diff options
author | Abseil Team <absl-team@google.com> | 2018-09-27T19·24-0700 |
---|---|---|
committer | Derek Mauro <dmauro@google.com> | 2018-09-27T19·28-0400 |
commit | 48cd2c3f351ff188bc85684b84a91b6e6d17d896 (patch) | |
tree | 6f92b0cbb0f8282b7df1cd567cb66406fbbb6f80 /absl/container/node_hash_set.h | |
parent | e291c279e458761e77a69b09b129d3d1e81f1e80 (diff) |
Export of internal Abseil changes.
-- 4eacae3ff1b14b1d309e8092185bc10e8a6203cf by Derek Mauro <dmauro@google.com>: Release SwissTable - a fast, efficient, cache-friendly hash table. https://www.youtube.com/watch?v=ncHmEUmJZf4 PiperOrigin-RevId: 214816527 -- df8c3dfab3cfb2f4365909a84d0683b193cfbb11 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 214785288 -- 1eabd5266bbcebc33eecc91e5309b751856a75c8 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 214722931 -- 2ebbfac950f83146b46253038e7dd7dcde9f2951 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 214701684 GitOrigin-RevId: 4eacae3ff1b14b1d309e8092185bc10e8a6203cf Change-Id: I9ba64e395b22ad7863213d157b8019b082adc19d
Diffstat (limited to 'absl/container/node_hash_set.h')
-rw-r--r-- | absl/container/node_hash_set.h | 439 |
1 files changed, 439 insertions, 0 deletions
diff --git a/absl/container/node_hash_set.h b/absl/container/node_hash_set.h new file mode 100644 index 000000000000..927a454cffbe --- /dev/null +++ b/absl/container/node_hash_set.h @@ -0,0 +1,439 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// ----------------------------------------------------------------------------- +// File: node_hash_set.h +// ----------------------------------------------------------------------------- +// +// An `absl::node_hash_set<T>` is an unordered associative container designed to +// be a more efficient replacement for `std::unordered_set`. Like +// `unordered_set`, search, insertion, and deletion of map elements can be done +// as an `O(1)` operation. However, `node_hash_set` (and other unordered +// associative containers known as the collection of Abseil "Swiss tables") +// contain other optimizations that result in both memory and computation +// advantages. +// +// In most cases, your default choice for a hash table should be a map of type +// `flat_hash_map` or a set of type `flat_hash_set`. However, if you need +// pointer stability, a `node_hash_set` should be your preferred choice. As +// well, if you are migrating your code from using `std::unordered_set`, a +// `node_hash_set` should be an easy migration. Consider migrating to +// `node_hash_set` and perhaps converting to a more efficient `flat_hash_set` +// upon further review. + +#ifndef ABSL_CONTAINER_NODE_HASH_SET_H_ +#define ABSL_CONTAINER_NODE_HASH_SET_H_ + +#include <type_traits> + +#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export +#include "absl/container/internal/node_hash_policy.h" +#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export +#include "absl/memory/memory.h" + +namespace absl { +namespace container_internal { +template <typename T> +struct NodeHashSetPolicy; +} // namespace container_internal + +// ----------------------------------------------------------------------------- +// absl::node_hash_set +// ----------------------------------------------------------------------------- +// +// An `absl::node_hash_set<T>` is an unordered associative container which +// has been optimized for both speed and memory footprint in most common use +// cases. Its interface is similar to that of `std::unordered_set<T>` with the +// following notable differences: +// +// * Supports heterogeneous lookup, through `find()`, `operator[]()` and +// `insert()`, provided that the map is provided a compatible heterogeneous +// hashing function and equality operator. +// * Contains a `capacity()` member function indicating the number of element +// slots (open, deleted, and empty) within the hash set. +// * Returns `void` from the `erase(iterator)` overload. +// +// By default, `node_hash_set` uses the `absl::Hash` hashing framework. +// All fundamental and Abseil types that support the `absl::Hash` framework have +// a compatible equality operator for comparing insertions into `node_hash_set`. +// If your type is not yet supported by the `asbl::Hash` framework, see +// absl/hash/hash.h for information on extending Abseil hashing to user-defined +// types. +// +// Example: +// +// // Create a node hash set of three strings +// absl::node_hash_map<std::string, std::string> ducks = +// {"huey", "dewey"}, "louie"}; +// +// // Insert a new element into the node hash map +// ducks.insert("donald"}; +// +// // Force a rehash of the node hash map +// ducks.rehash(0); +// +// // See if "dewey" is present +// if (ducks.contains("dewey")) { +// std::cout << "We found dewey!" << std::endl; +// } +template <class T, class Hash = absl::container_internal::hash_default_hash<T>, + class Eq = absl::container_internal::hash_default_eq<T>, + class Alloc = std::allocator<T>> +class node_hash_set + : public absl::container_internal::raw_hash_set< + absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> { + using Base = typename node_hash_set::raw_hash_set; + + public: + node_hash_set() {} + using Base::Base; + + // node_hash_set::begin() + // + // Returns an iterator to the beginning of the `node_hash_set`. + using Base::begin; + + // node_hash_set::cbegin() + // + // Returns a const iterator to the beginning of the `node_hash_set`. + using Base::cbegin; + + // node_hash_set::cend() + // + // Returns a const iterator to the end of the `node_hash_set`. + using Base::cend; + + // node_hash_set::end() + // + // Returns an iterator to the end of the `node_hash_set`. + using Base::end; + + // node_hash_set::capacity() + // + // Returns the number of element slots (assigned, deleted, and empty) + // available within the `node_hash_set`. + // + // NOTE: this member function is particular to `absl::node_hash_set` and is + // not provided in the `std::unordered_map` API. + using Base::capacity; + + // node_hash_set::empty() + // + // Returns whether or not the `node_hash_set` is empty. + using Base::empty; + + // node_hash_set::max_size() + // + // Returns the largest theoretical possible number of elements within a + // `node_hash_set` under current memory constraints. This value can be thought + // of the largest value of `std::distance(begin(), end())` for a + // `node_hash_set<T>`. + using Base::max_size; + + // node_hash_set::size() + // + // Returns the number of elements currently within the `node_hash_set`. + using Base::size; + + // node_hash_set::clear() + // + // Removes all elements from the `node_hash_set`. Invalidates any references, + // pointers, or iterators referring to contained elements. + // + // NOTE: this operation may shrink the underlying buffer. To avoid shrinking + // the underlying buffer call `erase(begin(), end())`. + using Base::clear; + + // node_hash_set::erase() + // + // Erases elements within the `node_hash_set`. Erasing does not trigger a + // rehash. Overloads are listed below. + // + // void erase(const_iterator pos): + // + // Erases the element at `position` of the `node_hash_set`, returning + // `void`. + // + // NOTE: this return behavior is different than that of STL containers in + // general and `std::unordered_map` in particular. + // + // iterator erase(const_iterator first, const_iterator last): + // + // Erases the elements in the open interval [`first`, `last`), returning an + // iterator pointing to `last`. + // + // size_type erase(const key_type& key): + // + // Erases the element with the matching key, if it exists. + using Base::erase; + + // node_hash_set::insert() + // + // Inserts an element of the specified value into the `node_hash_set`, + // returning an iterator pointing to the newly inserted element, provided that + // an element with the given key does not already exist. If rehashing occurs + // due to the insertion, all iterators are invalidated. Overloads are listed + // below. + // + // std::pair<iterator,bool> insert(const T& value): + // + // Inserts a value into the `node_hash_set`. Returns a pair consisting of an + // iterator to the inserted element (or to the element that prevented the + // insertion) and a bool denoting whether the insertion took place. + // + // std::pair<iterator,bool> insert(T&& value): + // + // Inserts a moveable value into the `node_hash_set`. Returns a pair + // consisting of an iterator to the inserted element (or to the element that + // prevented the insertion) and a bool denoting whether the insertion took + // place. + // + // iterator insert(const_iterator hint, const T& value): + // iterator insert(const_iterator hint, T&& value): + // + // Inserts a value, using the position of `hint` as a non-binding suggestion + // for where to begin the insertion search. Returns an iterator