about summary refs log tree commit diff
path: root/absl/types/internal/variant.h
diff options
context:
space:
mode:
authorAbseil Team <absl-team@google.com>2018-04-20T16·16-0700
committerJon Cohen <cohenjon@google.com>2018-04-20T16·30-0400
commitfaf0a1b90374eab44e8956973b0e13febdcf3377 (patch)
tree63a7fd12a50b15c4a321e8373c1bbd975df0b7ba /absl/types/internal/variant.h
parent5b535401665cc6aa96d54a5c9b0901153d97210f (diff)
- 551e205ef49682a1cb7e6e0cda46957fbcf88edd Release absl::variant. by Xiaoyi Zhang <zhangxy@google.com>
  - 01c52f640594d073c6e54c47e7853b25522cf085 Update comments in absl::variant (and minor changes to ab... by Tom Manshreck <shreck@google.com>
  - 064465e1e6b158abd8c38fd1942b4fc464b57d6a Documentation change. by Abseil Team <absl-team@google.com>
  - 58df2c8a27e80c9ea21d87c1acee8019246377c9 Relocates SetCountdown and UnsetCountdown to the exceptio... by Abseil Team <absl-team@google.com>
  - fd9d248d0948d472f2543f7fd9c0ae4a1cd60d01 Clarify thread_annotation.h documentation around local va... by Abseil Team <absl-team@google.com>
  - 0d0abaf7f0945ac5f2c5f49e78afe1b326d5aca0 Typo fix in comments. by Abseil Team <absl-team@google.com>
  - 67286d587cbd07508a81e5b8147c245a5b5538b4 Internal change. by Xiaoyi Zhang <zhangxy@google.com>

GitOrigin-RevId: 551e205ef49682a1cb7e6e0cda46957fbcf88edd
Change-Id: I1a343b080187293cb5f892a309618b5712e7aa14
Diffstat (limited to 'absl/types/internal/variant.h')
-rw-r--r--absl/types/internal/variant.h1387
1 files changed, 1387 insertions, 0 deletions
diff --git a/absl/types/internal/variant.h b/absl/types/internal/variant.h
new file mode 100644
index 000000000000..61c56ddf4e8f
--- /dev/null
+++ b/absl/types/internal/variant.h
@@ -0,0 +1,1387 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// Implementation details of absl/types/variant.h, pulled into a
+// separate file to avoid cluttering the top of the API header with
+// implementation details.
+
+#ifndef ABSL_TYPES_variant_internal_H_
+#define ABSL_TYPES_variant_internal_H_
+
+#include <cstddef>
+#include <memory>
+#include <stdexcept>
+#include <tuple>
+#include <type_traits>
+
+#include "absl/base/internal/identity.h"
+#include "absl/base/internal/inline_variable.h"
+#include "absl/base/internal/invoke.h"
+#include "absl/base/optimization.h"
+#include "absl/meta/type_traits.h"
+#include "absl/types/bad_variant_access.h"
+#include "absl/utility/utility.h"
+
+namespace absl {
+
+template <class... Types>
+class variant;
+
+ABSL_INTERNAL_INLINE_CONSTEXPR(size_t, variant_npos, -1);
+
+template <class T>
+struct variant_size;
+
+template <std::size_t I, class T>
+struct variant_alternative;
+
+namespace variant_internal {
+
+// NOTE: See specializations below for details.
+template <std::size_t I, class T>
+struct VariantAlternativeSfinae {};
+
+// Requires: I < variant_size_v<T>.
+//
+// Value: The Ith type of Types...
+template <std::size_t I, class T0, class... Tn>
+struct VariantAlternativeSfinae<I, variant<T0, Tn...>>
+    : VariantAlternativeSfinae<I - 1, variant<Tn...>> {};
+
+// Value: T0
+template <class T0, class... Ts>
+struct VariantAlternativeSfinae<0, variant<T0, Ts...>> {
+  using type = T0;
+};
+
+template <std::size_t I, class T>
+using VariantAlternativeSfinaeT = typename VariantAlternativeSfinae<I, T>::type;
+
+// NOTE: Requires T to be a reference type.
+template <class T, class U>
+struct GiveQualsTo;
+
+template <class T, class U>
+struct GiveQualsTo<T&, U> {
+  using type = U&;
+};
+
+template <class T, class U>
+struct GiveQualsTo<T&&, U> {
+  using type = U&&;
+};
+
+template <class T, class U>
+struct GiveQualsTo<const T&, U> {
+  using type = const U&;
+};
+
+template <class T, class U>
+struct GiveQualsTo<const T&&, U> {
+  using type = const U&&;
+};
+
+template <class T, class U>
+struct GiveQualsTo<volatile T&, U> {
+  using type = volatile U&;
+};
+
+template <class T, class U>
+struct GiveQualsTo<volatile T&&, U> {
+  using type = volatile U&&;
+};
+
+template <class T, class U>
+struct GiveQualsTo<volatile const T&, U> {
+  using type = volatile const U&;
+};
+
+template <class T, class U>
+struct GiveQualsTo<volatile const T&&, U> {
+  using type = volatile const U&&;
+};
+
+template <class T, class U>
+using GiveQualsToT = typename GiveQualsTo<T, U>::type;
+
+// Convenience alias, since size_t integral_constant is used a lot in this file.
+template <std::size_t I>
+using SizeT = std::integral_constant<std::size_t, I>;
+
+template <class Variant, class T, class = void>
+struct IndexOfConstructedType {};
+
+template <std::size_t I, class Variant>
+struct VariantAccessResultImpl;
+
+template <std::size_t I, template <class...> class Variantemplate, class... T>
+struct VariantAccessResultImpl<I, Variantemplate<T...>&> {
+  using type = typename absl::variant_alternative<I, variant<T...>>::type&;
+};
+
+template <std::size_t I, template <class...> class Variantemplate, class... T>
+struct VariantAccessResultImpl<I, const Variantemplate<T...>&> {
+  using type =
+      const typename absl::variant_alternative<I, variant<T...>>::type&;
+};
+
+template <std::size_t I, template <class...> class Variantemplate, class... T>
+struct VariantAccessResultImpl<I, Variantemplate<T...>&&> {
+  using type = typename absl::variant_alternative<I, variant<T...>>::type&&;
+};
+
+template <std::size_t I, template <class...> class Variantemplate, class... T>
+struct VariantAccessResultImpl<I, const Variantemplate<T...>&&> {
+  using type =
+      const typename absl::variant_alternative<I, variant<T...>>::type&&;
+};
+
+template <std::size_t I, class Variant>
+using VariantAccessResult =
+    typename VariantAccessResultImpl<I, Variant&&>::type;
+
+// NOTE: This is used instead of std::array to reduce instantiation overhead.
