + EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<absl::btree_set<int32_t>>(), + BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>()); + } + + // Test key insertion/deletion in random order. + ExpectOperationCounts(45281, 132551, values, &tracker, &set3); + ExpectOperationCounts(386718, 129807, values, &tracker, &set61); + ExpectOperationCounts(586761, 130310, values, &tracker, &set100); + + // Test key insertion/deletion in sorted order. + std::sort(values.begin(), values.end()); + ExpectOperationCounts(26638, 92134, values, &tracker, &set3); + ExpectOperationCounts(20208, 87757, values, &tracker, &set61); + ExpectOperationCounts(20124, 96583, values, &tracker, &set100); + + // Test key insertion/deletion in reverse sorted order. + std::reverse(values.begin(), values.end()); + ExpectOperationCounts(49951, 119325, values, &tracker, &set3); + ExpectOperationCounts(338813, 118266, values, &tracker, &set61); + ExpectOperationCounts(534529, 125279, values, &tracker, &set100); +} + +struct MovableOnlyInstanceThreeWayCompare { + absl::weak_ordering operator()(const MovableOnlyInstance &a, + const MovableOnlyInstance &b) const { + return a.compare(b); + } +}; + +// Note: when the values in this test change, it is expected to have an impact +// on performance. +TEST(Btree, MovesComparisonsCopiesSwapsTrackingThreeWayCompare) { + InstanceTracker tracker; + // Note: this is minimum number of values per node. + SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3, + MovableOnlyInstanceThreeWayCompare> + set3; + // Note: this is the default number of values per node for a set of int32s + // (with 64-bit pointers). + SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61, + MovableOnlyInstanceThreeWayCompare> + set61; + SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100, + MovableOnlyInstanceThreeWayCompare> + set100; + + // Don't depend on flags for random values because then the expectations will + // fail if the flags change. + std::vector<int> values = + GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23); + + EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3); + EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61); + EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100); + if (sizeof(void *) == 8) { + EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<absl::btree_set<int32_t>>(), + BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>()); + } + + // Test key insertion/deletion in random order. + ExpectOperationCounts(45281, 122560, values, &tracker, &set3); + ExpectOperationCounts(386718, 119816, values, &tracker, &set61); + ExpectOperationCounts(586761, 120319, values, &tracker, &set100); + + // Test key insertion/deletion in sorted order. + std::sort(values.begin(), values.end()); + ExpectOperationCounts(26638, 92134, values, &tracker, &set3); + ExpectOperationCounts(20208, 87757, values, &tracker, &set61); + ExpectOperationCounts(20124, 96583, values, &tracker, &set100); + + // Test key insertion/deletion in reverse sorted order. + std::reverse(values.begin(), values.end()); + ExpectOperationCounts(49951, 109326, values, &tracker, &set3); + ExpectOperationCounts(338813, 108267, values, &tracker, &set61); + ExpectOperationCounts(534529, 115280, values, &tracker, &set100); +} + +struct NoDefaultCtor { + int num; + explicit NoDefaultCtor(int i) : num(i) {} + + friend bool operator<(const NoDefaultCtor &a, const NoDefaultCtor &b) { + return a.num < b.num; + } +}; + +TEST(Btree, BtreeMapCanHoldNoDefaultCtorTypes) { + absl::btree_map<NoDefaultCtor, NoDefaultCtor> m; + + for (int i = 1; i <= 99; ++i) { + SCOPED_TRACE(i); + EXPECT_TRUE(m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)).second); + } + EXPECT_FALSE(m.emplace(NoDefaultCtor(78), NoDefaultCtor(0)).second); + + auto iter99 = m.find(NoDefaultCtor(99)); + ASSERT_NE(iter99, m.end()); + EXPECT_EQ(iter99->second.num, 1); + + auto iter1 = m.find(NoDefaultCtor(1)); + ASSERT_NE(iter1, m.end()); + EXPECT_EQ(iter1->second.num, 99); + + auto iter50 = m.find(NoDefaultCtor(50)); + ASSERT_NE(iter50, m.end()); + EXPECT_EQ(iter50->second.num, 50); + + auto iter25 = m.find(NoDefaultCtor(25)); + ASSERT_NE(iter25, m.end()); + EXPECT_EQ(iter25->second.num, 75); +} + +TEST(Btree, BtreeMultimapCanHoldNoDefaultCtorTypes) { + absl::btree_multimap<NoDefaultCtor, NoDefaultCtor> m; + + for (int i = 1; i <= 99; ++i) { + SCOPED_TRACE(i); + m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)); + } + + auto iter99 = m.find(NoDefaultCtor(99)); + ASSERT_NE(iter99, m.end()); + EXPECT_EQ(iter99->second.num, 1); + + auto iter1 = m.find(NoDefaultCtor(1)); + ASSERT_NE(iter1, m.end()); + EXPECT_EQ(iter1->second.num, 99); + + auto iter50 = m.find(NoDefaultCtor(50)); + ASSERT_NE(iter50, m.end()); + EXPECT_EQ(iter50->second.num, 50); + + auto iter25 = m.find(NoDefaultCtor(25)); + ASSERT_NE(iter25, m.end()); + EXPECT_EQ(iter25->second.num, 75); +} + +TEST(Btree, MapAt) { + absl::btree_map<int, int> map = {{1, 2}, {2, 4}}; + EXPECT_EQ(map.at(1), 2); + EXPECT_EQ(map.at(2), 4); + map.at(2) = 8; + const absl::btree_map<int, int> &const_map = map; + EXPECT_EQ(const_map.at(1), 2); + EXPECT_EQ(const_map.at(2), 8); +#ifdef ABSL_HAVE_EXCEPTIONS + EXPECT_THROW(map.at(3), std::out_of_range); +#else + EXPECT_DEATH_IF_SUPPORTED(map.at(3), "absl::btree_map::at"); +#endif +} + +TEST(Btree, BtreeMultisetEmplace) { + const int value_to_insert = 123456; + absl::btree_multiset<int> s; + auto iter = s.emplace(value_to_insert); + ASSERT_NE(iter, s.end()); + EXPECT_EQ(*iter, value_to_insert); + auto iter2 = s.emplace(value_to_insert); + EXPECT_NE(iter2, iter); + ASSERT_NE(iter2, s.end()); + EXPECT_EQ(*iter2, value_to_insert); + auto result = s.equal_range(value_to_insert); + EXPECT_EQ(std::distance(result.first, result.second), 2); +} + +TEST(Btree, BtreeMultisetEmplaceHint) { + const int value_to_insert = 123456; + absl::btree_multiset<int> s; + auto iter = s.emplace(value_to_insert); + ASSERT_NE(iter, s.end()); + EXPECT_EQ(*iter, value_to_insert); + auto emplace_iter = s.emplace_hint(iter, value_to_insert); + EXPECT_NE(emplace_iter, iter); + ASSERT_NE(emplace_iter, s.end()); + EXPECT_EQ(*emplace_iter, value_to_insert); +} + +TEST(Btree, BtreeMultimapEmplace) { + const int key_to_insert = 123456; + const char value0[] = "a"; + absl::btree_multimap<int, std::string> s; + auto iter = s.emplace(key_to_insert, value0); + ASSERT_NE(iter, s.end()); + EXPECT_EQ(iter->first, key_to_insert); + EXPECT_EQ(iter->second, value0); + const char value1[] = "b"; + auto iter2 = s.emplace(key_to_insert, value1); + EXPECT_NE(iter2, iter); + ASSERT_NE(iter2, s.end()); + EXPECT_EQ(iter2->first, key_to_insert); + EXPECT_EQ(iter2->second, value1); + auto result = s.equal_range(key_to_insert); + EXPECT_EQ(std::distance(result.first, result.second), 2); +} + +TEST(Btree, BtreeMultimapEmplaceHint) { + const int key_to_insert = 123456; + const char value0[] = "a"; + absl::btree_multimap<int, std::string> s; + auto iter = s.emplace(key_to_insert, value0); + ASSERT_NE(iter, s.end()); + EXPECT_EQ(iter->first, key_to_insert); + EXPECT_EQ(iter->second, value0); + const char value1[] = "b"; + auto emplace_iter = s.emplace_hint(iter, key_to_insert, value1); + EXPECT_NE(emplace_iter, iter); + ASSERT_NE(emplace_iter, s.end()); + EXPECT_EQ(emplace_iter->first, key_to_insert); + EXPECT_EQ(emplace_iter->second, value1); +} + +TEST(Btree, ConstIteratorAccessors) { + absl::btree_set<int> set; + for (int i = 0; i < 100; ++i) { + set.insert(i); + } + + auto it = set.cbegin(); + auto r_it = set.crbegin(); + for (int i = 0; i < 100; ++i, ++it, ++r_it) { + ASSERT_EQ(*it, i); + ASSERT_EQ(*r_it, 99 - i); + } + EXPECT_EQ(it, set.cend()); + EXPECT_EQ(r_it, set.crend()); +} + +TEST(Btree, StrSplitCompatible) { + const absl::btree_set<std::string> split_set = absl::StrSplit("a,b,c", ','); + const