diff options
author | William Carroll <wpcarro@gmail.com> | 2020-11-21T14·14+0000 |
---|---|---|
committer | William Carroll <wpcarro@gmail.com> | 2020-11-21T14·14+0000 |
commit | 2b5bbb98ca791a0c848febd3f02ed81469fef484 (patch) | |
tree | 9be17124b46b1b16c214f6ad54d0b18bbff7fefe /scratch/facebook | |
parent | 1dc6695a47c76adaeb4d28dbd681322e9f02f8e2 (diff) |
Refactor existing bst-checker implementation
I believe the previous solution is invalid. This solution works and it should be more time and space efficient. Space-wise our stack grows proportionate to the depth of our tree, which for a "balanced" BST should be log(n). Doing a BFT on a BST results in memory usage of n because when we encounter the leaf nodes at the final level in the tree, they will be 1/2 * n for a balanced BST.
Diffstat (limited to 'scratch/facebook')
-rw-r--r-- | scratch/facebook/bst-checker.py | 50 |
1 files changed, 10 insertions, 40 deletions
diff --git a/scratch/facebook/bst-checker.py b/scratch/facebook/bst-checker.py index 50edeeaa1997..7ef63a95315e 100644 --- a/scratch/facebook/bst-checker.py +++ b/scratch/facebook/bst-checker.py @@ -6,47 +6,17 @@ class Node(object): self.left = left self.right = right - def insert_left(self, value): - self.left = Node(value) - return self.left - - def insert_right(self, value): - self.right = Node(value) - return self.right - - def min(self): - xs = deque() - result = float('inf') - xs.append(self) - while xs: - node = xs.popleft() - result = min(result, node.value) - if node.left: - xs.append(node.left) - if node.right: - xs.append(node.right) - return result - - def max(self): - xs = deque() - result = float('-inf') - xs.append(self) - while xs: - node = xs.popleft() - result = max(result, node.value) - if node.left: - xs.append(node.left) - if node.right: - xs.append(node.right) - return result - def is_bst(self): - result = True - if self.left: - result = result and self.left.max() < self.value - if self.right: - result = result and self.right.min() > self.value - return result + s = [] + s.append((float('-inf'), self, float('inf'))) + while s: + lo, node, hi = s.pop() + if lo <= node.value <= hi: + node.left and s.append((lo, node.left, node.value)) + node.right and s.append((node.value, node.right, hi)) + else: + return False + return True x = Node( |