+template <class T, std::size_t Size>
+struct SimpleArray {
+  static_assert(Size != 0, "");
+  T value[Size];
+};
+
+template <class T>
+struct AccessedType {
+  using type = T;
+};
+
+template <class T>
+using AccessedTypeT = typename AccessedType<T>::type;
+
+template <class T, std::size_t Size>
+struct AccessedType<SimpleArray<T, Size>> {
+  using type = AccessedTypeT<T>;
+};
+
+template <class T>
+constexpr T AccessSimpleArray(const T& value) {
+  return value;
+}
+
+template <class T, std::size_t Size, class... SizeT>
+constexpr AccessedTypeT<T> AccessSimpleArray(const SimpleArray<T, Size>& table,
+                                             std::size_t head_index,
+                                             SizeT... tail_indices) {
+  return AccessSimpleArray(table.value[head_index], tail_indices...);
+}
+
+// Note: Intentionally is an alias.
+template <class T>
+using AlwaysZero = SizeT<0>;
+
+template <class Op, class... Vs>
+struct VisitIndicesResultImpl {
+  using type = absl::result_of_t<Op(AlwaysZero<Vs>...)>;
+};
+
+template <class Op, class... Vs>
+using VisitIndicesResultT = typename VisitIndicesResultImpl<Op, Vs...>::type;
+
+template <class ReturnType, class FunctionObject, class EndIndices,
+          std::size_t... BoundIndices>
+struct MakeVisitationMatrix;
+
+template <class ReturnType, class FunctionObject, std::size_t... Indices>
+constexpr ReturnType call_with_indices(FunctionObject&& function) {
+  static_assert(
+      std::is_same<ReturnType, decltype(std::declval<FunctionObject>()(
+                                   SizeT<Indices>()...))>::value,
+      "Not all visitation overloads have the same return type.");
+  return absl::forward<FunctionObject>(function)(SizeT<Indices>()...);
+}
+
+template <class ReturnType, class FunctionObject, std::size_t... BoundIndices>
+struct MakeVisitationMatrix<ReturnType, FunctionObject, index_sequence<>,
+                            BoundIndices...> {
+  using ResultType = ReturnType (*)(FunctionObject&&);
+  static constexpr ResultType Run() {
+    return &call_with_indices<ReturnType, FunctionObject,
+                              (BoundIndices - 1)...>;
+  }
+};
+
+template <class ReturnType, class FunctionObject, class EndIndices,
+          class CurrIndices, std::size_t... BoundIndices>
+struct MakeVisitationMatrixImpl;
+
+template <class ReturnType, class FunctionObject, std::size_t... EndIndices,
+          std::size_t... CurrIndices, std::size_t... BoundIndices>
+struct MakeVisitationMatrixImpl<
+    ReturnType, FunctionObject, index_sequence<EndIndices...>,
+    index_sequence<CurrIndices...>, BoundIndices...> {
+  using ResultType = SimpleArray<
+      typename MakeVisitationMatrix<ReturnType, FunctionObject,
+                                    index_sequence<EndIndices...>>::ResultType,
+      sizeof...(CurrIndices)>;
+
+  static constexpr ResultType Run() {
+    return {{MakeVisitationMatrix<ReturnType, FunctionObject,
+                                  index_sequence<EndIndices...>,
+                                  BoundIndices..., CurrIndices>::Run()...}};
+  }
+};
+
+template <class ReturnType, class FunctionObject, std::size_t HeadEndIndex,
+          std::size_t... TailEndIndices, std::size_t... BoundIndices>
+struct MakeVisitationMatrix<ReturnType, FunctionObject,
+                            index_sequence<HeadEndIndex, TailEndIndices...>,
+                            BoundIndices...>
+    : MakeVisitationMatrixImpl<
+          ReturnType, FunctionObject, index_sequence<TailEndIndices...>,
+          absl::make_index_sequence<HeadEndIndex>, BoundIndices...> {};
+
+template <std::size_t... EndIndices, class Op, class... SizeT>
+VisitIndicesResultT<Op, SizeT...> visit_indices(Op&& op, SizeT... indices) {
+  return AccessSimpleArray(
+      MakeVisitationMatrix<VisitIndicesResultT<Op, SizeT...>, Op,
+                           index_sequence<(EndIndices + 1)...>>::Run(),
+      (indices + 1)...)(absl::forward<Op>(op));
+}
+
+template <class ReturnType>
+[[noreturn]] ReturnType TypedThrowBadVariantAccess() {
+  absl::variant_internal::ThrowBadVariantAccess();
+}
+
+// Suppress bogus warning on MSVC: MSVC complains that the `reinterpret_cast`
+// below is returning the address of a temporary or local object.
+#ifdef _MSC_VER
+#pragma warning(push)
+#pragma warning(disable : 4172)
+#endif  // _MSC_VER
+
+// TODO(calabrese) std::launder
+// TODO(calabrese) constexpr
+template <class Self, std::size_t I>
+VariantAccessResult<I, Self> AccessUnion(Self&& self, SizeT<I> /*i*/) {
+  return reinterpret_cast<VariantAccessResult<I, Self>>(self);
+}
+
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif  // _MSC_VER
+
+template <class T>
+void DeducedDestroy(T& self) {  // NOLINT
+  self.~T();
+}
+
+// NOTE: This type exists as a single entity for variant and its bases to
+// befriend. It contains helper functionality that manipulates the state of the
+// variant, such as the implementation of things like assignment and emplace
+// operations.
+struct VariantCoreAccess {
+  template <class VariantType>
+  static typename VariantType::Variant& Derived(VariantType& self) {  // NOLINT
+    return static_cast<typename VariantType::Variant&>(self);
+  }
+
+  template <class VariantType>
+  static const typename VariantType::Variant& Derived(
+      const VariantType& self) {  // NOLINT
+    return static_cast<const typename VariantType::Variant&>(self);
+  }
+
+  template <class VariantType>
+  static void Destroy(VariantType& self) {  // NOLINT
+    Derived(self).destroy();
+    self.index_ = absl::variant_npos;
+  }
+
+  template <class Variant>
+  static void SetIndex(Variant& self, std::size_t i) {  // NOLINT
+    self.index_ = i;
+  }
+
+  template <class Variant>
+  static void InitFrom(Variant& self, Variant&& other) {  // NOLINT
+    variant_internal::visit_indices<absl::variant_size<Variant>::value>(
+        InitFromVisitor<Variant, Variant&&>{&self,
+                                            std::forward<Variant>(other)},
+        other.index());
+    self.index_ = other.index();
+  }
+
+  template <std::size_t I, class Variant>
+  static VariantAccessResult<I, Variant> Access(Variant&& self) {
+    if (ABSL_PREDICT_FALSE(self.index_ != I)) {
+      TypedThrowBadVariantAccess<VariantAccessResult<I, Variant>>();
+    }
+
+    // This cast instead of invocation of AccessUnion with an rvalue is a
+    // workaround for msvc. Without this there is a runtime failure when dealing
+    // with rvalues.