absl::btree_set<std::string> expected_set = {"a", "b", "c"}; + + EXPECT_EQ(split_set, expected_set); +} + +// We can't use EXPECT_EQ/etc. to compare absl::weak_ordering because they +// convert literal 0 to int and absl::weak_ordering can only be compared with +// literal 0. Defining this function allows for avoiding ClangTidy warnings. +bool Identity(const bool b) { return b; } + +TEST(Btree, ValueComp) { + absl::btree_set<int> s; + EXPECT_TRUE(s.value_comp()(1, 2)); + EXPECT_FALSE(s.value_comp()(2, 2)); + EXPECT_FALSE(s.value_comp()(2, 1)); + + absl::btree_map<int, int> m1; + EXPECT_TRUE(m1.value_comp()(std::make_pair(1, 0), std::make_pair(2, 0))); + EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(2, 0))); + EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(1, 0))); + + absl::btree_map<std::string, int> m2; + EXPECT_TRUE(Identity( + m2.value_comp()(std::make_pair("a", 0), std::make_pair("b", 0)) < 0)); + EXPECT_TRUE(Identity( + m2.value_comp()(std::make_pair("b", 0), std::make_pair("b", 0)) == 0)); + EXPECT_TRUE(Identity( + m2.value_comp()(std::make_pair("b", 0), std::make_pair("a", 0)) > 0)); +} + +TEST(Btree, DefaultConstruction) { + absl::btree_set<int> s; + absl::btree_map<int, int> m; + absl::btree_multiset<int> ms; + absl::btree_multimap<int, int> mm; + + EXPECT_TRUE(s.empty()); + EXPECT_TRUE(m.empty()); + EXPECT_TRUE(ms.empty()); + EXPECT_TRUE(mm.empty()); +} + +TEST(Btree, SwissTableHashable) { + static constexpr int kValues = 10000; + std::vector<int> values(kValues); + std::iota(values.begin(), values.end(), 0); + std::vector<std::pair<int, int>> map_values; + for (int v : values) map_values.emplace_back(v, -v); + + using set = absl::btree_set<int>; + EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ + set{}, + set{1}, + set{2}, + set{1, 2}, + set{2, 1}, + set(values.begin(), values.end()), + set(values.rbegin(), values.rend()), + })); + + using mset = absl::btree_multiset<int>; + EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ + mset{}, + mset{1}, + mset{1, 1}, + mset{2}, + mset{2, 2}, + mset{1, 2}, + mset{1, 1, 2}, + mset{1, 2, 2}, + mset{1, 1, 2, 2}, + mset(values.begin(), values.end()), + mset(values.rbegin(), values.rend()), + })); + + using map = absl::btree_map<int, int>; + EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ + map{}, + map{{1, 0}}, + map{{1, 1}}, + map{{2, 0}}, + map{{2, 2}}, + map{{1, 0}, {2, 1}}, + map(map_values.begin(), map_values.end()), + map(map_values.rbegin(), map_values.rend()), + })); + + using mmap = absl::btree_multimap<int, int>; + EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ + mmap{}, + mmap{{1, 0}}, + mmap{{1, 1}}, + mmap{{1, 0}, {1, 1}}, + mmap{{1, 1}, {1, 0}}, + mmap{{2, 0}}, + mmap{{2, 2}}, + mmap{{1, 0}, {2, 1}}, + mmap(map_values.begin(), map_values.end()), + mmap(map_values.rbegin(), map_values.rend()), + })); +} + +TEST(Btree, ComparableSet) { + absl::btree_set<int> s1 = {1, 2}; + absl::btree_set<int> s2 = {2, 3}; + EXPECT_LT(s1, s2); + EXPECT_LE(s1, s2); + EXPECT_LE(s1, s1); + EXPECT_GT(s2, s1); + EXPECT_GE(s2, s1); + EXPECT_GE(s1, s1); +} + +TEST(Btree, ComparableSetsDifferentLength) { + absl::btree_set<int> s1 = {1, 2}; + absl::btree_set<int> s2 = {1, 2, 3}; + EXPECT_LT(s1, s2); + EXPECT_LE(s1, s2); + EXPECT_GT(s2, s1); + EXPECT_GE(s2, s1); +} + +TEST(Btree, ComparableMultiset) { + absl::btree_multiset<int> s1 = {1, 2}; + absl::btree_multiset<int> s2 = {2, 3}; + EXPECT_LT(s1, s2); + EXPECT_LE(s1, s2); + EXPECT_LE(s1, s1); + EXPECT_GT(s2, s1); + EXPECT_GE(s2, s1); + EXPECT_GE(s1, s1); +} + +TEST(Btree, ComparableMap) { + absl::btree_map<int, int> s1 = {{1, 2}}; + absl::btree_map<int, int> s2 = {{2, 3}}; + EXPECT_LT(s1, s2); + EXPECT_LE(s1, s2); + EXPECT_LE(s1, s1); + EXPECT_GT(s2, s1); + EXPECT_GE(s2, s1); + EXPECT_GE(s1, s1); +} + +TEST(Btree, ComparableMultimap) { + absl::btree_multimap<int, int> s1 = {{1, 2}}; + absl::btree_multimap<int, int> s2 = {{2, 