diff options
author | Abseil Team <absl-team@google.com> | 2020-04-07T03·53-0700 |
---|---|---|
committer | Gennadiy Rozental <rogeeff@google.com> | 2020-04-07T04·10-0400 |
commit | 73ea9a95720c4f4faff9b1bcbad48d23f2cb2a46 (patch) | |
tree | 97596c4ce8c4a0df539826ea021a870ffe93e065 | |
parent | c01b9916e705dc067d4e3d219ef60b49277353bd (diff) |
Export of internal Abseil changes
-- 87cdfd6aa40941e116cd79ef70f9a7a8271db163 by Abseil Team <absl-team@google.com>: Fix a typo in random.h API documentation. PiperOrigin-RevId: 305176308 -- 8a38e1df49a18a954daca3ce617fd69045ff4c19 by Derek Mauro <dmauro@google.com>: Import GitHub #647: Allow external add_subdirectory for using GoogleTest PiperOrigin-RevId: 305156797 -- b1a2441536d4964fbe4e2329e74c322e6c41a4e6 by Gennadiy Rozental <rogeeff@google.com>: temporary roll back. PiperOrigin-RevId: 305149619 -- c78767577264348d2f881893f9407aadfe73ab75 by CJ Johnson <johnsoncj@google.com>: Rollback update to linux_clang-latest container while investigating a compiler bug. PiperOrigin-RevId: 304897689 -- 3c6fd38f53d2e982569fdba4043f75271c7b5de4 by Derek Mauro <dmauro@google.com>: Update linux_clang-latest container to one based on Ubuntu 18.04, which has libstdc++-8. PiperOrigin-RevId: 304885120 GitOrigin-RevId: 87cdfd6aa40941e116cd79ef70f9a7a8271db163 Change-Id: Iefa6efee93907ec0eecb8add804c5cc2f052b64d
-rw-r--r-- | CMakeLists.txt | 3 | ||||
-rw-r--r-- | absl/random/random.h | 2 | ||||
-rw-r--r-- | absl/strings/cord.cc | 248 | ||||
-rw-r--r-- | absl/strings/cord.h | 232 | ||||
-rw-r--r-- | absl/strings/cord_test.cc | 47 |
5 files changed, 177 insertions, 355 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt index 560f5b4be57f..47670454ad9d 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -82,7 +82,8 @@ endif() find_package(Threads REQUIRED) option(ABSL_USE_EXTERNAL_GOOGLETEST - "If ON, abseil will assume that the targets for googletest are already provided by the including project folder. This makes sense when abseil is used with add_subproject." OFF) + "If ON, Abseil will assume that the targets for GoogleTest are already provided by the including project. This makes sense when Abseil is used with add_subproject." OFF) + option(ABSL_USE_GOOGLETEST_HEAD "If ON, abseil will download HEAD from googletest at config time." OFF) diff --git a/absl/random/random.h b/absl/random/random.h index c8f326e64252..71b6309288e6 100644 --- a/absl/random/random.h +++ b/absl/random/random.h @@ -109,7 +109,7 @@ ABSL_NAMESPACE_BEGIN // absl::BitGen::max() // -// Returns the largest possible value from this bit generator., and +// Returns the largest possible value from this bit generator. // absl::BitGen::discard(num) // diff --git a/absl/strings/cord.cc b/absl/strings/cord.cc index 7de7766c5116..fa490c18659e 100644 --- a/absl/strings/cord.cc +++ b/absl/strings/cord.cc @@ -31,6 +31,7 @@ #include "absl/base/macros.h" #include "absl/base/port.h" #include "absl/container/fixed_array.h" +#include "absl/container/inlined_vector.h" #include "absl/strings/escaping.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/resize_uninitialized.h" @@ -132,14 +133,6 @@ inline const CordRepExternal* CordRep::external() const { return static_cast<const CordRepExternal*>(this); } -using CordTreeConstPath = CordTreePath<const CordRep*, MaxCordDepth()>; - -// This type is used to store the list of pending nodes during re-balancing. -// Its maximum size is 2 * MaxCordDepth() because the tree has a maximum -// possible depth of MaxCordDepth() and every concat node along a tree path -// could theoretically be split during rebalancing. -using RebalancingStack = CordTreePath<CordRep*, 2 * MaxCordDepth()>; - } // namespace cord_internal static const size_t kFlatOverhead = offsetof(CordRep, data); @@ -188,78 +181,64 @@ static constexpr size_t TagToLength(uint8_t tag) { // Enforce that kMaxFlatSize maps to a well-known exact tag value. static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic"); -constexpr size_t Fibonacci(uint8_t n, const size_t a = 0, const size_t b = 1) { - return n == 0 - ? a - : n == 1 ? b - : Fibonacci(n - 1, b, - (a > (size_t(-1) - b)) ? size_t(-1) : a + b); +constexpr uint64_t Fibonacci(unsigned char n, uint64_t a = 0, uint64_t b = 1) { + return n == 0 ? a : Fibonacci(n - 1, b, a + b); } +static_assert(Fibonacci(63) == 6557470319842, + "Fibonacci values computed incorrectly"); + // Minimum length required for a given depth tree -- a tree is considered // balanced if -// length(t) >= kMinLength[depth(t)] -// The node depth is allowed to become larger to reduce rebalancing -// for larger strings (see ShouldRebalance). -constexpr size_t kMinLength[] = { - Fibonacci(2), Fibonacci(3), Fibonacci(4), Fibonacci(5), Fibonacci(6), - Fibonacci(7), Fibonacci(8), Fibonacci(9), Fibonacci(10), Fibonacci(11), - Fibonacci(12), Fibonacci(13), Fibonacci(14), Fibonacci(15), Fibonacci(16), - Fibonacci(17), Fibonacci(18), Fibonacci(19), Fibonacci(20), Fibonacci(21), - Fibonacci(22), Fibonacci(23), Fibonacci(24), Fibonacci(25), Fibonacci(26), - Fibonacci(27), Fibonacci(28), Fibonacci(29), Fibonacci(30), Fibonacci(31), - Fibonacci(32), Fibonacci(33), Fibonacci(34), Fibonacci(35), Fibonacci(36), - Fibonacci(37), Fibonacci(38), Fibonacci(39), Fibonacci(40), Fibonacci(41), - Fibonacci(42), Fibonacci(43), Fibonacci(44), Fibonacci(45), Fibonacci(46), - Fibonacci(47), Fibonacci(48), Fibonacci(49), Fibonacci(50), Fibonacci(51), - Fibonacci(52), Fibonacci(53), Fibonacci(54), Fibonacci(55), Fibonacci(56), - Fibonacci(57), Fibonacci(58), Fibonacci(59), Fibonacci(60), Fibonacci(61), - Fibonacci(62), Fibonacci(63), Fibonacci(64), Fibonacci(65), Fibonacci(66), - Fibonacci(67), Fibonacci(68), Fibonacci(69), Fibonacci(70), Fibonacci(71), - Fibonacci(72), Fibonacci(73), Fibonacci(74), Fibonacci(75), Fibonacci(76), - Fibonacci(77), Fibonacci(78), Fibonacci(79), Fibonacci(80), Fibonacci(81), - Fibonacci(82), Fibonacci(83), Fibonacci(84), Fibonacci(85), Fibonacci(86), - Fibonacci(87), Fibonacci(88), Fibonacci(89), Fibonacci(90), Fibonacci(91), - Fibonacci(92), Fibonacci(93), Fibonacci(94), Fibonacci(95)}; - -static_assert(sizeof(kMinLength) / sizeof(size_t) >= - (cord_internal::MaxCordDepth() + 1), - "Not enough elements in kMinLength array to cover all the " - "supported Cord depth(s)"); - -inline bool ShouldRebalance(const CordRep* node) { - if (node->tag != CONCAT) return false; - - size_t node_depth = node->concat()->depth(); - - if (node_depth <= 15) return false; - - // Rebalancing Cords is expensive, so we reduce how often rebalancing occurs - // by allowing shallow Cords to have twice the depth that the Fibonacci rule - // would otherwise imply. Deep Cords need to follow the rule more closely, - // however to ensure algorithm correctness. We implement this with linear - // interpolation. Cords of depth 16 are treated as though they have a depth - // of 16 * 1/2, and Cords of depth MaxCordDepth() interpolate to - // MaxCordDepth() * 1. - return node->length < - kMinLength[(node_depth * (cord_internal::MaxCordDepth() - 16)) / - (2 * cord_internal::MaxCordDepth() - 16 - node_depth)]; -} - -// Unlike root balancing condition this one is part of the re-balancing -// algorithm and has to be always matching against right depth for -// algorithm to be correct. -inline bool IsNodeBalanced(const CordRep* node) { - if (node->tag != CONCAT) return true; - - size_t node_depth = node->concat()->depth(); - - return node->length >= kMinLength[node_depth]; +// length(t) >= min_length[depth(t)] +// The