+    // TODO(calabrese) Reduce test case and find a simpler workaround.
+    return static_cast<VariantAccessResult<I, Variant>>(
+        variant_internal::AccessUnion(self.state_, SizeT<I>()));
+  }
+
+  // The implementation of the move-assignment operation for a variant.
+  template <class VType>
+  struct MoveAssignVisitor {
+    using DerivedType = typename VType::Variant;
+    template <std::size_t NewIndex>
+    void operator()(SizeT<NewIndex> /*new_i*/) const {
+      if (left->index_ == NewIndex) {
+        Access<NewIndex>(*left) = std::move(Access<NewIndex>(*right));
+      } else {
+        Derived(*left).template emplace<NewIndex>(
+            std::move(Access<NewIndex>(*right)));
+      }
+    }
+
+    void operator()(SizeT<absl::variant_npos> /*new_i*/) const {
+      Destroy(*left);
+    }
+
+    VType* left;
+    VType* right;
+  };
+
+  template <class VType>
+  static MoveAssignVisitor<VType> MakeMoveAssignVisitor(VType* left,
+                                                        VType* other) {
+    return {left, other};
+  }
+
+  // The implementation of the assignment operation for a variant.
+  template <class VType>
+  struct CopyAssignVisitor {
+    using DerivedType = typename VType::Variant;
+    template <std::size_t NewIndex>
+    void operator()(SizeT<NewIndex> /*new_i*/) const {
+      using New =
+          typename absl::variant_alternative<NewIndex, DerivedType>::type;
+
+      if (left->index_ == NewIndex) {
+        Access<NewIndex>(*left) = Access<NewIndex>(*right);
+      } else if (std::is_nothrow_copy_constructible<New>::value ||
+                 !std::is_nothrow_move_constructible<New>::value) {
+        Derived(*left).template emplace<NewIndex>(Access<NewIndex>(*right));
+      } else {
+        Derived(*left) = DerivedType(Derived(*right));
+      }
+    }
+
+    void operator()(SizeT<absl::variant_npos> /*new_i*/) const {
+      Destroy(*left);
+    }
+
+    VType* left;
+    const VType* right;
+  };
+
+  template <class VType>
+  static CopyAssignVisitor<VType> MakeCopyAssignVisitor(VType* left,
+                                                        const VType& other) {
+    return {left, &other};
+  }
+
+  // The implementation of conversion-assignment operations for variant.
+  template <class Left, class QualifiedNew>
+  struct ConversionAssignVisitor {
+    using NewIndex =
+        variant_internal::IndexOfConstructedType<Left, QualifiedNew>;
+
+    void operator()(SizeT<NewIndex::value> /*old_i*/
+                    ) const {
+      Access<NewIndex::value>(*left) = absl::forward<QualifiedNew>(other);
+    }
+
+    template <std::size_t OldIndex>
+    void operator()(SizeT<OldIndex> /*old_i*/
+                    ) const {
+      using New =
+          typename absl::variant_alternative<NewIndex::value, Left>::type;
+      if (std::is_nothrow_constructible<New, QualifiedNew>::value ||
+          !std::is_nothrow_move_constructible<New>::value) {
+        left->template emplace<NewIndex::value>(
+            absl::forward<QualifiedNew>(other));
+      } else {
+        // the standard says "equivalent to
+        // operator=(variant(std::forward<T>(t)))", but we use `emplace` here
+        // because the variant's move assignment operator could be deleted.
+        left->template emplace<NewIndex::value>(
+            New(absl::forward<QualifiedNew>(other)));
+      }
+    }
+
+    Left* left;
+    QualifiedNew&& other;
+  };
+
+  template <class Left, class QualifiedNew>
+  static ConversionAssignVisitor<Left, QualifiedNew>
+  MakeConversionAssignVisitor(Left* left, QualifiedNew&& qual) {
+    return {left, absl::forward<QualifiedNew>(qual)};
+  }
+
+  // Backend for operations for `emplace()` which destructs `*self` then
+  // construct a new alternative with `Args...`.
+  template <std::size_t NewIndex, class Self, class... Args>
+  static typename absl::variant_alternative<NewIndex, Self>::type& Replace(
+      Self* self, Args&&... args) {
+    Destroy(*self);
+    using New = typename absl::variant_alternative<NewIndex, Self>::type;
+    New* const result = ::new (static_cast<void*>(&self->state_))
+        New(absl::forward<Args>(args)...);
+    self->index_ = NewIndex;
+    return *result;
+  }
+
+  template <class LeftVariant, class QualifiedRightVariant>
+  struct InitFromVisitor {
+    template <std::size_t NewIndex>
+    void operator()(SizeT<NewIndex> /*new_i*/) const {
+      using Alternative =
+          typename variant_alternative<NewIndex, LeftVariant>::type;
+      ::new (static_cast<void*>(&left->state_)) Alternative(
+          Access<NewIndex>(std::forward<QualifiedRightVariant>(right)));
+    }
+
+    void operator()(SizeT<absl::variant_npos> /*new_i*/) const {
+      // This space intentionally left blank.
