diff options
author | Eelco Dolstra <eelco.dolstra@logicblox.com> | 2015-11-04T15·07+0100 |
---|---|---|
committer | Eelco Dolstra <eelco.dolstra@logicblox.com> | 2015-11-04T15·37+0100 |
commit | a6ca68a70c3bc0b2e6abad70346c99642a896f9f (patch) | |
tree | 13479db1389cbfa852b822517b7ac82c5630039c /src/libutil/sha1.c | |
parent | 85aeedb9bce365a8eef09a88f0e47c8fd4b21128 (diff) |
Require OpenSSL
Diffstat (limited to 'src/libutil/sha1.c')
-rw-r--r-- | src/libutil/sha1.c | 369 |
1 files changed, 0 insertions, 369 deletions
diff --git a/src/libutil/sha1.c b/src/libutil/sha1.c deleted file mode 100644 index d9d294d15540..000000000000 --- a/src/libutil/sha1.c +++ /dev/null @@ -1,369 +0,0 @@ -/* $Id$ */ - -/* sha.c - Implementation of the Secure Hash Algorithm - * - * Copyright (C) 1995, A.M. Kuchling - * - * Distribute and use freely; there are no restrictions on further - * dissemination and usage except those imposed by the laws of your - * country of residence. - * - * Adapted to pike and some cleanup by Niels Möller. - */ - -/* $Id$ */ - -/* SHA: NIST's Secure Hash Algorithm */ - -/* Based on SHA code originally posted to sci.crypt by Peter Gutmann - in message <30ajo5$oe8@ccu2.auckland.ac.nz>. - Modified to test for endianness on creation of SHA objects by AMK. - Also, the original specification of SHA was found to have a weakness - by NSA/NIST. This code implements the fixed version of SHA. -*/ - -/* Here's the first paragraph of Peter Gutmann's posting: - -The following is my SHA (FIPS 180) code updated to allow use of the "fixed" -SHA, thanks to Jim Gillogly and an anonymous contributor for the information on -what's changed in the new version. The fix is a simple change which involves -adding a single rotate in the initial expansion function. It is unknown -whether this is an optimal solution to the problem which was discovered in the -SHA or whether it's simply a bandaid which fixes the problem with a minimum of -effort (for example the reengineering of a great many Capstone chips). -*/ - -#include "sha1.h" - -#include <string.h> - -void sha_copy(struct SHA_CTX *dest, struct SHA_CTX *src) -{ - unsigned int i; - - dest->count_l=src->count_l; - dest->count_h=src->count_h; - for(i=0; i<SHA_DIGESTLEN; i++) - dest->digest[i]=src->digest[i]; - for(i=0; i < src->index; i++) - dest->block[i] = src->block[i]; - dest->index = src->index; -} - - -/* The SHA f()-functions. The f1 and f3 functions can be optimized to - save one boolean operation each - thanks to Rich Schroeppel, - rcs@cs.arizona.edu for discovering this */ - -/*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) // Rounds 0-19 */ -#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */ -#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */ -/*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) // Rounds 40-59 */ -#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */ -#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */ - -/* The SHA Mysterious Constants */ - -#define K1 0x5A827999L /* Rounds 0-19 */ -#define K2 0x6ED9EBA1L /* Rounds 20-39 */ -#define K3 0x8F1BBCDCL /* Rounds 40-59 */ -#define K4 0xCA62C1D6L /* Rounds 60-79 */ - -/* SHA initial values */ - -#define h0init 0x67452301L -#define h1init 0xEFCDAB89L -#define h2init 0x98BADCFEL -#define h3init 0x10325476L -#define h4init 0xC3D2E1F0L - -/* 32-bit rotate left - kludged with shifts */ - -#define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) ) - -/* The initial expanding function. The hash function is defined over an - 80-word expanded input array W, where the first 16 are copies of the input - data, and the remaining 64 are defined by - - W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ] - - This implementation generates these values on the fly in a circular - buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this - optimization. - - The updated SHA changes the expanding function by adding a rotate of 1 - bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor - for this information */ - -#define expand(W,i) ( W[ i & 15 ] = \ - ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \ - W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) ) - - -/* The prototype SHA sub-round. The fundamental sub-round is: - - a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data; - b' = a; - c' = ROTL( 30, b ); - d' = c; - e' = d; - - but this is implemented by unrolling the loop 5 times and renaming the - variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration. - This code is then replicated 