to the + // inserted element, or to the existing element that prevented the + // insertion. + // + // void insert(InputIterator first, InputIterator last ): + // + // Inserts a range of values [`first`, `last`). + // + // NOTE: Although the STL does not specify which element may be inserted if + // multiple keys compare equivalently, for `node_hash_set` we guarantee the + // first match is inserted. + // + // void insert(std::initializer_list<T> ilist ): + // + // Inserts the elements within the initializer list `ilist`. + // + // NOTE: Although the STL does not specify which element may be inserted if + // multiple keys compare equivalently within the initializer list, for + // `node_hash_set` we guarantee the first match is inserted. + using Base::insert; + + // node_hash_set::emplace() + // + // Inserts an element of the specified value by constructing it in-place + // within the `node_hash_set`, provided that no element with the given key + // already exists. + // + // The element may be constructed even if there already is an element with the + // key in the container, in which case the newly constructed element will be + // destroyed immediately. Prefer `try_emplace()` unless your key is not + // copyable or moveable. + // + // If rehashing occurs due to the insertion, all iterators are invalidated. + using Base::emplace; + + // node_hash_set::emplace_hint() + // + // Inserts an element of the specified value by constructing it in-place + // within the `node_hash_set`, using the position of `hint` as a non-binding + // suggestion for where to begin the insertion search, and only inserts + // provided that no element with the given key already exists. + // + // The element may be constructed even if there already is an element with the + // key in the container, in which case the newly constructed element will be + // destroyed immediately. Prefer `try_emplace()` unless your key is not + // copyable or moveable. + // + // If rehashing occurs due to the insertion, all iterators are invalidated. + using Base::emplace_hint; + + // node_hash_set::extract() + // + // Extracts the indicated element, erasing it in the process, and returns it + // as a C++17-compatible node handle. Overloads are listed below. + // + // node_type extract(const_iterator position): + // + // Extracts the element at the indicated position and returns a node handle + // owning that extracted data. + // + // node_type extract(const key_type& x): + // + // Extracts the element with the key matching the passed key value and + // returns a node handle owning that extracted data. If the `node_hash_set` + // does not contain an element with a matching key, this function returns an + // empty node handle. + using Base::extract; + + // node_hash_set::merge() + // + // Extracts elements from a given `source` flat hash map into this + // `node_hash_set`. If the destination `node_hash_set` already contains an + // element with an equivalent key, that element is not extracted. + using Base::merge; + + // node_hash_set::swap(node_hash_set& other) + // + // Exchanges the contents of this `node_hash_set` with those of the `other` + // flat hash map, avoiding invocation of any move, copy, or swap operations on + // individual elements. + // + // All iterators and references on the `node_hash_set` remain valid, excepting + // for the past-the-end iterator, which is invalidated. + // + // `swap()` requires that the flat hash set's hashing and key equivalence + // functions be Swappable, and are exchaged using unqualified calls to + // non-member `swap()`. If the map's allocator has + // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value` + // set to `true`, the allocators are also exchanged using an unqualified call + // to non-member `swap()`; otherwise, the allocators are not swapped. + using Base::swap; + + // node_hash_set::rehash(count) + // + // Rehashes the `node_hash_set`, setting the number of slots to be at least + // the passed value. If the new number of slots increases the load factor more + // than the current maximum load factor + // (`count` < `size()` / `max_load_factor()`), then the new number of slots + // will be at least `size()` / `max_load_factor()`. + // + // To force a rehash, pass rehash(0). + // + // NOTE: unlike behavior in `std::unordered_set`, references are also + // invalidated upon a `rehash()`. + using Base::rehash; + + // node_hash_set::reserve(count) + // + // Sets the number of slots in the `node_hash_set` to the number needed to + // accommodate at least `count` total elements without exceeding the current + // maximum load factor, and may rehash the container if needed. + using Base::reserve; + + // node_hash_set::contains() + // + // Determines whether an element comparing equal to the given `key` exists + // within the `node_hash_set`, returning `true` if so or `false` otherwise. + using Base::contains; + + // node_hash_set::count(const Key& key) const + // + // Returns the number of elements comparing equal to the given `key` within + // the `node_hash_set`. note that this function will return either `1` or `0` + // since duplicate elements are not allowed within a `node_hash_set`. + using Base::count; + + // node_hash_set::equal_range() + // + // Returns a closed range [first, last], defined by a `std::pair` of two + // iterators, containing all elements with the passed key in the + // `node_hash_set`. + using Base::equal_range; + + // node_hash_set::find() + // + // Finds an element with the passed `key` within the `node_hash_set`. + using Base::find; + + // node_hash_set::bucket_count() + // + // Returns the number of "buckets" within the `node_hash_set`. Note that + // because a flat hash map contains all elements within its internal storage, + // this value simply equals the current capacity of the `node_hash_set`. + using Base::bucket_count; + + // node_hash_set::load_factor() + // + // Returns the current load factor of the `node_hash_set` (the average number + // of slots occupied with a value within the hash map). + using Base::load_factor; + + // node_hash_set::max_load_factor() + // + // Manages the maximum load factor of the `node_hash_set`. Overloads are + // listed below. + // + // float node_hash_set::max_load_factor() + // + // Returns the current maximum load factor of the `node_hash_set`. + // + // void node_hash_set::max_load_factor(float ml) + // + // Sets the maximum load factor of the `node_hash_set` to the passed value. + // + // NOTE: This overload is provided only for API compatibility with the STL; + // `node_hash_set` will ignore any set load factor and manage its rehashing + // internally as an implementation detail. + using Base::max_load_factor; + + // node_hash_set::get_allocator() + // + // Returns the allocator function associated with this `node_hash_set`. + using Base::get_allocator; + + // node_hash_set::hash_function() + // + // Returns the hashing function used to hash the keys within this + // `node_hash_set`. + using Base::hash_function; + + // node_hash_set::key_eq() + // + // Returns the function used for comparing keys equality. + using Base::key_eq; + + ABSL_DEPRECATED("Call `hash_function()` instead.") + typename Base::hasher hash_funct() { return this->hash_function(); } + + ABSL_DEPRECATED("Call `rehash()` instead.") + void resize(typename Base::size_type hint) { this->rehash(hint); } +}; + +namespace container_internal { + +template <class T> +struct NodeHashSetPolicy + : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> { + using key_type = T; + using init_type = T; + using constant_iterators = std::true_type; + + template <class Allocator, class... Args> + static T* new_element(Allocator* alloc, Args&&... args) { + using ValueAlloc = + typename absl::allocator_traits<Allocator>::template rebind_alloc<T>; + ValueAlloc value_alloc(*alloc); + T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1); + absl::allocator_traits<ValueAlloc>::construct(value_alloc, res, + std::forward<Args>(args)...); + return res; + } + + template <class Allocator> + static void delete_element(Allocator* alloc, T* elem) { + using ValueAlloc = + typename absl::allocator_traits<Allocator>::template rebind_alloc<T>; + ValueAlloc value_alloc(*alloc); + absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem); + absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1); + } + + template <class F, class... Args> + static decltype(absl::container_internal::DecomposeValue( + std::declval<F>(), std::declval<Args>()...)) + apply(F&& f, Args&&... args) { + return absl::container_internal::DecomposeValue( + std::forward<F>(f), std::forward<Args>(args)...); + } + + static size_t element_space_used(const T*) { return sizeof(T); } +}; +} // namespace container_internal +} // namespace absl +#endif // ABSL_CONTAINER_NODE_HASH_SET_H_ |