+    }
+    LeftVariant* left;
+    QualifiedRightVariant&& right;
+  };
+};
+
+template <class Expected, class... T>
+struct IndexOfImpl;
+
+template <class Expected>
+struct IndexOfImpl<Expected> {
+  using IndexFromEnd = SizeT<0>;
+  using MatchedIndexFromEnd = IndexFromEnd;
+  using MultipleMatches = std::false_type;
+};
+
+template <class Expected, class Head, class... Tail>
+struct IndexOfImpl<Expected, Head, Tail...> : IndexOfImpl<Expected, Tail...> {
+  using IndexFromEnd =
+      SizeT<IndexOfImpl<Expected, Tail...>::IndexFromEnd::value + 1>;
+};
+
+template <class Expected, class... Tail>
+struct IndexOfImpl<Expected, Expected, Tail...>
+    : IndexOfImpl<Expected, Tail...> {
+  using IndexFromEnd =
+      SizeT<IndexOfImpl<Expected, Tail...>::IndexFromEnd::value + 1>;
+  using MatchedIndexFromEnd = IndexFromEnd;
+  using MultipleMatches = std::integral_constant<
+      bool, IndexOfImpl<Expected, Tail...>::MatchedIndexFromEnd::value != 0>;
+};
+
+template <class Expected, class... Types>
+struct IndexOfMeta {
+  using Results = IndexOfImpl<Expected, Types...>;
+  static_assert(!Results::MultipleMatches::value,
+                "Attempted to access a variant by specifying a type that "
+                "matches more than one alternative.");
+  static_assert(Results::MatchedIndexFromEnd::value != 0,
+                "Attempted to access a variant by specifying a type that does "
+                "not match any alternative.");
+  using type = SizeT<sizeof...(Types) - Results::MatchedIndexFromEnd::value>;
+};
+
+template <class Expected, class... Types>
+using IndexOf = typename IndexOfMeta<Expected, Types...>::type;
+
+template <class Variant, class T, std::size_t CurrIndex>
+struct UnambiguousIndexOfImpl;
+
+// Terminating case encountered once we've checked all of the alternatives
+template <class T, std::size_t CurrIndex>
+struct UnambiguousIndexOfImpl<variant<>, T, CurrIndex> : SizeT<CurrIndex> {};
+
+// Case where T is not Head
+template <class Head, class... Tail, class T, std::size_t CurrIndex>
+struct UnambiguousIndexOfImpl<variant<Head, Tail...>, T, CurrIndex>
+    : UnambiguousIndexOfImpl<variant<Tail...>, T, CurrIndex + 1>::type {};
+
+// Case where T is Head
+template <class Head, class... Tail, std::size_t CurrIndex>
+struct UnambiguousIndexOfImpl<variant<Head, Tail...>, Head, CurrIndex>
+    : SizeT<UnambiguousIndexOfImpl<variant<Tail...>, Head, 0>::value ==
+                    sizeof...(Tail)
+                ? CurrIndex
+                : CurrIndex + sizeof...(Tail) + 1> {};
+
+template <class Variant, class T>
+struct UnambiguousIndexOf;
+
+struct NoMatch {
+  struct type {};
+};
+
+template <class... Alts, class T>
+struct UnambiguousIndexOf<variant<Alts...>, T>
+    : std::conditional<UnambiguousIndexOfImpl<variant<Alts...>, T, 0>::value !=
+                           sizeof...(Alts),
+                       UnambiguousIndexOfImpl<variant<Alts...>, T, 0>,
+                       NoMatch>::type::type {};
+
+template <class T, std::size_t /*Dummy*/>
+using UnambiguousTypeOfImpl = T;
+
+template <class Variant, class T>
+using UnambiguousTypeOfT =
+    UnambiguousTypeOfImpl<T, UnambiguousIndexOf<Variant, T>::value>;
+
+template <class H, class... T>
+class VariantStateBase;
+
+// This is an implementation of the "imaginary function" that is described in
+// [variant.ctor]
+// It is used in order to determine which alternative to construct during
+// initialization from some type T.
+template <class Variant, std::size_t I = 0>
+struct ImaginaryFun;
+
+template <std::size_t I>
+struct ImaginaryFun<variant<>, I> {
+  static void Run() = delete;
+};
+
+template <class H, class... T, std::size_t I>
+struct ImaginaryFun<variant<H, T...>, I> : ImaginaryFun<variant<T...>, I + 1> {
+  using ImaginaryFun<variant<T...>, I + 1>::Run;
+
+  // NOTE: const& and && are used instead of by-value due to lack of guaranteed
+  // move elision of C++17. This may have other minor differences, but tests
+  // pass.
+  static SizeT<I> Run(const H&);
+  static SizeT<I> Run(H&&);
+};
+
+// The following metafunctions are used in constructor and assignment
+// constraints.
+template <class Self, class T>
+struct IsNeitherSelfNorInPlace : std::true_type {};
+
+template <class Self>
+struct IsNeitherSelfNorInPlace<Self, Self> : std::false_type {};
+
+template <class Self, class T>
+struct IsNeitherSelfNorInPlace<Self, in_place_type_t<T>> : std::false_type {};
+
+template <class Self, std::size_t I>
+struct IsNeitherSelfNorInPlace<Self, in_place_index_t<I>> : std::false_type {};
+
+template <class Variant, class T, class = void>
+struct ConversionIsPossibleImpl : std::false_type {};
+
+template <class Variant, class T>
+struct ConversionIsPossibleImpl<
+    Variant, T, void_t<decltype(ImaginaryFun<Variant>::Run(std::declval<T>()))>>
+    : std::true_type {};
+
+template <class Variant, class T>
+struct ConversionIsPossible : ConversionIsPossibleImpl<Variant, T>::type {};
+
+template <class Variant, class T>
+struct IndexOfConstructedType<
+    Variant, T, void_t<decltype(ImaginaryFun<Variant>::Run(std::declval<T>()))>>
+    : decltype(ImaginaryFun<Variant>::Run(std::declval<T>())) {};
+
+template <std::size_t... Is>
+struct ContainsVariantNPos
+    : absl::negation<std::is_same<  // NOLINT
+          absl::integer_sequence<bool, 0 <= Is...>,
+          absl::integer_sequence<bool, Is != absl::variant_npos...>>> {};
+
+template <class Op, class... QualifiedVariants>
+using RawVisitResult =
+    absl::result_of_t<Op(VariantAccessResult<0, QualifiedVariants>...)>;
+
+// NOTE: The spec requires that all return-paths yield the same type and is not
+// SFINAE-friendly, so we can deduce the return type by examining the first
+// result. If it's not callable, then we get an error, but are compliant and
+// fast to compile.
+// TODO(calabrese) Possibly rewrite in a way that yields better compile errors
+// at the cost of longer compile-times.
+template <class Op, class... QualifiedVariants>
+struct VisitResultImpl {
+  using type =
+      absl::result_of_t<Op(VariantAccessResult<0, QualifiedVariants>...)>;
+};
+
+// Done in two steps intentionally so that we don't cause substitution to fail.
+template <class Op, class... QualifiedVariants>
+using VisitResult = typename VisitResultImpl<Op, QualifiedVariants...>::type;
+
+template <class Op, class... QualifiedVariants>
+struct PerformVisitation {
+  using ReturnType = VisitResult<Op, QualifiedVariants...>;
+
+  template <std::size_t... Is>
+  constexpr ReturnType operator()(SizeT<Is>... indices) const {
+    return Run(typename ContainsVariantNPos<Is...>::type{},
+               absl::index_sequence_for<QualifiedVariants...>(), indices...);
+  }
+
+  template <std::size_t... TupIs, std::size_t... Is>
+  constexpr ReturnType Run(std::false_type /*has_valueless*/,
+                           index_sequence<TupIs...>, SizeT<Is>...) const {
+    return absl::base_internal::Invoke(
+        absl::forward<Op>(op),
+        VariantCoreAccess::Access<Is>(
+            absl::forward<QualifiedVariants>(std::get<TupIs>(variant_tup)))...);
+  }
+
+  template <std::size_t... TupIs, std::size_t... Is>
+  [[noreturn]] ReturnType Run(std::true_type /*has_valueless*/,
+                              index_sequence<TupIs...>, SizeT<Is>...) const {
+    absl::variant_internal::ThrowBadVariantAccess();
+  }
+
+  // TODO(calabrese) Avoid using a tuple, which causes lots of instantiations
+  // Attempts using lambda variadic captures fail on current GCC.
