diff options
author | Abseil Team <absl-team@google.com> | 2019-06-21T20·11-0700 |
---|---|---|
committer | Gennadiy Rozental <rogeeff@google.com> | 2019-06-21T20·18-0400 |
commit | e9324d926a9189e222741fce6e676f0944661a72 (patch) | |
tree | a08568a709940c376454da34c9d8aac021378e5f /absl/random/log_uniform_int_distribution_test.cc | |
parent | 43ef2148c0936ebf7cb4be6b19927a9d9d145b8f (diff) |
Export of internal Abseil changes.
-- 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 254454546 -- ff8f9bafaefc26d451f576ea4a06d150aed63f6f by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254451562 -- deefc5b651b479ce36f0b4ef203e119c0c8936f2 by CJ Johnson <johnsoncj@google.com>: Account for subtracting unsigned values from the size of InlinedVector PiperOrigin-RevId: 254450625 -- 3c677316a27bcadc17e41957c809ca472d5fef14 by Andy Soffer <asoffer@google.com>: Add C++17's std::make_from_tuple to absl/utility/utility.h PiperOrigin-RevId: 254411573 -- 4ee3536a918830eeec402a28fc31a62c7c90b940 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for the rest of the InlinedVector public API PiperOrigin-RevId: 254408378 -- e5a21a00700ee83498ff1efbf649169756463ee4 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::shrink_to_fit() to be exception safe and adds exception safety tests for it. PiperOrigin-RevId: 254401387 -- 2ea82e72b86d82d78b4e4712a63a55981b53c64b by Laramie Leavitt <lar@google.com>: Use absl::InsecureBitGen in place of std::mt19937 in tests absl/random/...distribution_test.cc PiperOrigin-RevId: 254289444 -- fa099e02c413a7ffda732415e8105cad26a90337 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254286334 -- ce34b7f36933b30cfa35b9c9a5697a792b5666e4 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254273059 -- 6f9c473da7c2090c2e85a37c5f00622e8a912a89 by Jorg Brown <jorg@google.com>: Change absl::container_internal::CompressedTuple to instantiate its internal Storage class with the name of the type it's holding, rather than the name of the Tuple. This is not an externally-visible change, other than less compiler memory is used and less debug information is generated. PiperOrigin-RevId: 254269285 -- 8bd3c186bf2fc0c55d8a2dd6f28a5327502c9fba by Andy Soffer <asoffer@google.com>: Adding short-hand IntervalClosed for IntervalClosedClosed and IntervalOpen for IntervalOpenOpen. PiperOrigin-RevId: 254252419 -- ea957f99b6a04fccd42aa05605605f3b44b1ecfd by Abseil Team <absl-team@google.com>: Do not directly use __SIZEOF_INT128__. In order to avoid linker errors when building with clang-cl (__fixunsdfti, __udivti3 and __fixunssfti are undefined), this CL uses ABSL_HAVE_INTRINSIC_INT128 which is not defined for clang-cl. PiperOrigin-RevId: 254250739 -- 89ab385cd26b34d64130bce856253aaba96d2345 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254242321 -- cffc793d93eca6d6bdf7de733847b6ab4a255ae9 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for InlinedVector::reserve(size_type) PiperOrigin-RevId: 254199226 -- c90c7a9fa3c8f0c9d5114036979548b055ea2f2a by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 254072387 -- c4c388beae016c9570ab54ffa1d52660e4a85b7b by Laramie Leavitt <lar@google.com>: Internal cleanup. PiperOrigin-RevId: 254062381 -- d3c992e221cc74e5372d0c8fa410170b6a43c062 by Tom Manshreck <shreck@google.com>: Update distributions.h to Abseil standards PiperOrigin-RevId: 254054946 -- d15ad0035c34ef11b14fadc5a4a2d3ec415f5518 by CJ Johnson <johnsoncj@google.com>: Removes functions with only one caller from the implementation details of InlinedVector by manually inlining the definitions PiperOrigin-RevId: 254005427 -- 2f37e807efc3a8ef1f4b539bdd379917d4151520 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253999861 -- 24ed1694b6430791d781ed533a8f8ccf6cac5856 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::assign(...)/InlinedVector::operator=(...) to new, exception-safe implementations with exception safety tests to boot PiperOrigin-RevId: 253993691 -- 5613d95f5a7e34a535cfaeadce801441e990843e by CJ Johnson <johnsoncj@google.com>: Adds benchmarks for InlinedVector::shrink_to_fit() PiperOrigin-RevId: 253989647 -- 2a96ddfdac40bbb8cb6a7f1aeab90917067c6e63 by Abseil Team <absl-team@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253927497 -- bf1aff8fc9ffa921ad74643e9525ecf25b0d8dc1 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253920512 -- bfc03f4a3dcda3cf3a4b84bdb84cda24e3394f41 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 253886486 -- 05036cfcc078ca7c5f581a00dfb0daed568cbb69 by Eric Fiselier <ericwf@google.com>: Don't include `winsock2.h` because it drags in `windows.h` and friends, and they define awful macros like OPAQUE, ERROR, and more. This has the potential to break abseil users. Instead we only forward declare `timeval` and require Windows users include `winsock2.h` themselves. This is both inconsistent and poor QoI, but so including 'windows.h' is bad too. PiperOrigin-RevId: 253852615 GitOrigin-RevId: 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 Change-Id: Icd6aff87da26f29ec8915da856f051129987cef6
