diff options
author | William Carroll <wpcarro@gmail.com> | 2020-06-18T10·07+0100 |
---|---|---|
committer | William Carroll <wpcarro@gmail.com> | 2020-06-18T10·07+0100 |
commit | 71e79f5f5d7514f8739927ea4cde7271febe5b07 (patch) | |
tree | 647b1edafa9c3e6564f5880c57882c91db11b2b8 | |
parent | 406764f5521fc0a1ef713ffc4e99f897268cc536 (diff) |
Complete exercises from Applicative chapter
From "Haskell Programming from First Principles"...
-rw-r--r-- | scratch/haskell-programming-from-first-principles/applicative.hs | 213 |
1 files changed, 213 insertions, 0 deletions
diff --git a/scratch/haskell-programming-from-first-principles/applicative.hs b/scratch/haskell-programming-from-first-principles/applicative.hs new file mode 100644 index 000000000000..8259606da374 --- /dev/null +++ b/scratch/haskell-programming-from-first-principles/applicative.hs @@ -0,0 +1,213 @@ +module ApplicativeScratch where + +import Data.Function ((&)) + +import Control.Applicative (liftA3) +import qualified Data.List as List +import qualified GHC.Base as Base + +-------------------------------------------------------------------------------- + +-- xs :: [(Integer, Integer)] +-- xs = zip [1..3] [4..6] + +-- added :: Maybe Integer +-- added = +-- (+3) <$> (lookup 3 xs) + +-------------------------------------------------------------------------------- + +-- y :: Maybe Integer +-- y = lookup 3 xs + +-- z :: Maybe Integer +-- z = lookup 2 xs + +-- tupled :: Maybe (Integer, Integer) +-- tupled = Base.liftA2 (,) y z + +-------------------------------------------------------------------------------- + +-- x :: Maybe Int +-- x = List.elemIndex 3 [1..5] + +-- y :: Maybe Int +-- y = List.elemIndex 4 [1..5] + +-- maxed :: Maybe Int +-- maxed = Base.liftA2 max x y + +-------------------------------------------------------------------------------- + +xs = [1..3] +ys = [4..6] + +x :: Maybe Integer +x = lookup 3 $ zip xs ys + +y :: Maybe Integer +y = lookup 2 $ zip xs ys + +summed :: Maybe Integer +summed = sum <$> Base.liftA2 (,) x y + +-------------------------------------------------------------------------------- + +newtype Identity a = Identity a deriving (Eq, Show) + +instance Functor Identity where + fmap f (Identity x) = Identity (f x) + +instance Applicative Identity where + pure = Identity + (Identity f) <*> (Identity x) = Identity (f x) + +-------------------------------------------------------------------------------- + +newtype Constant a b = + Constant { getConstant :: a } + deriving (Eq, Ord, Show) + +instance Functor (Constant a) where + fmap _ (Constant x) = Constant x + +instance Monoid a => Applicative (Constant a) where + pure _ = Constant mempty + (Constant x) <*> (Constant y) = Constant (x <> y) + +-------------------------------------------------------------------------------- + +one = const <$> Just "Hello" <*> Just "World" + +two :: Maybe (Integer, Integer, String, [Integer]) +two = (,,,) <$> (Just 90) + <*> (Just 10) + <*> (Just "Tierness") + <*> (Just [1..3]) + +-------------------------------------------------------------------------------- + +data List a = Nil | Cons a (List a) deriving (Eq, Show) + +instance Semigroup (List a) where + Nil <> xs = xs + xs <> Nil = xs + (Cons x xs) <> ys = Cons x (xs <> ys) + +instance Functor List where + fmap f Nil = Nil + fmap f (Cons x xs) = Cons (f x) (fmap f xs) + +instance Applicative List where + pure x = Cons x Nil + Nil <*> _ = Nil + _ <*> Nil = Nil + (Cons f fs) <*> xs = + (f <$> xs) <> (fs <*> xs) + +toList :: List a -> [a] +toList Nil = [] +toList (Cons x xs) = x : toList xs + +fromList :: [a] -> List a +fromList [] = Nil +fromList (x:xs) = Cons x (fromList xs) + +-------------------------------------------------------------------------------- + +newtype ZipList' a = + ZipList' [a] + deriving (Eq, Show) + +-- instance Eq a => EqProp (ZipList' a) where +-- (ZipList' lhs) =-= (ZipList' rhs) = +-- (take 1000 lhs) `eq` (take 1000 rhs) + +instance Functor ZipList' where + fmap f (ZipList' xs) = ZipList' $ fmap f xs + +instance Applicative ZipList' where + pure x = ZipList' (repeat x) + (ZipList' fs) <*> (ZipList' xs) = + ZipList' $ zipWith ($) fs xs + +-------------------------------------------------------------------------------- + +data Validation e a + = Failure e + | Success a + deriving (Eq, Show) + +instance Functor (Validation e) where + fmap f (Failure x) = Failure x + fmap f (Success x) = Success (f x) + +instance Monoid e => Applicative (Validation e) where + pure = undefined + (Success f) <*> (Success x) = Success (f x) + _ <*> (Failure x) = Failure x + (Failure x) <*> _ = Failure x + +data Error + = DivideByZero + | StackOverflow + deriving (Eq, Show) + +-------------------------------------------------------------------------------- + +stops :: String +stops = "pbtdkg" + +vowels :: String +vowels = "aeiou" + +combos :: [a] -> [b] -> [c] -> [(a, b, c)] +combos xs ys zs = + liftA3 (,,) xs ys zs + +-------------------------------------------------------------------------------- + +data Pair a = Pair a a deriving Show + +instance Functor Pair where + fmap f (Pair x y) = Pair (f x) (f y) + +instance Applicative Pair where + pure x = Pair x x + (Pair f g) <*> (Pair x y) = Pair (f x) (g x) + +p :: Pair Integer +p = Pair 1 2 + +-------------------------------------------------------------------------------- + +data Two a b = Two a b + +instance Functor (Two a) where + fmap f (Two x y) = Two x (f y) + +instance Monoid a => Applicative (Two a) where + pure x = Two mempty x + _ <*> _ = undefined + +-------------------------------------------------------------------------------- + +data Three a b c = Three a b c + +instance Functor (Three a b) where + fmap f (Three x y z) = Three x y (f z) + +instance (Monoid a, Monoid b) => Applicative (Three a b) where + pure x = Three mempty mempty x + (Three a b f) <*> (Three x y z) = Three (a <> x) (b <> y) (f z) + +-------------------------------------------------------------------------------- + +data Three' a b = Three' a b b + +instance Functor (Three' a) where + fmap f (Three' x y z) = Three' x (f y) (f z) + +instance Monoid a => Applicative (Three' a) where + pure x = Three' mempty x x + (Three' a f g) <*> (Three' x y z) = Three' (a <> x) (f y) (g z) |