+  std::tuple<QualifiedVariants&&...> variant_tup;
+  Op&& op;
+};
+
+template <class... T>
+union Union;
+
+// We want to allow for variant<> to be trivial. For that, we need the default
+// constructor to be trivial, which means we can't define it ourselves.
+// Instead, we use a non-default constructor that takes NoopConstructorTag
+// that doesn't affect the triviality of the types.
+struct NoopConstructorTag {};
+
+template <std::size_t I>
+struct EmplaceTag {};
+
+template <>
+union Union<> {
+  constexpr explicit Union(NoopConstructorTag) noexcept {}
+};
+
+// Suppress bogus warning on MSVC: MSVC complains that Union<T...> has a defined
+// deleted destructor from the `std::is_destructible` check below.
+#ifdef _MSC_VER
+#pragma warning(push)
+#pragma warning(disable : 4624)
+#endif  // _MSC_VER
+
+template <class Head, class... Tail>
+union Union<Head, Tail...> {
+  using TailUnion = Union<Tail...>;
+
+  explicit constexpr Union(NoopConstructorTag /*tag*/) noexcept
+      : tail(NoopConstructorTag()) {}
+
+  template <class... P>
+  explicit constexpr Union(EmplaceTag<0>, P&&... args)
+      : head(absl::forward<P>(args)...) {}
+
+  template <std::size_t I, class... P>
+  explicit constexpr Union(EmplaceTag<I>, P&&... args)
+      : tail(EmplaceTag<I - 1>{}, absl::forward<P>(args)...) {}
+
+  Head head;
+  TailUnion tail;
+};
+
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif  // _MSC_VER
+
+// TODO(calabrese) Just contain a Union in this union (certain configs fail).
+template <class... T>
+union DestructibleUnionImpl;
+
+template <>
+union DestructibleUnionImpl<> {
+  constexpr explicit DestructibleUnionImpl(NoopConstructorTag) noexcept {}
+};
+
+template <class Head, class... Tail>
+union DestructibleUnionImpl<Head, Tail...> {
+  using TailUnion = DestructibleUnionImpl<Tail...>;
+
+  explicit constexpr DestructibleUnionImpl(NoopConstructorTag /*tag*/) noexcept
+      : tail(NoopConstructorTag()) {}
+
+  template <class... P>
+  explicit constexpr DestructibleUnionImpl(EmplaceTag<0>, P&&... args)
+      : head(absl::forward<P>(args)...) {}
+
+  template <std::size_t I, class... P>
+  explicit constexpr DestructibleUnionImpl(EmplaceTag<I>, P&&... args)
+      : tail(EmplaceTag<I - 1>{}, absl::forward<P>(args)...) {}
+
+  ~DestructibleUnionImpl() {}
+
+  Head head;
+  TailUnion tail;
+};
+
+// This union type is destructible even if one or more T are not trivially
+// destructible. In the case that all T are trivially destructible, then so is
+// this resultant type.
+template <class... T>
+using DestructibleUnion =
+    absl::conditional_t<std::is_destructible<Union<T...>>::value, Union<T...>,
+                        DestructibleUnionImpl<T...>>;
+
+// Deepest base, containing the actual union and the discriminator
+template <class H, class... T>
+class VariantStateBase {
+ protected:
+  using Variant = variant<H, T...>;
+
+  template <class LazyH = H,
+            class ConstructibleH = absl::enable_if_t<
+                std::is_default_constructible<LazyH>::value, LazyH>>
+  constexpr VariantStateBase() noexcept(
+      std::is_nothrow_default_constructible<ConstructibleH>::value)
+      : state_(EmplaceTag<0>()), index_(0) {}
+
+  template <std::size_t I, class... P>
+  explicit constexpr VariantStateBase(EmplaceTag<I> tag, P&&... args)
+      : state_(tag, absl::forward<P>(args)...), index_(I) {}
+
+  explicit constexpr VariantStateBase(NoopConstructorTag)
+      : state_(NoopConstructorTag()), index_(variant_npos) {}
+
+  void destroy() {}  // Does nothing (shadowed in child if non-trivial)
+
+  DestructibleUnion<H, T...> state_;
+  std::size_t index_;
+};
+
+using absl::internal::identity;
+
+// OverloadSet::Overload() is a unary function which is overloaded to
+// take any of the element types of the variant, by reference-to-const.
+// The return type of the overload on T is identity<T>, so that you
+// can statically determine which overload was called.
+//
+// Overload() is not defined, so it can only be called in unevaluated
+// contexts.
+template <typename... Ts>
+struct OverloadSet;
+
+template <typename T, typename... Ts>
+struct OverloadSet<T, Ts...> : OverloadSet<Ts...> {
+  using Base = OverloadSet<Ts...>;
+  static identity<T> Overload(const T&);
+  using Base::Overload;
+};
+
+template <>
+struct OverloadSet<> {
+  // For any case not handled above.
+  static void Overload(...);
+};
+
+////////////////////////////////
+// Library Fundamentals V2 TS //
+////////////////////////////////
+
+// TODO(calabrese): Consider moving this to absl/meta/type_traits.h
+
+// The following is a rough implementation of parts of the detection idiom.
+// It is used for the comparison operator checks.
+
+template <class Enabler, class To, template <class...> class Op, class... Args>
+struct is_detected_convertible_impl {
+  using type = std::false_type;
+};
+
+template <class To, template <class...> class Op, class... Args>
+struct is_detected_convertible_impl<
+    absl::enable_if_t<std::is_convertible<Op<Args...>, To>::value>, To, Op,
+    Args...> {
+  using type = std::true_type;
+};
+
+// NOTE: This differs from library fundamentals by being lazy.