root node depth is allowed to become twice as large to reduce rebalancing +// for larger strings (see IsRootBalanced). +static constexpr uint64_t min_length[] = { + Fibonacci(2), Fibonacci(3), Fibonacci(4), Fibonacci(5), + Fibonacci(6), Fibonacci(7), Fibonacci(8), Fibonacci(9), + Fibonacci(10), Fibonacci(11), Fibonacci(12), Fibonacci(13), + Fibonacci(14), Fibonacci(15), Fibonacci(16), Fibonacci(17), + Fibonacci(18), Fibonacci(19), Fibonacci(20), Fibonacci(21), + Fibonacci(22), Fibonacci(23), Fibonacci(24), Fibonacci(25), + Fibonacci(26), Fibonacci(27), Fibonacci(28), Fibonacci(29), + Fibonacci(30), Fibonacci(31), Fibonacci(32), Fibonacci(33), + Fibonacci(34), Fibonacci(35), Fibonacci(36), Fibonacci(37), + Fibonacci(38), Fibonacci(39), Fibonacci(40), Fibonacci(41), + Fibonacci(42), Fibonacci(43), Fibonacci(44), Fibonacci(45), + Fibonacci(46), Fibonacci(47), + 0xffffffffffffffffull, // Avoid overflow +}; + +static const int kMinLengthSize = ABSL_ARRAYSIZE(min_length); + +// The inlined size to use with absl::InlinedVector. +// +// Note: The InlinedVectors in this file (and in cord.h) do not need to use +// the same value for their inlined size. The fact that they do is historical. +// It may be desirable for each to use a different inlined size optimized for +// that InlinedVector's usage. +// +// TODO(jgm): Benchmark to see if there's a more optimal value than 47 for +// the inlined vector size (47 exists for backward compatibility). +static const int kInlinedVectorSize = 47; + +static inline bool IsRootBalanced(CordRep* node) { + if (node->tag != CONCAT) { + return true; + } else if (node->concat()->depth() <= 15) { + return true; + } else if (node->concat()->depth() > kMinLengthSize) { + return false; + } else { + // Allow depth to become twice as large as implied by fibonacci rule to + // reduce rebalancing for larger strings. + return (node->length >= min_length[node->concat()->depth() / 2]); + } } static CordRep* Rebalance(CordRep* node); -static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os); -static bool VerifyNode(const CordRep* root, const CordRep* start_node, +static void DumpNode(CordRep* rep, bool include_data, std::ostream* os); +static bool VerifyNode(CordRep* root, CordRep* start_node, bool full_validation); static inline CordRep* VerifyTree(CordRep* node) { @@ -306,8 +285,7 @@ __attribute__((preserve_most)) static void UnrefInternal(CordRep* rep) { assert(rep != nullptr); - cord_internal::RebalancingStack pending; - + absl::InlinedVector<CordRep*, kInlinedVectorSize> pending; while (true) { if (rep->tag == CONCAT) { CordRepConcat* rep_concat = rep->concat(); @@ -389,11 +367,6 @@ static void SetConcatChildren(CordRepConcat* concat, CordRep* left, concat->length = left->length + right->length; concat->set_depth(1 + std::max(Depth(left), Depth(right))); - - ABSL_INTERNAL_CHECK(concat->depth() <= cord_internal::MaxCordDepth(), - "Cord depth exceeds max"); - ABSL_INTERNAL_CHECK(concat->length >= left->length, "Cord is too long"); - ABSL_INTERNAL_CHECK(concat->length >= right->length, "Cord is too long"); } // Create a concatenation of the specified nodes. @@ -419,7 +392,7 @@ static CordRep* RawConcat(CordRep* left, CordRep* right) { static CordRep* Concat(CordRep* left, CordRep* right) { CordRep* rep = RawConcat(left, right); - if (rep != nullptr && ShouldRebalance(rep)) { + if (rep != nullptr && !IsRootBalanced(rep)) { rep = Rebalance(rep); } return VerifyTree(rep); @@ -714,14 +687,6 @@ void Cord::InlineRep::ClearSlow() { memset(data_, 0, sizeof(data_)); } -inline Cord::InternalChunkIterator Cord::internal_chunk_begin() const { - return InternalChunkIterator(this); -} - -inline Cord::InternalChunkRange Cord::InternalChunks() const { - return