3}}; + EXPECT_LT(s1, s2); + EXPECT_LE(s1, s2); + EXPECT_LE(s1, s1); + EXPECT_GT(s2, s1); + EXPECT_GE(s2, s1); + EXPECT_GE(s1, s1); +} + +TEST(Btree, ComparableSetWithCustomComparator) { + // As specified by + // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf section + // [container.requirements.general].12, ordering associative containers always + // uses default '<' operator + // - even if otherwise the container uses custom functor. + absl::btree_set<int, std::greater<int>> s1 = {1, 2}; + absl::btree_set<int, std::greater<int>> s2 = {2, 3}; + EXPECT_LT(s1, s2); + EXPECT_LE(s1, s2); + EXPECT_LE(s1, s1); + EXPECT_GT(s2, s1); + EXPECT_GE(s2, s1); + EXPECT_GE(s1, s1); +} + +TEST(Btree, EraseReturnsIterator) { + absl::btree_set<int> set = {1, 2, 3, 4, 5}; + auto result_it = set.erase(set.begin(), set.find(3)); + EXPECT_EQ(result_it, set.find(3)); + result_it = set.erase(set.find(5)); + EXPECT_EQ(result_it, set.end()); +} + +TEST(Btree, ExtractAndInsertNodeHandleSet) { + absl::btree_set<int> src1 = {1, 2, 3, 4, 5}; + auto nh = src1.extract(src1.find(3)); + EXPECT_THAT(src1, ElementsAre(1, 2, 4, 5)); + absl::btree_set<int> other; + absl::btree_set<int>::insert_return_type res = other.insert(std::move(nh)); + EXPECT_THAT(other, ElementsAre(3)); + EXPECT_EQ(res.position, other.find(3)); + EXPECT_TRUE(res.inserted); + EXPECT_TRUE(res.node.empty()); + + absl::btree_set<int> src2 = {3, 4}; + nh = src2.extract(src2.find(3)); + EXPECT_THAT(src2, ElementsAre(4)); + res = other.insert(std::move(nh)); + EXPECT_THAT(other, ElementsAre(3)); + EXPECT_EQ(res.position, other.find(3)); + EXPECT_FALSE(res.inserted); + ASSERT_FALSE(res.node.empty()); + EXPECT_EQ(res.node.value(), 3); +} + +template <typename Set> +void TestExtractWithTrackingForSet() { + InstanceTracker tracker; + { + Set s; + // Add enough elements to make sure we test internal nodes too. + const size_t kSize = 1000; + while (s.size() < kSize) { + s.insert(MovableOnlyInstance(s.size())); + } + for (int i = 0; i < kSize; ++i) { + // Extract with key + auto nh = s.extract(MovableOnlyInstance(i)); + EXPECT_EQ(s.size(), kSize - 1); + EXPECT_EQ(nh.value().value(), i); + // Insert with node + s.insert(std::move(nh)); + EXPECT_EQ(s.size(), kSize); + + // Extract with iterator + auto it = s.find(MovableOnlyInstance(i)); + nh = s.extract(it); + EXPECT_EQ(s.size(), kSize - 1); + EXPECT_EQ(nh.value().value(), i); + // Insert with node and hint + s.insert(s.begin(), std::move(nh)); + EXPECT_EQ(s.size(), kSize); + } + } + EXPECT_EQ(0, tracker.instances()); +} + +template <typename Map> +void TestExtractWithTrackingForMap() { + InstanceTracker tracker; + { + Map m; + // Add enough elements to make sure we test internal nodes too. + const size_t kSize = 1000; + while (m.size() < kSize) { + m.insert( + {CopyableMovableInstance(m.size()), MovableOnlyInstance(m.size())}); + } + for (int i = 0; i < kSize; ++i) { + // Extract with key + auto nh = m.extract(CopyableMovableInstance(i)); + EXPECT_EQ(m.size(), kSize - 1); + EXPECT_EQ(nh.key().value(), i); + EXPECT_EQ(nh.mapped().value(), i); + // Insert with node + m.insert(std::move(nh)); + EXPECT_EQ(m.size(), kSize); + + // Extract with iterator + auto it = m.find(CopyableMovableInstance(i)); + nh = m.extract(it); + EXPECT_EQ(m.size(), kSize - 1); + EXPECT_EQ(nh.key().value(), i); + EXPECT_EQ(nh.mapped().value(), i); + // Insert with node and hint + m.insert(m.begin(), std::move(nh)); + EXPECT_EQ(m.size(), kSize); + } + } + EXPECT_EQ(0, tracker.instances()); +} + +TEST(Btree, ExtractTracking) { + TestExtractWithTrackingForSet<absl::btree_set<MovableOnlyInstance>>(); + TestExtractWithTrackingForSet<absl::btree_multiset<MovableOnlyInstance>>(); + TestExtractWithTrackingForMap< + absl::btree_map<CopyableMovableInstance, MovableOnlyInstance>>(); + TestExtractWithTrackingForMap< + absl::btree_multimap<CopyableMovableInstance, MovableOnlyInstance>>(); +} + +TEST(Btree, ExtractAndInsertNodeHandleMultiSet) { + absl::btree_multiset<int> src1 = {1, 2, 3, 3, 4, 5}; + auto nh = src1.extract(src1.find(3)); + EXPECT_THAT(src1, ElementsAre(1, 2, 3, 4, 5)); + absl::btree_multiset<int> other; + auto res = other.insert(std::move(nh)); + EXPECT_THAT(other, ElementsAre(3)); + EXPECT_EQ(res, other.find(3)); + + absl::btree_multiset<int> src2 = {3, 4}; + nh = src2.extract(src2.find(3)); + EXPECT_THAT(src2, ElementsAre(4)); + res = other.insert(std::move(nh)); + EXPECT_THAT(other, ElementsAre(3, 3)); + EXPECT_EQ(res, ++other.find(3)); +} + +TEST(Btree, ExtractAndInsertNodeHandleMap) { + absl::btree_map<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}}; + auto nh = src1.extract(src1.find(3)); + EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6))); + absl::btree_map<int, int> other; + absl::btree_map<int, int>::insert_return_type res = + other.insert(std::move(nh)); + EXPECT_THAT(other, ElementsAre(Pair(3, 4))); + EXPECT_EQ(res.position, other.find(3)); + EXPECT_TRUE(res.inserted); + EXPECT_TRUE(res.node.empty()); + + absl::btree_map<int, int> src2 = {{3, 6}}; + nh = src2.extract(src2.find(3)); + EXPECT_TRUE(src2.empty()); + res = other.insert(std::move(nh)); + EXPECT_THAT(other, ElementsAre(Pair(3, 4))); + EXPECT_EQ(res.position, other.find(3)); + EXPECT_FALSE(res.inserted); + ASSERT_FALSE(res.node.empty()); + EXPECT_EQ(res.node.key(), 3); + EXPECT_EQ(res.node.mapped(), 6); +} + +TEST(Btree, ExtractAndInsertNodeHandleMultiMap) { + absl::btree_multimap<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}}; + auto nh = src1.extract(src1.find(3)); + EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6))); + absl::btree_multimap<int, int> other; + auto res = other.insert(std::move(nh)); + EXPECT_THAT(other, ElementsAre(Pair(3, 4))); + EXPECT_EQ(res, other.find(3)); + + absl::btree_multimap<int, int> src2 = {{3, 6}}; + nh = src2.extract(src2.find(3)); + EXPECT_TRUE(src2.empty()); + res = other.insert(std::move(nh)); + EXPECT_THAT(other, ElementsAre(Pair(3, 4), Pair(3, 6))); + EXPECT_EQ(res, ++other.begin()); +} + +// For multisets, insert with hint also affects correctness because we need to +// insert immediately before the hint if possible. +struct InsertMultiHintData { + int key; + int not_key; + bool operator==(const InsertMultiHintData other) const { + return key == other.key && not_key == other.not_key; + } +}; + +struct InsertMultiHintDataKeyCompare { + using is_transparent = void; + bool operator()(const InsertMultiHintData a, + const InsertMultiHintData b) const { + return a.key < b.key; + } + bool operator()(const int a, const InsertMultiHintData b) const { + return a < b.key; + } + bool operator()(const InsertMultiHintData a, const int b) const { + return a.key < b; + } +}; + +TEST(Btree, InsertHintNodeHandle) { + // For unique sets, insert with hint is just a performance optimization. + // Test that insert works correctly when the hint is right or wrong. + { + absl::btree_set<int> src = {1, 2, 3, 4, 5}; + auto nh = src.extract(src.find(3)); + EXPECT_THAT(src, ElementsAre(1, 2, 4, 5)); + absl::btree_set<int> other = {0, 100}; + // Test a correct hint. + auto it = other.insert(other.lower_bound(3), std::move(nh)); + EXPECT_THAT(other, ElementsAre(0, 3, 100)); + EXPECT_EQ(it, other.find(3)); + + nh = src.extract(src.find(5)); + // Test an incorrect hint. + it = other.insert(other.end(), std::move(nh)); + EXPECT_THAT(other, ElementsAre(0, 3, 5, 100)); + EXPECT_EQ(it, other.find(5)); + } + + absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> src = + {{1, 2}, {3, 4}, {3, 5}}; + auto nh = src.extract(src.lower_bound(3)); + EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 4})); + absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> + other = {{3, 1}, {3, 2}, {3, 3}}; + auto it = other.insert(--other.end(), std::move(nh)); + EXPECT_THAT( + other, ElementsAre(InsertMultiHintData{3, 1}, InsertMultiHintData{3, 2}, + InsertMultiHintData{3, 