+template <class To, template <class...> class Op, class... Args>
+struct is_detected_convertible
+    : is_detected_convertible_impl<void, To, Op, Args...>::type {};
+
+template <class T>
+using LessThanResult = decltype(std::declval<T>() < std::declval<T>());
+
+template <class T>
+using GreaterThanResult = decltype(std::declval<T>() > std::declval<T>());
+
+template <class T>
+using LessThanOrEqualResult = decltype(std::declval<T>() <= std::declval<T>());
+
+template <class T>
+using GreaterThanOrEqualResult =
+    decltype(std::declval<T>() >= std::declval<T>());
+
+template <class T>
+using EqualResult = decltype(std::declval<T>() == std::declval<T>());
+
+template <class T>
+using NotEqualResult = decltype(std::declval<T>() != std::declval<T>());
+
+template <class T>
+using HasLessThan = is_detected_convertible<bool, LessThanResult, T>;
+
+template <class T>
+using HasGreaterThan = is_detected_convertible<bool, GreaterThanResult, T>;
+
+template <class T>
+using HasLessThanOrEqual =
+    is_detected_convertible<bool, LessThanOrEqualResult, T>;
+
+template <class T>
+using HasGreaterThanOrEqual =
+    is_detected_convertible<bool, GreaterThanOrEqualResult, T>;
+
+template <class T>
+using HasEqual = is_detected_convertible<bool, EqualResult, T>;
+
+template <class T>
+using HasNotEqual = is_detected_convertible<bool, NotEqualResult, T>;
+
+template <class... T>
+using RequireAllHaveEqualT =
+    absl::enable_if_t<absl::conjunction<HasEqual<T>...>::value, bool>;
+
+template <class... T>
+using RequireAllHaveNotEqualT =
+    absl::enable_if_t<absl::conjunction<HasEqual<T>...>::value, bool>;
+
+template <class... T>
+using RequireAllHaveLessThanT =
+    absl::enable_if_t<absl::conjunction<HasLessThan<T>...>::value, bool>;
+
+template <class... T>
+using RequireAllHaveLessThanOrEqualT =
+    absl::enable_if_t<absl::conjunction<HasLessThan<T>...>::value, bool>;
+
+template <class... T>
+using RequireAllHaveGreaterThanOrEqualT =
+    absl::enable_if_t<absl::conjunction<HasLessThan<T>...>::value, bool>;
+
+template <class... T>
+using RequireAllHaveGreaterThanT =
+    absl::enable_if_t<absl::conjunction<HasLessThan<T>...>::value, bool>;
+
+// Helper template containing implementations details of variant that can't go
+// in the private section. For convenience, this takes the variant type as a
+// single template parameter.
+template <typename T>
+struct VariantHelper;
+
+template <typename... Ts>
+struct VariantHelper<variant<Ts...>> {
+  // Type metafunction which returns the element type selected if
+  // OverloadSet::Overload() is well-formed when called with argument type U.
+  template <typename U>
+  using BestMatch = decltype(
+      variant_internal::OverloadSet<Ts...>::Overload(std::declval<U>()));
+
+  // Type metafunction which returns true if OverloadSet::Overload() is
+  // well-formed when called with argument type U.
+  // CanAccept can't be just an alias because there is a MSVC bug on parameter
+  // pack expansion involving decltype.
+  template <typename U>
+  struct CanAccept :
+      std::integral_constant<bool, !std::is_void<BestMatch<U>>::value> {};
+
+  // Type metafunction which returns true if Other is an instantiation of
+  // variant, and variants's converting constructor from Other will be
+  // well-formed. We will use this to remove constructors that would be
+  // ill-formed from the overload set.
+  template <typename Other>
+  struct CanConvertFrom;
+
+  template <typename... Us>
+  struct CanConvertFrom<variant<Us...>>
+      : public absl::conjunction<CanAccept<Us>...> {};
+};
+
+// A type with nontrivial copy ctor and trivial move ctor.
+struct TrivialMoveOnly {
+  TrivialMoveOnly(TrivialMoveOnly&&) = default;
+};
+
+// Trait class to detect whether a type is trivially move constructible.
+// A union's defaulted copy/move constructor is deleted if any variant member's
+// copy/move constructor is nontrivial.
+template <typename T>
+struct IsTriviallyMoveConstructible:
+  std::is_move_constructible<Union<T, TrivialMoveOnly>> {};
+
+// To guarantee triviality of all special-member functions that can be trivial,
+// we use a chain of conditional bases for each one.
+// The order of inheritance of bases from child to base are logically:
+//
+// variant
+// VariantCopyAssignBase
+// VariantMoveAssignBase
+// VariantCopyBase
+// VariantMoveBase
+// VariantStateBaseDestructor
+// VariantStateBase
+//
+// Note that there is a separate branch at each base that is dependent on
+// whether or not that corresponding special-member-function can be trivial in
+// the resultant variant type.
+
+template <class... T>
+class VariantStateBaseDestructorNontrivial;
+
+template <class... T>
+class VariantMoveBaseNontrivial;
+
+template <class... T>
+class VariantCopyBaseNontrivial;
+
+template <class... T>
+class VariantMoveAssignBaseNontrivial;
+
+template <class... T>
+class VariantCopyAssignBaseNontrivial;
+
+// Base that is dependent on whether or not the destructor can be trivial.
+template <class... T>
+using VariantStateBaseDestructor =
+    absl::conditional_t<std::is_destructible<Union<T...>>::value,
+                        VariantStateBase<T...>,
+                        VariantStateBaseDestructorNontrivial<T...>>;
+
+// Base that is dependent on whether or not the move-constructor can be
+// implicitly generated by the compiler (trivial or deleted).
+// Previously we were using `std::is_move_constructible<Union<T...>>` to check
+// whether all Ts have trivial move constructor, but it ran into a GCC bug:
+// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84866
+// So we have to use a different approach (i.e. `HasTrivialMoveConstructor`) to
+// work around the bug.
+template <class... T>
+using VariantMoveBase = absl::conditional_t<
+    absl::disjunction<
+        absl::negation<absl::conjunction<std::is_move_constructible<T>...>>,
+        absl::conjunction<IsTriviallyMoveConstructible<T>...>>::value,
+    VariantStateBaseDestructor<T...>, VariantMoveBaseNontrivial<T...>>;
+
+// Base that is dependent on whether or not the copy-constructor can be trivial.
+template <class... T>
+using VariantCopyBase = absl::conditional_t<
+    absl::disjunction<
+        absl::negation<absl::conjunction<std::is_copy_constructible<T>...>>,
+        std::is_copy_constructible<Union<T...>>>::value,
+    VariantMoveBase<T...>, VariantCopyBaseNontrivial<T...>>;
+
+// Base that is dependent on whether or not the move-assign can be trivial.
+template <class... T>
+using VariantMoveAssignBase = absl::conditional_t<
+    absl::disjunction<absl::conjunction<std::is_move_assignable<Union<T...>>,
+                                        std::is_move_constructible<Union<T...>>,
+                                        std::is_destructible<Union<T...>>>,
+                      absl::negation<absl::conjunction<
+                          std::is_move_constructible<T>...,
+                          std::is_move_assignable<T>...>>>::value,
+    VariantCopyBase<T...>, VariantMoveAssignBaseNontrivial<T...>>;
+
+// Base that is dependent on whether or not the copy-assign can be trivial.