Diffstat (limited to 'absl/random/log_uniform_int_distribution_test.cc')
-rw-r--r-- | absl/random/log_uniform_int_distribution_test.cc | 277 |
1 files changed, 277 insertions, 0 deletions
diff --git a/absl/random/log_uniform_int_distribution_test.cc b/absl/random/log_uniform_int_distribution_test.cc new file mode 100644 index 000000000000..0ff4c32d95d6 --- /dev/null +++ b/absl/random/log_uniform_int_distribution_test.cc @@ -0,0 +1,277 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/random/log_uniform_int_distribution.h" + +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <random> +#include <sstream> +#include <string> +#include <vector> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/base/internal/raw_logging.h" +#include "absl/random/internal/chi_square.h" +#include "absl/random/internal/distribution_test_util.h" +#include "absl/random/internal/sequence_urbg.h" +#include "absl/random/random.h" +#include "absl/strings/str_cat.h" +#include "absl/strings/str_format.h" +#include "absl/strings/str_replace.h" +#include "absl/strings/strip.h" + +namespace { + +template <typename IntType> +class LogUniformIntDistributionTypeTest : public ::testing::Test {}; + +using IntTypes = ::testing::Types<int8_t, int16_t, int32_t, int64_t, // + uint8_t, uint16_t, uint32_t, uint64_t>; +TYPED_TEST_CASE(LogUniformIntDistributionTypeTest, IntTypes); + +TYPED_TEST(LogUniformIntDistributionTypeTest, SerializeTest) { + using param_type = + typename absl::log_uniform_int_distribution<TypeParam>::param_type; + using Limits = std::numeric_limits<TypeParam>; + + constexpr int kCount = 1000; + absl::InsecureBitGen gen; + for (const auto& param : { + param_type(0, 1), // + param_type(0, 2), // + param_type(0, 2, 10), // + param_type(9, 32, 4), // + param_type(1, 101, 10), // + param_type(1, Limits::max() / 2), // + param_type(0, Limits::max() - 1), // + param_type(0, Limits::max(), 2), // + param_type(0, Limits::max(), 10), // + param_type(Limits::min(), 0), // + param_type(Limits::lowest(), Limits::max()), // + param_type(Limits::min(), Limits::max()), // + }) { + // Validate parameters. + const auto min = param.min(); + const auto max = param.max(); + const auto base = param.base(); + absl::log_uniform_int_distribution<TypeParam> before(min, max, base); + EXPECT_EQ(before.min(), param.min()); + EXPECT_EQ(before.max(), param.max()); + EXPECT_EQ(before.base(), param.base()); + + { + absl::log_uniform_int_distribution<TypeParam> via_param(param); + EXPECT_EQ(via_param, before); + } + + // Validate stream serialization. + std::stringstream ss; + ss << before; + + absl::log_uniform_int_distribution<TypeParam> after(3, 6, 17); + + EXPECT_NE(before.max(), after.max()); + EXPECT_NE(before.base(), after.base()); + EXPECT_NE(before.param(), after.param()); + EXPECT_NE(before, after); + + ss >> after; + + EXPECT_EQ(before.min(), after.min()); + EXPECT_EQ(before.max(), after.max()); + EXPECT_EQ(before.base(), after.base()); + EXPECT_EQ(before.param(), after.param()); + EXPECT_EQ(before, after); + + // Smoke test. + auto sample_min = after.max(); + auto sample_max = after.min(); + for (int i = 0; i < kCount; i++) { + auto sample = after(gen); + EXPECT_GE(sample, after.min()); + EXPECT_LE(sample, after.max()); + if (sample > sample_max) sample_max = sample; + if (sample < sample_min) sample_min = sample; + } + ABSL_INTERNAL_LOG(INFO, + absl::StrCat("Range: ", +sample_min, ", ", +sample_max)); + } +} + +using log_uniform_i32 = absl::log_uniform_int_distribution<int32_t>; + +class LogUniformIntChiSquaredTest + : public testing::TestWithParam<log_uniform_i32::param_type> { + public: + // The ChiSquaredTestImpl provides a chi-squared goodness of fit test for + // data generated by the log-uniform-int distribution. + double ChiSquaredTestImpl(); + + absl::InsecureBitGen rng_; +}; + +double LogUniformIntChiSquaredTest::ChiSquaredTestImpl() { + using absl::random_internal::kChiSquared; + + const auto& param = GetParam(); + + // Check the distribution of L=log(log_uniform_int_distribution, base), + // expecting that L is roughly uniformly distributed, that is: + // + // P[L=0] ~= P[L=1] ~= ... ~= P[L=log(max)] + // + // For a total of X entries, each bucket should contain some number of samples + // in the interval [X/k - a, X/k + a]. + // + // Where `a` is approximately sqrt(X/k). This is validated by bucketing + // according to the log function and using a chi-squared test for uniformity. + + const bool is_2 = (param.base() == 2); + const double base_log = 1.0 / std::log(param.base()); + const auto bucket_index = [base_log, is_2, ¶m](int32_t x) { + uint64_t y = static_cast<uint64_t>(x) - param.min(); + return (y == 0) ? 0 + : is_2 ? static_cast<int>(1 + std::log2(y)) + : static_cast<int>(1 + std::log(y) * base_log); + }; + const int max_bucket = bucket_index(param.max()); // inclusive + const size_t trials = 15 + (max_bucket + 1) * 10; + + log_uniform_i32 dist(param); + + std::vector<int64_t> buckets(max_bucket + 1); + for (size_t i = 0; i < trials; ++i) { + const auto sample = dist(rng_); + // Check the bounds. + ABSL_ASSERT(sample <= dist.max()); + ABSL_ASSERT(sample >= dist.min()); + // Convert the output of the generator to one of num_bucket buckets. + int bucket = bucket_index(sample); + ABSL_ASSERT(bucket <= max_bucket); + ++buckets[bucket]; + } + + // The null-hypothesis is that the distribution is uniform with respect to + // log-uniform-int bucketization. + const int dof = buckets.size() - 1; + const double expected = trials / static_cast<double>(buckets.size()); + + const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98); + + double chi_square = absl::random_internal::ChiSquareWithExpected( + std::begin(buckets), std::end(buckets), expected); + + const double p = absl::random_internal::ChiSquarePValue(chi_square, dof); + + if (chi_square > threshold) { + ABSL_INTERNAL_LOG(INFO, "values"); + for (size_t i = 0; i < buckets.size(); i++) { + ABSL_INTERNAL_LOG(INFO, absl::StrCat(i, ": ", buckets[i])); + } + ABSL_INTERNAL_LOG(INFO, + absl::StrFormat("trials=%d\n" + "%s(data, %d) = %f (%f)\n" + "%s @ 0.98 = %f", + trials, kChiSquared, dof, chi_square, p, + kChiSquared, threshold)); + } + return p; +} + +TEST_P(LogUniformIntChiSquaredTest, MultiTest) { + const int kTrials = 5; + + int failures = 0; + for (int i = 0; i < kTrials; i++) { + double p_value = ChiSquaredTestImpl(); + if (p_value < 0.005) { + failures++; + } + } + + // There is a 0.10% chance of producing at least one failure, so raise the + // failure threshold high enough to allow for a flake rate < 10,000. + EXPECT_LE(failures, 4); +} + +// Generate the parameters for the test. +std::vector<log_uniform_i32::param_type> GenParams() { + using Param = log_uniform_i32::param_type; + using Limits = std::numeric_limits<int32_t>; + + return std::vector<Param>{ + Param{0, 1, 2}, + Param{1, 1, 2}, + Param{0, 2, 2}, + Param{0, 3, 2}, + Param{0, 4, 2}, + Param{0, 9, 10}, + Param{0, 10, 10}, + Param{0, 11, 10}, + Param{1, 10, 10}, + Param{0, (1 << 8) - 1, 2}, + Param{0, (1 << 8), 2}, + Param{0, (1 << 30) - 1, 2}, + Param{-1000, 1000, 10}, + Param{0, Limits::max(), 2}, + Param{0, Limits::max(), 3}, + Param{0, Limits::max(), 10}, + Param{Limits::min(), 0}, + Param{Limits::min(), Limits::max(), 2}, + }; +} + +std::string ParamName( + const ::testing::TestParamInfo<log_uniform_i32::param_type>& info) { + const auto& p = info.param; + std::string name = + absl::StrCat("min_", p.min(), "__max_", p.max(), "__base_", p.base()); + return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}}); +} + +INSTANTIATE_TEST_SUITE_P(, LogUniformIntChiSquaredTest, + ::testing::ValuesIn(GenParams()), ParamName); + +// NOTE: absl::log_uniform_int_distribution is not guaranteed to be stable. +TEST(LogUniformIntDistributionTest, StabilityTest) { + using testing::ElementsAre; + // absl::uniform_int_distribution stability relies on + // absl::random_internal::LeadingSetBit, std::log, std::pow. + absl::random_internal::sequence_urbg urbg( + {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, + 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, + 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, + 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); + + std::vector<int> output(6); + + { + absl::log_uniform_int_distribution<int32_t> dist(0, 256); + std::generate(std::begin(output), std::end(output), + [&] { return dist(urbg); }); + EXPECT_THAT(output, ElementsAre(256, 66, 4, 6, 57, 103)); + } + urbg.reset(); + { + absl::log_uniform_int_distribution<int32_t> dist(0, 256, 10); + std::generate(std::begin(output), std::end(output), + [&] { return dist(urbg); }); + EXPECT_THAT(output, ElementsAre(8, 4, 0, 0, 0, 69)); + } +} + +} // namespace |