4}, InsertMultiHintData{3, 3})); + EXPECT_EQ(it, --(--other.end())); + + nh = src.extract(src.find(3)); + EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 5})); + it = other.insert(other.begin(), std::move(nh)); + EXPECT_THAT(other, + ElementsAre(InsertMultiHintData{3, 5}, InsertMultiHintData{3, 1}, + InsertMultiHintData{3, 2}, InsertMultiHintData{3, 4}, + InsertMultiHintData{3, 3})); + EXPECT_EQ(it, other.begin()); +} + +struct IntCompareToCmp { + absl::weak_ordering operator()(int a, int b) const { + if (a < b) return absl::weak_ordering::less; + if (a > b) return absl::weak_ordering::greater; + return absl::weak_ordering::equivalent; + } +}; + +TEST(Btree, MergeIntoUniqueContainers) { + absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; + absl::btree_multiset<int> src2 = {3, 4, 4, 5}; + absl::btree_set<int> dst; + + dst.merge(src1); + EXPECT_TRUE(src1.empty()); + EXPECT_THAT(dst, ElementsAre(1, 2, 3)); + dst.merge(src2); + EXPECT_THAT(src2, ElementsAre(3, 4)); + EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5)); +} + +TEST(Btree, MergeIntoUniqueContainersWithCompareTo) { + absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; + absl::btree_multiset<int> src2 = {3, 4, 4, 5}; + absl::btree_set<int, IntCompareToCmp> dst; + + dst.merge(src1); + EXPECT_TRUE(src1.empty()); + EXPECT_THAT(dst, ElementsAre(1, 2, 3)); + dst.merge(src2); + EXPECT_THAT(src2, ElementsAre(3, 4)); + EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5)); +} + +TEST(Btree, MergeIntoMultiContainers) { + absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; + absl::btree_multiset<int> src2 = {3, 4, 4, 5}; + absl::btree_multiset<int> dst; + + dst.merge(src1); + EXPECT_TRUE(src1.empty()); + EXPECT_THAT(dst, ElementsAre(1, 2, 3)); + dst.merge(src2); + EXPECT_TRUE(src2.empty()); + EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5)); +} + +TEST(Btree, MergeIntoMultiContainersWithCompareTo) { + absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; + absl::btree_multiset<int> src2 = {3, 4, 4, 5}; + absl::btree_multiset<int, IntCompareToCmp> dst; + + dst.merge(src1); + EXPECT_TRUE(src1.empty()); + EXPECT_THAT(dst, ElementsAre(1, 2, 3)); + dst.merge(src2); + EXPECT_TRUE(src2.empty()); + EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5)); +} + +TEST(Btree, MergeIntoMultiMapsWithDifferentComparators) { + absl::btree_map<int, int, IntCompareToCmp> src1 = {{1, 1}, {2, 2}, {3, 3}}; + absl::btree_multimap<int, int, std::greater<int>> src2 = { + {5, 5}, {4, 1}, {4, 4}, {3, 2}}; + absl::btree_multimap<int, int> dst; + + dst.merge(src1); + EXPECT_TRUE(src1.empty()); + EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3))); + dst.merge(src2); + EXPECT_TRUE(src2.empty()); + EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(3, 2), + Pair(4, 1), Pair(4, 4), Pair(5, 5))); +} + +struct KeyCompareToWeakOrdering { + template <typename T> + absl::weak_ordering operator()(const T &a, const T &b) const { + return a < b ? absl::weak_ordering::less + : a == b ? absl::weak_ordering::equivalent + : absl::weak_ordering::greater; + } +}; + +struct KeyCompareToStrongOrdering { + template <typename T> + absl::strong_ordering operator()(const T &a, const T &b) const { + return a < b ? absl::strong_ordering::less + : a == b ? absl::strong_ordering::equal + : absl::strong_ordering::greater; + } +}; + +TEST(Btree, UserProvidedKeyCompareToComparators) { + absl::btree_set<int, KeyCompareToWeakOrdering> weak_set = {1, 2, 3}; + EXPECT_TRUE(weak_set.contains(2)); + EXPECT_FALSE(weak_set.contains(4)); + + absl::btree_set<int, KeyCompareToStrongOrdering> strong_set = {1, 2, 3}; + EXPECT_TRUE(strong_set.contains(2)); + EXPECT_FALSE(strong_set.contains(4)); +} + +TEST(Btree, TryEmplaceBasicTest) { + absl::btree_map<int, std::string> m; + + // Should construct a string from the literal. + m.try_emplace(1, "one"); + EXPECT_EQ(1, m.size()); + + // Try other string