+template <class... T>
+using VariantCopyAssignBase = absl::conditional_t<
+    absl::disjunction<absl::conjunction<std::is_copy_assignable<Union<T...>>,
+                                        std::is_copy_constructible<Union<T...>>,
+                                        std::is_destructible<Union<T...>>>,
+                      absl::negation<absl::conjunction<
+                          std::is_copy_constructible<T>...,
+                          std::is_copy_assignable<T>...>>>::value,
+    VariantMoveAssignBase<T...>, VariantCopyAssignBaseNontrivial<T...>>;
+
+template <class... T>
+using VariantBase = VariantCopyAssignBase<T...>;
+
+template <class... T>
+class VariantStateBaseDestructorNontrivial : protected VariantStateBase<T...> {
+ private:
+  using Base = VariantStateBase<T...>;
+
+ protected:
+  using Base::Base;
+
+  VariantStateBaseDestructorNontrivial() = default;
+  VariantStateBaseDestructorNontrivial(VariantStateBaseDestructorNontrivial&&) =
+      default;
+  VariantStateBaseDestructorNontrivial(
+      const VariantStateBaseDestructorNontrivial&) = default;
+  VariantStateBaseDestructorNontrivial& operator=(
+      VariantStateBaseDestructorNontrivial&&) = default;
+  VariantStateBaseDestructorNontrivial& operator=(
+      const VariantStateBaseDestructorNontrivial&) = default;
+
+  struct Destroyer {
+    template <std::size_t I>
+    void operator()(SizeT<I> i) const {
+      using Alternative =
+          typename absl::variant_alternative<I, variant<T...>>::type;
+      variant_internal::AccessUnion(self->state_, i).~Alternative();
+    }
+
+    void operator()(SizeT<absl::variant_npos> /*i*/) const {
+      // This space intentionally left blank
+    }
+
+    VariantStateBaseDestructorNontrivial* self;
+  };
+
+  void destroy() {
+    variant_internal::visit_indices<sizeof...(T)>(Destroyer{this}, index_);
+  }
+
+  ~VariantStateBaseDestructorNontrivial() { destroy(); }
+
+ protected:
+  using Base::index_;
+  using Base::state_;
+};
+
+template <class... T>
+class VariantMoveBaseNontrivial : protected VariantStateBaseDestructor<T...> {
+ private:
+  using Base = VariantStateBaseDestructor<T...>;
+
+ protected:
+  using Base::Base;
+
+  struct Construct {
+    template <std::size_t I>
+    void operator()(SizeT<I> i) const {
+      using Alternative =
+          typename absl::variant_alternative<I, variant<T...>>::type;
+      ::new (static_cast<void*>(&self->state_)) Alternative(
+          variant_internal::AccessUnion(absl::move(other->state_), i));
+    }
+
+    void operator()(SizeT<absl::variant_npos> /*i*/) const {}
+
+    VariantMoveBaseNontrivial* self;
+    VariantMoveBaseNontrivial* other;
+  };
+
+  VariantMoveBaseNontrivial() = default;
+  VariantMoveBaseNontrivial(VariantMoveBaseNontrivial&& other) noexcept(
+      absl::conjunction<std::is_nothrow_move_constructible<T>...>::value)
+      : Base(NoopConstructorTag()) {
+    variant_internal::visit_indices<sizeof...(T)>(Construct{this, &other},
+                                                  other.index_);
+    index_ = other.index_;
+  }
+
+  VariantMoveBaseNontrivial(VariantMoveBaseNontrivial const&) = default;
+
+  VariantMoveBaseNontrivial& operator=(VariantMoveBaseNontrivial&&) = default;
+  VariantMoveBaseNontrivial& operator=(VariantMoveBaseNontrivial const&) =
+      default;
+
+ protected:
+  using Base::index_;
+  using Base::state_;
+};
+
+template <class... T>
+class VariantCopyBaseNontrivial : protected VariantMoveBase<T...> {
+ private:
+  using Base = VariantMoveBase<T...>;
+
+ protected:
+  using Base::Base;
+
+  VariantCopyBaseNontrivial() = default;
+  VariantCopyBaseNontrivial(VariantCopyBaseNontrivial&&) = default;
+
+  struct Construct {
+    template <std::size_t I>
+    void operator()(SizeT<I> i) const {
+      using Alternative =
+          typename absl::variant_alternative<I, variant<T...>>::type;
+      ::new (static_cast<void*>(&self->state_))
+          Alternative(variant_internal::AccessUnion(other->state_, i));
+    }
+
+    void operator()(SizeT<absl::variant_npos> /*i*/) const {}
+
+    VariantCopyBaseNontrivial* self;
+    const VariantCopyBaseNontrivial* other;
+  };
+
+  VariantCopyBaseNontrivial(VariantCopyBaseNontrivial const& other)
+      : Base(NoopConstructorTag()) {
+    variant_internal::visit_indices<sizeof...(T)>(Construct{this, &other},
+                                                  other.index_);
+    index_ = other.index_;
+  }
+
+  VariantCopyBaseNontrivial& operator=(VariantCopyBaseNontrivial&&) = default;
+  VariantCopyBaseNontrivial& operator=(VariantCopyBaseNontrivial const&) =
+      default;
+
+ protected:
+  using Base::index_;
+  using Base::state_;
+};
+
+template <class... T>
+class VariantMoveAssignBaseNontrivial : protected VariantCopyBase<T...> {
+  friend struct VariantCoreAccess;
+
+ private:
+  using Base = VariantCopyBase<T...>;
+
+ protected:
+  using Base::Base;
+
+  VariantMoveAssignBaseNontrivial() = default;
+  VariantMoveAssignBaseNontrivial(VariantMoveAssignBaseNontrivial&&) = default;
+  VariantMoveAssignBaseNontrivial(const VariantMoveAssignBaseNontrivial&) =
+      default;
+  VariantMoveAssignBaseNontrivial& operator=(
+      VariantMoveAssignBaseNontrivial const&) = default;
+
+    VariantMoveAssignBaseNontrivial&
+    operator=(VariantMoveAssignBaseNontrivial&& other) noexcept(
+        absl::conjunction<std::is_nothrow_move_constructible<T>...,
+                          std::is_nothrow_move_assignable<T>...>::value) {
+      variant_internal::visit_indices<sizeof...(T)>(
+          VariantCoreAccess::MakeMoveAssignVisitor(this, &other), other.index_);
+      return *this;
+    }
+
+ protected:
+  using Base::index_;
+  using Base::state_;
+};
+
+template <class... T>
+class VariantCopyAssignBaseNontrivial : protected VariantMoveAssignBase<T...> {