InternalChunkRange(this); -} - // -------------------------------------------------------------------- // Constructors and destructors @@ -918,7 +883,7 @@ void Cord::Prepend(absl::string_view src) { static CordRep* RemovePrefixFrom(CordRep* node, size_t n) { if (n >= node->length) return nullptr; if (n == 0) return Ref(node); - cord_internal::CordTreeMutablePath rhs_stack; + absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack; while (node->tag == CONCAT) { assert(n <= node->length); @@ -959,7 +924,7 @@ static CordRep* RemovePrefixFrom(CordRep* node, size_t n) { static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) { if (n >= node->length) return nullptr; if (n == 0) return Ref(node); - absl::cord_internal::CordTreeMutablePath lhs_stack; + absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack; bool inplace_ok = node->refcount.IsOne(); while (node->tag == CONCAT) { @@ -1030,7 +995,6 @@ void Cord::RemoveSuffix(size_t n) { // Work item for NewSubRange(). struct SubRange { - SubRange() = default; SubRange(CordRep* a_node, size_t a_pos, size_t a_n) : node(a_node), pos(a_pos), n(a_n) {} CordRep* node; // nullptr means concat last 2 results. @@ -1039,11 +1003,8 @@ struct SubRange { }; static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) { - cord_internal::CordTreeMutablePath results; - // The algorithm below in worst case scenario adds up to 3 nodes to the `todo` - // list, but we also pop one out on every cycle. If original tree has depth d - // todo list can grew up to 2*d in size. - cord_internal::CordTreePath<SubRange, 2 * cord_internal::MaxCordDepth()> todo; + absl::InlinedVector<CordRep*, kInlinedVectorSize> results; + absl::InlinedVector<SubRange, kInlinedVectorSize> todo; todo.push_back(SubRange(node, pos, n)); do { const SubRange& sr = todo.back(); @@ -1080,7 +1041,7 @@ static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) { } } while (!todo.empty()); assert(results.size() == 1); - return results.back(); + return results[0]; } Cord Cord::Subcord(size_t pos, size_t new_size) const { @@ -1096,7 +1057,7 @@ Cord Cord::Subcord(size_t pos, size_t new_size) const { } else if (new_size == 0) { // We want to return empty subcord, so nothing to do. } else if (new_size <= InlineRep::kMaxInline) { - Cord::InternalChunkIterator it = internal_chunk_begin(); + Cord::ChunkIterator it = chunk_begin(); it.AdvanceBytes(pos); char* dest = sub_cord.contents_.data_; size_t remaining_size = new_size; @@ -1119,12 +1080,11 @@ Cord Cord::Subcord(size_t pos, size_t new_size) const { class CordForest { public: - explicit CordForest(size_t length) : root_length_(length), trees_({}) {} + explicit CordForest(size_t length) + : root_length_(length), trees_(kMinLengthSize, nullptr) {} void Build(CordRep* cord_root) { - // We are adding up to two nodes to the `pending` list, but we also popping - // one, so the size of `pending` will never exceed `MaxCordDepth()`. - cord_internal::CordTreeMutablePath pending(cord_root); + std::vector<CordRep*> pending = {cord_root}; while (!pending.empty()) { CordRep* node = pending.back(); @@ -1136,20 +1096,21 @@ class CordForest { } CordRepConcat* concat_node = node->concat(); - if (IsNodeBalanced(concat_node)) { - AddNode(node); - continue; - } - pending.push_back(concat_node->right); - pending.push_back(concat_node->left); - - if (concat_node->refcount.IsOne()) { - concat_node->left = concat_freelist_; - concat_freelist_ = concat_node; + if (concat_node->depth() >= kMinLengthSize || + concat_node->length < min_length[concat_node->depth()]) { + pending.push_back(concat_node->right); + pending.push_back(concat_node->left); + + if (concat_node->refcount.IsOne()) { + concat_node->left = concat_freelist_; + concat_freelist_ = concat_node; + } else { + Ref(concat_node->right); + Ref(concat_node->left); + Unref(concat_node); + } } else { - Ref(concat_node->right); - Ref(concat_node->left); - Unref(concat_node); + AddNode(node); } } } @@ -1181,7 +1142,7 @@ class CordForest { // Collect together everything with which we will merge with node int i = 0; - for (; node->length >= kMinLength[i + 1]; ++i) { + for (; node->length > min_length[i + 1]; ++i) { auto& tree_at_i = trees_[i]; if (tree_at_i == nullptr) continue; @@ -1192,7 +1153,7 @@ class CordForest { sum = AppendNode(node, sum); // Insert sum into appropriate place in the forest - for (; sum->length >= kMinLength[i]; ++i) { + for (; sum->length >= min_length[i]; ++i) { auto& tree_at_i = trees_[i]; if (tree_at_i == nullptr) continue; @@ -1200,7 +1161,7 @@ class CordForest { tree_at_i = nullptr; } - // kMinLength[0] == 1, which means sum->length >= kMinLength[0] + // min_length[0] == 1, which means sum->length >= min_length[0] assert(i > 0); trees_[i - 1] = sum; } @@ -1233,7 +1194,9 @@ class CordForest { } size_t root_length_; - std::array<cord_internal::CordRep*, cord_internal::MaxCordDepth()> trees_; + + // use an inlined vector instead of a flat array to get bounds checking + absl::InlinedVector<CordRep*, kInlinedVectorSize> trees_; // List of concat nodes we can re-use for Cord balancing. CordRepConcat* concat_freelist_ = nullptr; @@ -1334,7 +1297,7 @@ inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const { inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size, size_t size_to_compare) const { - auto advance = [](Cord::InternalChunkIterator* it, absl::string_view* chunk) { + auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) { if (!chunk->empty()) return true; ++*it; if (it->bytes_remaining_ == 0) return false; @@ -1342,7 +1305,7 @@ inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size, return true; }; - Cord::InternalChunkIterator lhs_it = internal_chunk_begin(); + Cord::ChunkIterator lhs_it = chunk_begin(); // compared_size is inside first chunk. absl::string_view lhs_chunk = @@ -1364,7 +1327,7 @@ inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size, inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size, size_t size_to_compare) const { - auto advance = [](Cord::InternalChunkIterator* it, absl::string_view* chunk) { + auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) { if (!chunk->empty()) return true; ++*it; if (it->bytes_remaining_ == 0) return false; @@ -1372,8 +1335,8 @@ inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size, return true; }; - Cord::InternalChunkIterator lhs_it = internal_chunk_begin(); - Cord::InternalChunkIterator rhs_it = rhs.internal_chunk_begin(); + Cord::ChunkIterator lhs_it = chunk_begin(); + Cord::ChunkIterator rhs_it = rhs.chunk_begin(); // compared_size is inside both first chunks. absl::string_view lhs_chunk = @@ -1507,9 +1470,7 @@ void Cord::CopyToArraySlowPath(char* dst) const { } } -template <typename StorageType> -Cord::GenericChunkIterator<StorageType>& -Cord::GenericChunkIterator<StorageType>::operator++() { +Cord::ChunkIterator& Cord::ChunkIterator::operator++() { ABSL_HARDENING_ASSERT(bytes_remaining_ > 0 && "Attempted to iterate past `end()`"); assert(bytes_remaining_ >= current_chunk_.size()); @@ -1549,8 +1510,7 @@ Cord::GenericChunkIterator<StorageType>::operator++() { return *this; } -template <typename StorageType> -Cord Cord::GenericChunkIterator<StorageType>::AdvanceAndReadBytes(size_t n) { +Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) { ABSL_HARDENING_ASSERT(bytes_remaining_ >= n && "Attempted to iterate past `end()`"); Cord subcord; @@ -1664,8 +1624,7 @@ Cord Cord::GenericChunkIterator<StorageType>::AdvanceAndReadBytes(size_t n) { return subcord; } -template <typename StorageType> -void Cord::GenericChunkIterator<StorageType>::AdvanceBytesSlowPath(size_t n) { +void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) { assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`"); assert(n >= current_chunk_.size()); // This should only be called when // iterating to a new node. @@ -1851,18 +1810,18 @@ absl::string_view Cord::FlattenSlowPath() { } } -static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) { +static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) { const int kIndentStep = 1; int indent = 0; - cord_internal::CordTreeConstPath stack; - cord_internal::CordTreePath<int, cord_internal::MaxCordDepth()> indents; + absl::InlinedVector<CordRep*, kInlinedVectorSize> stack; + absl::InlinedVector<int, kInlinedVectorSize> indents; for (;;) { *os << std::setw(3) << rep->refcount.Get(); *os << " " << std::setw(7) << rep->length; *os << " ["; - if (include_data) *os << static_cast<const void*>(rep); + if (include_data) *os << static_cast<void*>(rep); *os << "]"; - *os << " " << (IsNodeBalanced(rep) ? 'b' : 'u'); + *os << " " << (IsRootBalanced(rep) ? 'b' : 'u'); *os << " " << std::setw(indent) << ""; if (rep->tag == CONCAT) { *os << "CONCAT depth=" << Depth(rep) << "\n"; @@ -1883,7 +1842,7 @@ static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) { } else { *os << "FLAT cap=" << TagToLength(rep->tag) << " ["; if (include_data) - *os << absl::CEscape(absl::string_view(rep->data, rep->length)); + *os << absl::CEscape(std::string(rep->data, rep->length)); *os << "]\n"; } if (stack.empty()) break; @@ -1896,19 +1855,19 @@ static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) { ABSL_INTERNAL_CHECK(indents.empty(), ""); } -static std::string ReportError(const CordRep* root, const CordRep* node) { +static std::string ReportError(CordRep* root, CordRep* node) { std::ostringstream buf; buf << "Error at node " << node << " in:"; DumpNode(root, true, &buf); return buf.str(); } -static bool VerifyNode(const CordRep* root, const CordRep* start_node, +static bool VerifyNode(CordRep* root, CordRep* start_node, bool full_validation) { - cord_internal::CordTreeConstPath worklist; + absl::InlinedVector<CordRep*, 2> worklist; worklist.push_back(start_node); do { - const CordRep* node = worklist.back(); + CordRep* node = worklist.back(); worklist.pop_back(); ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node)); @@ -1958,7 +1917,7 @@ static bool VerifyNode(const CordRep* root, const CordRep* start_node, // Iterate over the tree. cur_node is never a leaf node and leaf nodes will // never be appended to tree_stack. This reduces overhead from manipulating // tree_stack. - cord_internal::CordTreeConstPath tree_stack; + absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack; const CordRep* cur_node = rep; while (true) { const CordRep* next_node = nullptr; @@ -2005,9 +1964,6 @@ std::ostream& operator<<(std::ostream& out, const Cord& cord) { return out; } -template class Cord::GenericChunkIterator<cord_internal::CordTreeMutablePath>; -template class Cord::GenericChunkIterator<cord_internal::CordTreeDynamicPath>; - namespace strings_internal { size_t CordTestAccess::FlatOverhead() { return kFlatOverhead; } size_t CordTestAccess::MaxFlatLength() { return kMaxFlatLength; } diff --git a/absl/strings/cord.h b/absl/strings/cord.h index d5b9363f9ee1..5136f926dcb2 100644 --- a/absl/strings/cord.h +++ b/absl/strings/cord.h @@ -123,132 +123,12 @@ H HashFragmentedCord(H, const Cord&); // Additionally, the API provides iterator utilities to iterate through Cord // data via chunks or character bytes. // - -namespace cord_internal { - -// It's expensive to keep a Cord's tree perfectly balanced, so instead we keep -// trees approximately balanced. A tree