constructors and const lvalue key. + const int key(42); + m.try_emplace(key, 3, 'a'); + m.try_emplace(2, std::string("two")); + + EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); + EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, std::string>>{ + {1, "one"}, {2, "two"}, {42, "aaa"}})); +} + +TEST(Btree, TryEmplaceWithHintWorks) { + // Use a counting comparator here to verify that hint is used. + int calls = 0; + auto cmp = [&calls](int x, int y) { + ++calls; + return x < y; + }; + using Cmp = decltype(cmp); + + absl::btree_map<int, int, Cmp> m(cmp); + for (int i = 0; i < 128; ++i) { + m.emplace(i, i); + } + + // Sanity check for the comparator + calls = 0; + m.emplace(127, 127); + EXPECT_GE(calls, 4); + + // Try with begin hint: + calls = 0; + auto it = m.try_emplace(m.begin(), -1, -1); + EXPECT_EQ(129, m.size()); + EXPECT_EQ(it, m.begin()); + EXPECT_LE(calls, 2); + + // Try with end hint: + calls = 0; + std::pair<int, int> pair1024 = {1024, 1024}; + it = m.try_emplace(m.end(), pair1024.first, pair1024.second); + EXPECT_EQ(130, m.size()); + EXPECT_EQ(it, --m.end()); + EXPECT_LE(calls, 2); + + // Try value already present, bad hint; ensure no duplicate added: + calls = 0; + it = m.try_emplace(m.end(), 16, 17); + EXPECT_EQ(130, m.size()); + EXPECT_GE(calls, 4); + EXPECT_EQ(it, m.find(16)); + + // Try value already present, hint points directly to it: + calls = 0; + it = m.try_emplace(it, 16, 17); + EXPECT_EQ(130, m.size()); + EXPECT_LE(calls, 2); + EXPECT_EQ(it, m.find(16)); + + m.erase(2); + EXPECT_EQ(129, m.size()); + auto hint = m.find(3); + // Try emplace in the middle of two other elements. + calls = 0; + m.try_emplace(hint, 2, 2); + EXPECT_EQ(130, m.size()); + EXPECT_LE(calls, 2); + + EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); +} + +TEST(Btree, TryEmplaceWithBadHint) { + absl::btree_map<int, int> m = {{1, 1}, {9, 9}}; + + // Bad hint (too small), should still emplace: + auto it = m.try_emplace(m.begin(), 2, 2); + EXPECT_EQ(it, ++m.begin()); + EXPECT_THAT(m, ElementsAreArray( + std::vector<std::pair<int, int>>{{1, 1}, {2, 2}, {9, 9}})); + + // Bad hint, too large this time: + it = m.try_emplace(++(++m.begin()), 0, 0); + EXPECT_EQ(it, m.begin()); + EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, int>>{ + {0, 0}, {1, 1}, {2, 2}, {9, 9}})); +} + +TEST(Btree, TryEmplaceMaintainsSortedOrder) { + absl::btree_map<int, std::string> m; + std::pair<int, std::string> pair5 = {5, "five"}; + + // Test both lvalue & rvalue emplace. + m.try_emplace(10, "ten"); + m.try_emplace(pair5.first, pair5.second); + EXPECT_EQ(2, m.size()); + EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); + + int int100{100}; + m.try_emplace(int100, "hundred"); + m.try_emplace(1, "one"); + EXPECT_EQ(4, m.size()); + EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); +} + +TEST(Btree, TryEmplaceWithHintAndNoValueArgsWorks) { + absl::btree_map<int, int> m; + m.try_emplace(m.end(), 1); + EXPECT_EQ(0, m[1]); +} + +TEST(Btree, TryEmplaceWithHintAndMultipleValueArgsWorks) { + absl::btree_map<int, std::string> m; + m.try_emplace(m.end(), 1, 10, 'a'); + EXPECT_EQ(std::string(10, 'a'), m[1]); +} + +TEST(Btree, MoveAssignmentAllocatorPropagation) { + InstanceTracker tracker; + + int64_t bytes1 = 0, bytes2 = 0; + PropagatingCountingAlloc<MovableOnlyInstance> allocator1(&bytes1); + PropagatingCountingAlloc<MovableOnlyInstance> allocator2(&bytes2); + std::less<MovableOnlyInstance> cmp; + + // Test propagating allocator_type. + { + absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>, + PropagatingCountingAlloc<MovableOnlyInstance>> + set1(cmp, allocator1), set2(cmp, allocator2); + + for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i)); + + tracker.ResetCopiesMovesSwaps(); + set2 = std::move(set1); + EXPECT_EQ(tracker.moves(), 0); + } + // Test non-propagating allocator_type with equal