about summary refs log tree commit diff
diff options
context:
space:
mode:
authorVincent Ambo <tazjin@google.com>2019-08-11T15·44+0100
committerVincent Ambo <github@tazj.in>2019-08-13T23·02+0100
commitce31598f4264a3c8af749b3fd533a905dcd69edc (patch)
treed37c58fa44831879c9791f60690f089234c179dd
parent3e385dc379de4a1e8dd619a7a47714925e99490a (diff)
feat(group-layers): Implement first half of new layering strategy
The strategy is described in-depth in the comment at the top of the
implementation file, as well as in the design document:

https://storage.googleapis.com/nixdoc/nixery-layers.html
-rw-r--r--tools/nixery/group-layers/group-layers.go267
1 files changed, 267 insertions, 0 deletions
diff --git a/tools/nixery/group-layers/group-layers.go b/tools/nixery/group-layers/group-layers.go
new file mode 100644
index 000000000000..1ee67433deeb
--- /dev/null
+++ b/tools/nixery/group-layers/group-layers.go
@@ -0,0 +1,267 @@
+// This program reads an export reference graph (i.e. a graph representing the
+// runtime dependencies of a set of derivations) created by Nix and groups them
+// in a way that is likely to match the grouping for other derivation sets with
+// overlapping dependencies.
+//
+// This is used to determine which derivations to include in which layers of a
+// container image.
+//
+// # Inputs
+//
+// * a graph of Nix runtime dependencies, generated via exportReferenceGraph
+// * a file containing absolute popularity values of packages in the
+//   Nix package set (in the form of a direct reference count)
+// * a maximum number of layers to allocate for the image (the "layer budget")
+//
+// # Algorithm
+//
+// It works by first creating a (directed) dependency tree:
+//
+// img (root node)
+// │
+// ├───> A ─────┐
+// │            v
+// ├───> B ───> E
+// │            ^
+// ├───> C ─────┘
+// │     │
+// │     v
+// └───> D ───> F
+//       │
+//       └────> G
+//
+// Each node (i.e. package) is then visited to determine how important
+// it is to separate this node into its own layer, specifically:
+//
+// 1. Is the node within a certain threshold percentile of absolute
+//    popularity within all of nixpkgs? (e.g. `glibc`, `openssl`)
+//
+// 2. Is the node's runtime closure above a threshold size? (e.g. 100MB)
+//
+// In either case, a bit is flipped for this node representing each
+// condition and an edge to it is inserted directly from the image
+// root, if it does not already exist.
+//
+// For the rest of the example we assume 'G' is above the threshold
+// size and 'E' is popular.
+//
+// This tree is then transformed into a dominator tree:
+//
+// img
+// │
+// ├───> A
+// ├───> B
+// ├───> C
+// ├───> E
+// ├───> D ───> F
+// └───> G
+//
+// Specifically this means that the paths to A, B, C, E, G, and D
+// always pass through the root (i.e. are dominated by it), whilst F
+// is dominated by D (all paths go through it).
+//
+// The top-level subtrees are considered as the initially selected
+// layers.
+//
+// If the list of layers fits within the layer budget, it is returned.
+//
+// Otherwise layers are merged together in this order:
+//
+// * layers whose root meets neither condition above
+// * layers whose root is popular
+// * layers whose root is big
+// * layers whose root meets both conditions
+//
+// # Threshold values
+//
+// Threshold values for the partitioning conditions mentioned above
+// have not yet been determined, but we will make a good first guess
+// based on gut feeling and proceed to measure their impact on cache
+// hits/misses.
+//
+// # Example
+//
+// Using the logic described above as well as the example presented in
+// the introduction, this program would create the following layer
+// groupings (assuming no additional partitioning):
+//
+// Layer budget: 1
+// Layers: { A, B, C, D, E, F, G }
+//
+// Layer budget: 2
+// Layers: { G }, { A, B, C, D, E, F }
+//
+// Layer budget: 3
+// Layers: { G }, { E }, { A, B, C, D, F }
+//
+// Layer budget: 4
+// Layers: { G }, { E }, { D, F }, { A, B, C }
+//
+// ...
+//
+// Layer budget: 10
+// Layers: { E }, { D, F }, { A }, { B }, { C }
+package main
+
+import (
+	"encoding/json"
+	"flag"
+	"io/ioutil"
+	"log"
+	"fmt"
+	"regexp"
+	"os"
+
+	"gonum.org/v1/gonum/graph/simple"
+	"gonum.org/v1/gonum/graph/flow"
+	"gonum.org/v1/gonum/graph/encoding/dot"
+)
+
+// closureGraph represents the structured attributes Nix outputs when asking it
+// for the exportReferencesGraph of a list of derivations.