20 times for each of the 4 functions, using - the next 20 values from the W[] array each time */ - -#define subRound(a, b, c, d, e, f, k, data) \ - ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) ) - -/* Initialize the SHA values */ - -void SHA1_Init(struct SHA_CTX *ctx) -{ - /* Set the h-vars to their initial values */ - ctx->digest[ 0 ] = h0init; - ctx->digest[ 1 ] = h1init; - ctx->digest[ 2 ] = h2init; - ctx->digest[ 3 ] = h3init; - ctx->digest[ 4 ] = h4init; - - /* Initialize bit count */ - ctx->count_l = ctx->count_h = 0; - - /* Initialize buffer */ - ctx->index = 0; -} - -/* Perform the SHA transformation. Note that this code, like MD5, seems to - break some optimizing compilers due to the complexity of the expressions - and the size of the basic block. It may be necessary to split it into - sections, e.g. based on the four subrounds - - Note that this function destroys the data area */ - -static void sha_transform(struct SHA_CTX *ctx, uint32_t *data ) -{ - uint32_t A, B, C, D, E; /* Local vars */ - - /* Set up first buffer and local data buffer */ - A = ctx->digest[0]; - B = ctx->digest[1]; - C = ctx->digest[2]; - D = ctx->digest[3]; - E = ctx->digest[4]; - - /* Heavy mangling, in 4 sub-rounds of 20 interations each. */ - subRound( A, B, C, D, E, f1, K1, data[ 0] ); - subRound( E, A, B, C, D, f1, K1, data[ 1] ); - subRound( D, E, A, B, C, f1, K1, data[ 2] ); - subRound( C, D, E, A, B, f1, K1, data[ 3] ); - subRound( B, C, D, E, A, f1, K1, data[ 4] ); - subRound( A, B, C, D, E, f1, K1, data[ 5] ); - subRound( E, A, B, C, D, f1, K1, data[ 6] ); - subRound( D, E, A, B, C, f1, K1, data[ 7] ); - subRound( C, D, E, A, B, f1, K1, data[ 8] ); - subRound( B, C, D, E, A, f1, K1, data[ 9] ); - subRound( A, B, C, D, E, f1, K1, data[10] ); - subRound( E, A, B, C, D, f1, K1, data[11] ); - subRound( D, E, A, B, C, f1, K1, data[12] ); - subRound( C, D, E, A, B, f1, K1, data[13] ); - subRound( B, C, D, E, A, f1, K1, data[14] ); - subRound( A, B, C, D, E, f1, K1, data[15] ); - subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) ); - subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) ); - subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) ); - subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) ); - - subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) ); - subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) ); - subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) ); - subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) ); - subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) ); - subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) ); - subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) ); - subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) ); - subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) ); - subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) ); - subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) ); - subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) ); - subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) ); - subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) ); - subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) ); - subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) ); - subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) ); - subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) ); - subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) ); - subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) ); - - subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) ); - subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) ); - subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) ); - subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) ); - subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) ); - subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) ); - subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) ); - subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) ); - subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) ); - subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) ); - subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) ); - subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) ); - subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) ); - subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) ); - subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) ); - subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) ); - subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) ); - subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) ); - subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) ); - subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) ); - - subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) ); - subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) ); - subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) ); - subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) ); - subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) ); - subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) ); - subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) ); - subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) ); - subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) ); - subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) ); - subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) ); - subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) ); - subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) ); - subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) ); - subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) ); - subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) ); - subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) ); - subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) ); - subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) ); - subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) ); - - /* Build message digest */ - ctx->digest[0] += A; - ctx->digest[1] += B; - ctx->digest[2] += C; - ctx->digest[3] += D; - ctx->digest[4] += E; -} - -#if 1 - -#ifndef EXTRACT_UCHAR -#define EXTRACT_UCHAR(p) (*(unsigned char *)(p)) -#endif - -#define STRING2INT(s) ((((((EXTRACT_UCHAR(s) << 8) \ - | EXTRACT_UCHAR(s+1)) << 8) \ - | EXTRACT_UCHAR(s+2)) << 8) \ - | EXTRACT_UCHAR(s+3)) -#else -uint32_t STRING2INT(unsigned char *s) -{ - uint32_t r; - unsigned int i; - - for (i = 0, r = 0; i < 4; i++, s++) - r = (r << 8) | *s; - return r; -} -#endif - -static void sha_block(struct SHA_CTX *ctx, const unsigned char *block) -{ - uint32_t data[SHA_DATALEN]; - unsigned int i; - - /* Update block count */ - if (!++ctx->count_l) - ++ctx->count_h; - - /* Endian independent conversion */ - for (i = 0; i<SHA_DATALEN; i++, block += 4) - data[i] = STRING2INT(block); - - sha_transform(ctx, data); -} - -void SHA1_Update(struct SHA_CTX *ctx, const unsigned char *buffer, uint32_t len) -{ - if (ctx->index) - { /* Try to fill partial block */ - unsigned left = SHA_DATASIZE - ctx->index; - if (len < left) - { - memcpy(ctx->block + ctx->index, buffer, len); - ctx->index += len; - return; /* Finished */ - } - else - { - memcpy(ctx->block + ctx->index, buffer, left); - sha_block(ctx, ctx->block); - buffer += left; - len -= left; - } - } - while (len >= SHA_DATASIZE) - { - sha_block(ctx, buffer); - buffer += SHA_DATASIZE; - len -= SHA_DATASIZE; - } - if ((ctx->index = len)) /* This assignment is intended */ - /* Buffer leftovers */ - memcpy(ctx->block, buffer, len); -} - -/* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern - 1 0* (64-bit count of bits processed, MSB-first) */ - -void SHA1_Final(unsigned char *s, struct SHA_CTX *ctx) -{ - uint32_t data[SHA_DATALEN]; - unsigned int i; - unsigned int words; - - i = ctx->index; - /* Set the first char of padding to 0x80. This is safe since there is - always at least one byte free */ - ctx->block[i++] = 0x80; - - /* Fill rest of word */ - for( ; i & 3; i++) - ctx->block[i] = 0; - - /* i is now a multiple of the word size 4 */ - words = i >> 2; - for (i = 0; i < words; i++) - data[i] = STRING2INT(ctx->block + 4*i); - - if (words > (SHA_DATALEN-2)) - { /* No room for length in this block. Process it and - * pad with another one */ - for (i = words ; i < SHA_DATALEN; i++) - data[i] = 0; - sha_transform(ctx, data); - for (i = 0; i < (SHA_DATALEN-2); i++) - data[i] = 0; - } - else - for (i = words ; i < SHA_DATALEN - 2; i++) - data[i] = 0; - /* Theres 512 = 2^9 bits in one block */ - data[SHA_DATALEN-2] = (ctx->count_h << 9) | (ctx->count_l >> 23); - data[SHA_DATALEN-1] = (ctx->count_l << 9) | (ctx->index << 3); - sha_transform(ctx, data); - sha_digest(ctx, s); -} - -void sha_digest(struct SHA_CTX *ctx, unsigned char *s) -{ - unsigned int i; - - for (i = 0; i < SHA_DIGESTLEN; i++) - { - *s++ = ctx->digest[i] >> 24; - *s++ = 0xff & (ctx->digest[i] >> 16); - *s++ = 0xff & (ctx->digest[i] >> 8); - *s++ = 0xff & ctx->digest[i]; - } -} |