+  friend struct VariantCoreAccess;
+
+ private:
+  using Base = VariantMoveAssignBase<T...>;
+
+ protected:
+  using Base::Base;
+
+  VariantCopyAssignBaseNontrivial() = default;
+  VariantCopyAssignBaseNontrivial(VariantCopyAssignBaseNontrivial&&) = default;
+  VariantCopyAssignBaseNontrivial(const VariantCopyAssignBaseNontrivial&) =
+      default;
+  VariantCopyAssignBaseNontrivial& operator=(
+      VariantCopyAssignBaseNontrivial&&) = default;
+
+    VariantCopyAssignBaseNontrivial& operator=(
+        const VariantCopyAssignBaseNontrivial& other) {
+      variant_internal::visit_indices<sizeof...(T)>(
+          VariantCoreAccess::MakeCopyAssignVisitor(this, other), other.index_);
+      return *this;
+    }
+
+ protected:
+  using Base::index_;
+  using Base::state_;
+};
+
+////////////////////////////////////////
+// Visitors for Comparison Operations //
+////////////////////////////////////////
+
+template <class... Types>
+struct EqualsOp {
+  const variant<Types...>* v;
+  const variant<Types...>* w;
+
+  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
+    return true;
+  }
+
+  template <std::size_t I>
+  constexpr bool operator()(SizeT<I> /*v_i*/) const {
+    return VariantCoreAccess::Access<I>(*v) == VariantCoreAccess::Access<I>(*w);
+  }
+};
+
+template <class... Types>
+struct NotEqualsOp {
+  const variant<Types...>* v;
+  const variant<Types...>* w;
+
+  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
+    return false;
+  }
+
+  template <std::size_t I>
+  constexpr bool operator()(SizeT<I> /*v_i*/) const {
+    return VariantCoreAccess::Access<I>(*v) != VariantCoreAccess::Access<I>(*w);
+  }
+};
+
+template <class... Types>
+struct LessThanOp {
+  const variant<Types...>* v;
+  const variant<Types...>* w;
+
+  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
+    return false;
+  }
+
+  template <std::size_t I>
+  constexpr bool operator()(SizeT<I> /*v_i*/) const {
+    return VariantCoreAccess::Access<I>(*v) < VariantCoreAccess::Access<I>(*w);
+  }
+};
+
+template <class... Types>
+struct GreaterThanOp {
+  const variant<Types...>* v;
+  const variant<Types...>* w;
+
+  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
+    return false;
+  }
+
+  template <std::size_t I>
+  constexpr bool operator()(SizeT<I> /*v_i*/) const {
+    return VariantCoreAccess::Access<I>(*v) > VariantCoreAccess::Access<I>(*w);
+  }
+};
+
+template <class... Types>
+struct LessThanOrEqualsOp {
+  const variant<Types...>* v;
+  const variant<Types...>* w;
+
+  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
+    return true;
+  }
+
+  template <std::size_t I>
+  constexpr bool operator()(SizeT<I> /*v_i*/) const {
+    return VariantCoreAccess::Access<I>(*v) <= VariantCoreAccess::Access<I>(*w);
+  }
+};
+
+template <class... Types>
+struct GreaterThanOrEqualsOp {
+  const variant<Types...>* v;
+  const variant<Types...>* w;
+
+  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
+    return true;
+  }
+
+  template <std::size_t I>
+  constexpr bool operator()(SizeT<I> /*v_i*/) const {
+    return VariantCoreAccess::Access<I>(*v) >= VariantCoreAccess::Access<I>(*w);
+  }
+};
+
+// Precondition: v.index() == w.index();
+template <class... Types>
+struct SwapSameIndex {
+  variant<Types...>* v;
+  variant<Types...>* w;
+  template <std::size_t I>
+  void operator()(SizeT<I>) const {
+    using std::swap;
+    swap(VariantCoreAccess::Access<I>(*v), VariantCoreAccess::Access<I>(*w));
+  }
+
+  void operator()(SizeT<variant_npos>) const {}
+};
+
+// TODO(calabrese) do this from a different namespace for proper adl usage
+template <class... Types>
+struct Swap {
+  variant<Types...>* v;
+  variant<Types...>* w;
+
+  void generic_swap() const {
+    variant<Types...> tmp(std::move(*w));
+    VariantCoreAccess::Destroy(*w);
+    VariantCoreAccess::InitFrom(*w, std::move(*v));
+    VariantCoreAccess::Destroy(*v);
+    VariantCoreAccess::InitFrom(*v, std::move(tmp));
+  }
+
+  void operator()(SizeT<absl::variant_npos> /*w_i*/) const {
+    if (!v->valueless_by_exception()) {
+      generic_swap();
+    }
+  }
+
+  template <std::size_t Wi>
+  void operator()(SizeT<Wi> /*w_i*/) {
+    if (v->index() == Wi) {
+      visit_indices<sizeof...(Types)>(SwapSameIndex<Types...>{v, w}, Wi);
+    } else {
+      generic_swap();
+    }
+  }
+};
+
+template <typename Variant, typename = void, typename... Ts>
+struct VariantHashBase {
+  VariantHashBase() = delete;
+  VariantHashBase(const VariantHashBase&) = delete;
+  VariantHashBase(VariantHashBase&&) = delete;
+  VariantHashBase& operator=(const VariantHashBase&) = delete;
+  VariantHashBase& operator=(VariantHashBase&&) = delete;
+};
+
+struct VariantHashVisitor {
+  template <typename T>
+  size_t operator()(const T& t) {
+    return std::hash<T>{}(t);
+  }
+};
+
+template <typename Variant, typename... Ts>
+struct VariantHashBase<Variant,
+                       absl::enable_if_t<absl::conjunction<
+                           type_traits_internal::IsHashEnabled<Ts>...>::value>,
+                       Ts...> {
+  using argument_type = Variant;
+  using result_type = size_t;
+  size_t operator()(const Variant& var) const {
+    if (var.valueless_by_exception()) {
+      return 239799884;
+    }
+    size_t result =
+        variant_internal::visit_indices<variant_size<Variant>::value>(
+            PerformVisitation<VariantHashVisitor, const Variant&>{
+                std::forward_as_tuple(var), VariantHashVisitor{}},
+            var.index());
+    // Combine the index and the hash result in order to distinguish
+    // std::variant<int, int> holding the same value as different alternative.
+    return result ^ var.index();
+  }
+};
+
+}  // namespace variant_internal
+}  // namespace absl
+
+#endif  // ABSL_TYPES_variant_internal_H_