allocators. + { + absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>, + CountingAllocator<MovableOnlyInstance>> + set1(cmp, allocator1), set2(cmp, allocator1); + + for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i)); + + tracker.ResetCopiesMovesSwaps(); + set2 = std::move(set1); + EXPECT_EQ(tracker.moves(), 0); + } + // Test non-propagating allocator_type with different allocators. + { + absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>, + CountingAllocator<MovableOnlyInstance>> + set1(cmp, allocator1), set2(cmp, allocator2); + + for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i)); + + tracker.ResetCopiesMovesSwaps(); + set2 = std::move(set1); + EXPECT_GE(tracker.moves(), 100); + } +} + +TEST(Btree, EmptyTree) { + absl::btree_set<int> s; + EXPECT_TRUE(s.empty()); + EXPECT_EQ(s.size(), 0); + EXPECT_GT(s.max_size(), 0); +} + +bool IsEven(int k) { return k % 2 == 0; } + +TEST(Btree, EraseIf) { + // Test that erase_if works with all the container types and supports lambdas. + { + absl::btree_set<int> s = {1, 3, 5, 6, 100}; + erase_if(s, [](int k) { return k > 3; }); + EXPECT_THAT(s, ElementsAre(1, 3)); + } + { + absl::btree_multiset<int> s = {1, 3, 3, 5, 6, 6, 100}; + erase_if(s, [](int k) { return k <= 3; }); + EXPECT_THAT(s, ElementsAre(5, 6, 6, 100)); + } + { + absl::btree_map<int, int> m = {{1, 1}, {3, 3}, {6, 6}, {100, 100}}; + erase_if(m, [](std::pair<const int, int> kv) { return kv.first > 3; }); + EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3))); + } + { + absl::btree_multimap<int, int> m = {{1, 1}, {3, 3}, {3, 6}, + {6, 6}, {6, 7}, {100, 6}}; + erase_if(m, [](std::pair<const int, int> kv) { return kv.second == 6; }); + EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3), Pair(6, 7))); + } + // Test that erasing all elements from a large set works and test support for + // function pointers. + { + absl::btree_set<int> s; + for (int i = 0; i < 1000; ++i) s.insert(2 * i); + erase_if(s, IsEven); + EXPECT_THAT(s, IsEmpty()); + } + // Test that erase_if supports other format of function pointers. + { + absl::btree_set<int> s = {1, 3, 5, 6, 100}; + erase_if(s, &IsEven); + EXPECT_THAT(s, ElementsAre(1, 3, 5)); + } +} + +TEST(Btree, InsertOrAssign) { + absl::btree_map<int, int> m = {{1, 1}, {3, 3}}; + using value_type = typename decltype(m)::value_type; + + auto ret = m.insert_or_assign(4, 4); + EXPECT_EQ(*ret.first, value_type(4, 4)); + EXPECT_TRUE(ret.second); + ret = m.insert_or_assign(3, 100); + EXPECT_EQ(*ret.first, value_type(3, 100)); + EXPECT_FALSE(ret.second); + + auto hint_ret = m.insert_or_assign(ret.first, 3, 200); + EXPECT_EQ(*hint_ret, value_type(3, 200)); + hint_ret = m.insert_or_assign(m.find(1), 0, 1); + EXPECT_EQ(*hint_ret, value_type(0, 1)); + // Test with bad hint. + hint_ret = m.insert_or_assign(m.end(), -1, 1); + EXPECT_EQ(*hint_ret, value_type(-1, 1)); + + EXPECT_THAT(m, ElementsAre(Pair(-1, 1), Pair(0, 1), Pair(1, 1), Pair(3, 200), + Pair(4, 4))); +} + +TEST(Btree, InsertOrAssignMovableOnly) { + absl::btree_map<int, MovableOnlyInstance> m; + using value_type = typename decltype(m)::value_type; + + auto ret = m.insert_or_assign(4, MovableOnlyInstance(4)); + EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(4))); + EXPECT_TRUE(ret.second); + ret = m.insert_or_assign(4, MovableOnlyInstance(100)); + EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(100))); + EXPECT_FALSE(ret.second); + + auto hint_ret = m.insert_or_assign(ret.first, 3, MovableOnlyInstance(200)); + EXPECT_EQ(*hint_ret, value_type(3, MovableOnlyInstance(200))); + + EXPECT_EQ(m.size(), 2); +} + +TEST(Btree, BitfieldArgument) { + union { + int n : 1; + }; + n = 0; + absl::btree_map<int, int> m; + m.erase(n); + m.count(n); + m.find(n); + m.contains(n); + m.equal_range(n); + m.insert_or_assign(n, n); + m.insert_or_assign(m.end(), n, n); + m.try_emplace(n); + m.try_emplace(m.end(), n); + m.at(n); + m[n]; +} + +} // namespace +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl |