about summary refs log tree commit diff
path: root/absl/random/discrete_distribution.h
diff options
context:
space:
mode:
authorAbseil Team <absl-team@google.com>2019-06-21T20·11-0700
committerGennadiy Rozental <rogeeff@google.com>2019-06-21T20·18-0400
commite9324d926a9189e222741fce6e676f0944661a72 (patch)
treea08568a709940c376454da34c9d8aac021378e5f /absl/random/discrete_distribution.h
parent43ef2148c0936ebf7cb4be6b19927a9d9d145b8f (diff)
Export of internal Abseil changes.
--
7a6ff16a85beb730c172d5d25cf1b5e1be885c56 by Laramie Leavitt <lar@google.com>:

Internal change.

PiperOrigin-RevId: 254454546

--
ff8f9bafaefc26d451f576ea4a06d150aed63f6f by Andy Soffer <asoffer@google.com>:

Internal changes

PiperOrigin-RevId: 254451562

--
deefc5b651b479ce36f0b4ef203e119c0c8936f2 by CJ Johnson <johnsoncj@google.com>:

Account for subtracting unsigned values from the size of InlinedVector

PiperOrigin-RevId: 254450625

--
3c677316a27bcadc17e41957c809ca472d5fef14 by Andy Soffer <asoffer@google.com>:

Add C++17's std::make_from_tuple to absl/utility/utility.h

PiperOrigin-RevId: 254411573

--
4ee3536a918830eeec402a28fc31a62c7c90b940 by CJ Johnson <johnsoncj@google.com>:

Adds benchmark for the rest of the InlinedVector public API

PiperOrigin-RevId: 254408378

--
e5a21a00700ee83498ff1efbf649169756463ee4 by CJ Johnson <johnsoncj@google.com>:

Updates the definition of InlinedVector::shrink_to_fit() to be exception safe and adds exception safety tests for it.

PiperOrigin-RevId: 254401387

--
2ea82e72b86d82d78b4e4712a63a55981b53c64b by Laramie Leavitt <lar@google.com>:

Use absl::InsecureBitGen in place of std::mt19937
in tests absl/random/...distribution_test.cc

PiperOrigin-RevId: 254289444

--
fa099e02c413a7ffda732415e8105cad26a90337 by Andy Soffer <asoffer@google.com>:

Internal changes

PiperOrigin-RevId: 254286334

--
ce34b7f36933b30cfa35b9c9a5697a792b5666e4 by Andy Soffer <asoffer@google.com>:

Internal changes

PiperOrigin-RevId: 254273059

--
6f9c473da7c2090c2e85a37c5f00622e8a912a89 by Jorg Brown <jorg@google.com>:

Change absl::container_internal::CompressedTuple to instantiate its
internal Storage class with the name of the type it's holding, rather
than the name of the Tuple.  This is not an externally-visible change,
other than less compiler memory is used and less debug information is
generated.

PiperOrigin-RevId: 254269285

--
8bd3c186bf2fc0c55d8a2dd6f28a5327502c9fba by Andy Soffer <asoffer@google.com>:

Adding short-hand IntervalClosed for IntervalClosedClosed and IntervalOpen for
IntervalOpenOpen.

PiperOrigin-RevId: 254252419

--
ea957f99b6a04fccd42aa05605605f3b44b1ecfd by Abseil Team <absl-team@google.com>:

Do not directly use __SIZEOF_INT128__.

In order to avoid linker errors when building with clang-cl (__fixunsdfti, __udivti3 and __fixunssfti are undefined), this CL uses ABSL_HAVE_INTRINSIC_INT128 which is not defined for clang-cl.

PiperOrigin-RevId: 254250739

--
89ab385cd26b34d64130bce856253aaba96d2345 by Andy Soffer <asoffer@google.com>:

Internal changes

PiperOrigin-RevId: 254242321

--
cffc793d93eca6d6bdf7de733847b6ab4a255ae9 by CJ Johnson <johnsoncj@google.com>:

Adds benchmark for InlinedVector::reserve(size_type)

PiperOrigin-RevId: 254199226

--
c90c7a9fa3c8f0c9d5114036979548b055ea2f2a by Gennadiy Rozental <rogeeff@google.com>:

Import of CCTZ from GitHub.

PiperOrigin-RevId: 254072387

--
c4c388beae016c9570ab54ffa1d52660e4a85b7b by Laramie Leavitt <lar@google.com>:

Internal cleanup.

PiperOrigin-RevId: 254062381

--
d3c992e221cc74e5372d0c8fa410170b6a43c062 by Tom Manshreck <shreck@google.com>:

Update distributions.h to Abseil standards

PiperOrigin-RevId: 254054946

--
d15ad0035c34ef11b14fadc5a4a2d3ec415f5518 by CJ Johnson <johnsoncj@google.com>:

Removes functions with only one caller from the implementation details of InlinedVector by manually inlining the definitions

PiperOrigin-RevId: 254005427

--
2f37e807efc3a8ef1f4b539bdd379917d4151520 by Andy Soffer <asoffer@google.com>:

Initial release of Abseil Random

PiperOrigin-RevId: 253999861

--
24ed1694b6430791d781ed533a8f8ccf6cac5856 by CJ Johnson <johnsoncj@google.com>:

Updates the definition of InlinedVector::assign(...)/InlinedVector::operator=(...) to new, exception-safe implementations with exception safety tests to boot

PiperOrigin-RevId: 253993691

--
5613d95f5a7e34a535cfaeadce801441e990843e by CJ Johnson <johnsoncj@google.com>:

Adds benchmarks for InlinedVector::shrink_to_fit()

PiperOrigin-RevId: 253989647

--
2a96ddfdac40bbb8cb6a7f1aeab90917067c6e63 by Abseil Team <absl-team@google.com>:

Initial release of Abseil Random

PiperOrigin-RevId: 253927497

--
bf1aff8fc9ffa921ad74643e9525ecf25b0d8dc1 by Andy Soffer <asoffer@google.com>:

Initial release of Abseil Random

PiperOrigin-RevId: 253920512

--
bfc03f4a3dcda3cf3a4b84bdb84cda24e3394f41 by Laramie Leavitt <lar@google.com>:

Internal change.

PiperOrigin-RevId: 253886486

--
05036cfcc078ca7c5f581a00dfb0daed568cbb69 by Eric Fiselier <ericwf@google.com>:

Don't include `winsock2.h` because it drags in `windows.h` and friends,
and they define awful macros like OPAQUE, ERROR, and more. This has the
potential to break abseil users.

Instead we only forward declare `timeval` and require Windows users
include `winsock2.h` themselves. This is both inconsistent and poor QoI, but so
including 'windows.h' is bad too.

PiperOrigin-RevId: 253852615
GitOrigin-RevId: 7a6ff16a85beb730c172d5d25cf1b5e1be885c56
Change-Id: Icd6aff87da26f29ec8915da856f051129987cef6
Diffstat (limited to 'absl/random/discrete_distribution.h')
-rw-r--r--absl/random/discrete_distribution.h245
1 files changed, 245 insertions, 0 deletions
diff --git a/absl/random/discrete_distribution.h b/absl/random/discrete_distribution.h
new file mode 100644
index 000000000000..1560f03c5fdd
--- /dev/null
+++ b/absl/random/discrete_distribution.h
@@ -0,0 +1,245 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
+#define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
+
+#include <cassert>
+#include <cmath>
+#include <istream>
+#include <limits>
+#include <numeric>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+#include "absl/random/bernoulli_distribution.h"
+#include "absl/random/internal/iostream_state_saver.h"
+#include "absl/random/uniform_int_distribution.h"
+
+namespace absl {
+
+// absl::discrete_distribution
+//
+// A discrete distribution produces random integers i, where 0 <= i < n
+// distributed according to the discrete probability function:
+//
+//     P(i|p0,...,pn−1)=pi
+//
+// This class is an implementation of discrete_distribution (see
+// [rand.dist.samp.discrete]).
+//
+// The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
+// absl::discrete_distribution takes O(N) time to precompute the probabilities
+// (where N is the number of possible outcomes in the distribution) at
+// construction, and then takes O(1) time for each variate generation.  Many
+// other implementations also take O(N) time to construct an ordered sequence of
+// partial sums, plus O(log N) time per variate to binary search.
+//
+template <typename IntType = int>
+class discrete_distribution {
+ public:
+  using result_type = IntType;
+
+  class param_type {
+   public:
+    using distribution_type = discrete_distribution;
+
+    param_type() { init(); }
+
+    template <typename InputIterator>
+    explicit param_type(InputIterator begin, InputIterator end)
+        : p_(begin, end) {
+      init();
+    }
+
+    explicit param_type(std::initializer_list<double> weights) : p_(weights) {
+      init();
+    }
+
+    template <class UnaryOperation>
+    explicit param_type(size_t nw, double xmin, double xmax,
+                        UnaryOperation fw) {
+      if (nw > 0) {
+        p_.reserve(nw);
+        double delta = (xmax - xmin) / static_cast<double>(nw);
+        assert(delta > 0);
+        double t = delta * 0.5;
+        for (size_t i = 0; i < nw; ++i) {
+          p_.push_back(fw(xmin + i * delta + t));
+        }
+      }
+      init();
+    }
+
+    const std::vector<double>& probabilities() const { return p_; }
+    size_t n() const { return p_.size() - 1; }
+
+    friend bool operator==(const param_type& a, const param_type& b) {
+      return a.probabilities() == b.probabilities();
+    }
+
+    friend bool operator!=(const param_type& a, const param_type& b) {
+      return !(a == b);
+    }
+
+   private:
+    friend class discrete_distribution;
+
+    void init();
+
+    std::vector<double> p_;                     // normalized probabilities
+    std::vector<std::pair<double, size_t>> q_;  // (acceptance, alternate) pairs
+
+    static_assert(std::is_integral<result_type>::value,
+                  "Class-template absl::discrete_distribution<> must be "
+                  "parameterized using an integral type.");
+  };
+
+  discrete_distribution() : param_() {}
+
+  explicit discrete_distribution(const param_type& p) : param_(p) {}
+
+  template <typename InputIterator>
+  explicit discrete_distribution(InputIterator begin, InputIterator end)
+      : param_(begin, end) {}
+
+  explicit discrete_distribution(std::initializer_list<double> weights)
+      : param_(weights) {}
+
+  template <class UnaryOperation>
+  explicit discrete_distribution(size_t nw, double xmin, double xmax,
+                                 UnaryOperation fw)
+      : param_(nw, xmin, xmax, std::move(fw)) {}
+
+  void reset() {}
+
+  // generating functions
+  template <typename URBG>
+  result_type operator()(URBG& g) {  // NOLINT(runtime/references)
+    return (*this)(g, param_);
+  }
+
+  template <typename URBG>
+  result_type operator()(URBG& g,  // NOLINT(runtime/references)
+                         const param_type& p);
+
+  const param_type& param() const { return param_; }
+  void param(const param_type& p) { param_ = p; }
+
+  result_type(min)() const { return 0; }
+  result_type(max)() const {
+    return static_cast<result_type>(param_.n());
+  }  // inclusive
+
+  // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
+  // const std::vector<double>&.
+  const std::vector<double>& probabilities() const {
+    return param_.probabilities();
+  }
+
+  friend bool operator==(const discrete_distribution& a,
+                         const discrete_distribution& b) {
+    return a.param_ == b.param_;
+  }
+  friend bool operator!=(const discrete_distribution& a,
+                         const discrete_distribution& b) {
+    return a.param_ != b.param_;
+  }
+
+ private:
+  param_type param_;
+};
+
+// --------------------------------------------------------------------------
+// Implementation details only below
+// --------------------------------------------------------------------------
+
+namespace random_internal {
+
+// Using the vector `*probabilities`, whose values are the weights or
+// probabilities of an element being selected, constructs the proportional
+// probabilities used by the discrete distribution.  `*probabilities` will be
+// scaled, if necessary, so that its entries sum to a value sufficiently close
+// to 1.0.
+std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
+    std::vector<double>* probabilities);
+
+}  // namespace random_internal
+
+template <typename IntType>
+void discrete_distribution<IntType>::param_type::init() {
+  if (p_.empty()) {
+    p_.push_back(1.0);
+    q_.emplace_back(1.0, 0);
+  } else {
+    assert(n() <= (std::numeric_limits<IntType>::max)());
+    q_ = random_internal::InitDiscreteDistribution(&p_);
+  }
+}
+
+template <typename IntType>
+template <typename URBG>
+typename discrete_distribution<IntType>::result_type
+discrete_distribution<IntType>::operator()(
+    URBG& g,  // NOLINT(runtime/references)
+    const param_type& p) {
+  const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
+  const auto& q = p.q_[idx];
+  const bool selected = absl::bernoulli_distribution(q.first)(g);
+  return selected ? idx : static_cast<result_type>(q.second);
+}
+
+template <typename CharT, typename Traits, typename IntType>
+std::basic_ostream<CharT, Traits>& operator<<(
+    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
+    const discrete_distribution<IntType>& x) {
+  auto saver = random_internal::make_ostream_state_saver(os);
+  const auto& probabilities = x.param().probabilities();
+  os << probabilities.size();
+
+  os.precision(random_internal::stream_precision_helper<double>::kPrecision);
+  for (const auto& p : probabilities) {
+    os << os.fill() << p;
+  }
+  return os;
+}
+
+template <typename CharT, typename Traits, typename IntType>
+std::basic_istream<CharT, Traits>& operator>>(
+    std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
+    discrete_distribution<IntType>& x) {    // NOLINT(runtime/references)
+  using param_type = typename discrete_distribution<IntType>::param_type;
+  auto saver = random_internal::make_istream_state_saver(is);
+
+  size_t n;
+  std::vector<double> p;
+
+  is >> n;
+  if (is.fail()) return is;
+  if (n > 0) {
+    p.reserve(n);
+    for (IntType i = 0; i < n && !is.fail(); ++i) {
+      auto tmp = random_internal::read_floating_point<double>(is);
+      if (is.fail()) return is;
+      p.push_back(tmp);
+    }
+  }
+  x.param(param_type(p.begin(), p.end()));
+  return is;
+}
+
+}  // namespace absl
+
+#endif  // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_