+type exportReferences struct {
+	References struct {
+		Graph []string `json:"graph"`
+	} `json:"exportReferencesGraph"`
+
+	Graph []struct {
+		Size uint64 `json:"closureSize`
+		Path string   `json:"path"`
+		Refs []string `json:"references"`
+	} `json:"graph"`
+}
+
+// closure as pointed to by the graph nodes.
+type closure struct {
+	GraphID int64
+	Path string
+	Size uint64
+	Refs []string
+	// TODO(tazjin): popularity and other funny business
+}
+
+func (c *closure) ID() int64 {
+	return c.GraphID
+}
+
+var nixRegexp = regexp.MustCompile(`^/nix/store/[a-z0-9]+-`)
+func (c *closure) DOTID() string {
+	return nixRegexp.ReplaceAllString(c.Path, "")
+}
+
+func insertEdges(graph *simple.DirectedGraph, cmap *map[string]*closure, node *closure) {
+	for _, c := range node.Refs {
+		// Nix adds a self reference to each node, which
+		// should not be inserted.
+		if c != node.Path {
+			edge := graph.NewEdge(node, (*cmap)[c])
+			graph.SetEdge(edge)
+		}
+	}
+}
+
+// Create a graph structure from the references supplied by Nix.
+func buildGraph(refs *exportReferences) *simple.DirectedGraph {
+	cmap := make(map[string]*closure)
+	graph := simple.NewDirectedGraph()
+
+	// Insert all closures into the graph, as well as a fake root
+	// closure which serves as the top of the tree.
+	//
+	// A map from store paths to IDs is kept to actually insert
+	// edges below.
+	root := &closure {
+		GraphID: 0,
+		Path: "image_root",
+	}
+	graph.AddNode(root)
+
+	for idx, c := range refs.Graph {
+		node := &closure {
+			GraphID: int64(idx + 1), // inc because of root node
+			Path: c.Path,
+			Size: c.Size,
+			Refs: c.Refs,
+		}
+
+		graph.AddNode(node)
+		cmap[c.Path] = node
+	}
+
+	// Insert the top-level closures with edges from the root
+	// node, then insert all edges for each closure.
+	for _, p := range refs.References.Graph {
+		edge := graph.NewEdge(root, cmap[p])
+		graph.SetEdge(edge)
+	}
+
+	for _, c := range cmap {
+		insertEdges(graph, &cmap, c)
+	}
+
+	gv, err := dot.Marshal(graph, "deps", "", "")
+	if err != nil {
+		log.Fatalf("Could not encode graph: %s\n", err)
+	}
+	fmt.Print(string(gv))
+	os.Exit(0)
+
+	return graph
+}
+
+// Calculate the dominator tree of the entire package set and group
+// each top-level subtree into a layer.
+func dominate(graph *simple.DirectedGraph) {
+	dt := flow.Dominators(graph.Node(0), graph)
+
+	// convert dominator tree back into encodable graph
+	dg := simple.NewDirectedGraph()
+
+	for nodes := graph.Nodes(); nodes.Next(); {
+		dg.AddNode(nodes.Node())
+	}
+
+	for nodes := dg.Nodes(); nodes.Next(); {
+		node := nodes.Node()
+		for _, child := range dt.DominatedBy(node.ID()) {
+			edge := dg.NewEdge(node, child)
+			dg.SetEdge(edge)
+		}
+	}
+
+	gv, err := dot.Marshal(dg, "deps", "", "")
+	if err != nil {
+		log.Fatalf("Could not encode graph: %s\n", err)
+	}
+	fmt.Print(string(gv))
+
+	// fmt.Printf("%v edges in the graph\n", graph.Edges().Len())
+	// top := 0
+	// for _, n := range dt.DominatedBy(0) {
+	// 	fmt.Printf("%q is top-level\n", n.(*closure).Path)
+	// 	top++
+	// }
+	// fmt.Printf("%v total top-level nodes\n", top)
+	// root := dt.Root().(*closure)
+	// fmt.Printf("dominator tree root is %q\n", root.Path)
+	// fmt.Printf("%v nodes can reach to 1\n", nodes.Len())
+}
+
+func main() {
+	inputFile := flag.String("input", ".attrs.json", "Input file containing graph")
+	flag.Parse()
+
+	file, err := ioutil.ReadFile(*inputFile)
+	if err != nil {
+		log.Fatalf("Failed to load input: %s\n", err)
+	}
+
+	var refs exportReferences
+	err = json.Unmarshal(file, &refs)
+	if err != nil {
+		log.Fatalf("Failed to deserialise input: %s\n", err)
+	}
+
+	graph := buildGraph(&refs)
+	dominate(graph)
+}