node N of depth D(N) that contains a -// string of L(N) characters is considered balanced if L >= Fibonacci(D + 2). -// The "+ 2" is used to ensure that every balanced leaf node contains at least -// one character. Here we presume that -// Fibonacci(0) = 0 -// Fibonacci(1) = 1 -// Fibonacci(2) = 1 -// Fibonacci(3) = 2 -// ... -// The algorithm is based on paper by Hans Boehm et al: -// https://www.cs.rit.edu/usr/local/pub/jeh/courses/QUARTERS/FP/Labs/CedarRope/rope-paper.pdf -// In this paper authors shows that rebalancing based on cord forest of already -// balanced subtrees can be proven to never produce tree of depth larger than -// largest Fibonacci number representable in the same integral type as cord size -// For 64 bit integers this is the 93rd Fibonacci number. For 32 bit integrals -// this is 47th Fibonacci number. -constexpr size_t MaxCordDepth() { return sizeof(size_t) == 8 ? 93 : 47; } - -// This class models fixed max size stack of CordRep pointers. -// The elements are being pushed back and popped from the back. -template <typename CordRepPtr, size_t N> -class CordTreePath { - public: - CordTreePath() {} - explicit CordTreePath(CordRepPtr root) { push_back(root); } - - bool empty() const { return size_ == 0; } - size_t size() const { return size_; } - void clear() { size_ = 0; } - - CordRepPtr back() { return data_[size_ - 1]; } - - void pop_back() { - --size_; - assert(size_ < N); - } - void push_back(CordRepPtr elem) { data_[size_++] = elem; } - - private: - CordRepPtr data_[N]; - size_t size_ = 0; -}; - -// Fixed length container for mutable "path" in cord tree, which can hold any -// possible valid path in cord tree. -using CordTreeMutablePath = CordTreePath<CordRep*, MaxCordDepth()>; -// Variable length container for mutable "path" in cord tree. It starts with -// capacity for 15 elements and grow if necessary. -using CordTreeDynamicPath = - absl::InlinedVector<absl::cord_internal::CordRep*, 15>; -} // namespace cord_internal - -// A Cord is a sequence of characters. class Cord { private: template <typename T> using EnableIfString = absl::enable_if_t<std::is_same<T, std::string>::value, int>; - //---------------------------------------------------------------------------- - // Cord::GenericChunkIterator - //---------------------------------------------------------------------------- - // - // A `Cord::GenericChunkIterator` provides an interface for the standard - // `Cord::ChunkIterator` as well as some private implementations. - template <typename StorageType> - class GenericChunkIterator { - public: - using iterator_category = std::input_iterator_tag; - using value_type = absl::string_view; - using difference_type = ptrdiff_t; - using pointer = const value_type*; - using reference = value_type; - - GenericChunkIterator() = default; - - GenericChunkIterator& operator++(); - GenericChunkIterator operator++(int); - bool operator==(const GenericChunkIterator& other) const; - bool operator!=(const GenericChunkIterator& other) const; - reference operator*() const; - pointer operator->() const; - - friend class Cord; - friend class CharIterator; - - private: - // Constructs a `begin()` iterator from `cord`. - explicit GenericChunkIterator(const Cord* cord); - - // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than - // `current_chunk_.size()`. - void RemoveChunkPrefix(size_t n); - Cord AdvanceAndReadBytes(size_t n); - void AdvanceBytes(size_t n); - // Iterates `n` bytes, where `n` is expected to be greater than or equal to - // `current_chunk_.size()`. - void AdvanceBytesSlowPath(size_t n); - - // A view into bytes of the current `CordRep`. It may only be a view to a - // suffix of bytes if this is being used by `CharIterator`. - absl::string_view current_chunk_; - // The current leaf, or `nullptr` if the iterator points to short data. - // If the current chunk is a substring node, current_leaf_ points to the - // underlying flat or external node. - cord_internal::CordRep* current_leaf_ = nullptr; - // The number of bytes left in the `Cord` over which we are iterating. - size_t bytes_remaining_ = 0; - StorageType stack_of_right_children_; - }; - template <typename IteratorType> - class GenericChunkRange { - public: - explicit GenericChunkRange(const Cord* cord) : cord_(cord) {} - - IteratorType begin() const { return IteratorType(cord_); } - IteratorType end() const { return IteratorType(); } - - private: - const Cord* cord_; - }; - public: // Cord::Cord() Constructors @@ -464,8 +344,51 @@ class Cord { // * The iterator keeps state that can grow for Cords that contain many // nodes and are imbalanced due to sharing. Prefer to pass this type by // const reference instead of by value. - using ChunkIterator = - GenericChunkIterator<cord_internal::CordTreeDynamicPath>; + class ChunkIterator { + public: + using iterator_category = std::input_iterator_tag; + using value_type = absl::string_view; + using difference_type = ptrdiff_t; + using pointer = const value_type*; + using reference = value_type; + + ChunkIterator() = default; + + ChunkIterator& operator++(); + ChunkIterator operator++(int); + bool operator==(const ChunkIterator& other) const; + bool operator!=(const ChunkIterator& other) const; + reference operator*() const; + pointer operator->() const; + + friend class Cord; + friend class CharIterator; + + private: + // Constructs a `begin()` iterator from `cord`. + explicit ChunkIterator(const Cord* cord); + + // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than + // `current_chunk_.size()`. + void RemoveChunkPrefix(size_t n); + Cord AdvanceAndReadBytes(size_t n); + void AdvanceBytes(size_t n); + // Iterates `n` bytes, where `n` is expected to be greater than or equal to + // `current_chunk_.size()`. + void AdvanceBytesSlowPath(size_t n); + + // A view into bytes of the current `CordRep`. It may only be a view to a + // suffix of bytes if this is being used by `CharIterator`. + absl::string_view current_chunk_; + // The current leaf, or `nullptr` if the iterator points to short data. + // If the current chunk is a substring node, current_leaf_ points to the + // underlying flat or external node. + absl::cord_internal::CordRep* current_leaf_ = nullptr; + // The number of bytes left in the `Cord` over which we are iterating. + size_t bytes_remaining_ = 0; + absl::InlinedVector<absl::cord_internal::CordRep*, 4> + stack_of_right_children_; + }; // Cord::ChunkIterator::chunk_begin() // @@ -504,7 +427,16 @@ class Cord { // // Implementation note: `ChunkRange` is simply a convenience wrapper over // `Cord::chunk_begin()` and `Cord::chunk_end()`. - using ChunkRange = GenericChunkRange<ChunkIterator>; + class ChunkRange { + public: + explicit ChunkRange(const Cord* cord) : cord_(cord) {} + + ChunkIterator begin() const; + ChunkIterator end() const; + + private: + const Cord* cord_; + }; // Cord::Chunks() // @@ -800,14 +732,6 @@ class Cord { static bool GetFlatAux(absl::cord_internal::CordRep* rep, absl::string_view* fragment); - // Iterators for use inside Cord implementation - using InternalChunkIterator = - GenericChunkIterator<cord_internal::CordTreeMutablePath>; - using InternalChunkRange = GenericChunkRange<InternalChunkIterator>; - - InternalChunkIterator internal_chunk_begin() const; - InternalChunkRange InternalChunks() const; - // Helper for ForEachChunk() static void ForEachChunkAux( absl::cord_internal::CordRep* rep, @@ -842,11 +766,6 @@ class Cord { void AppendImpl(C&& src); }; -extern template class Cord::GenericChunkIterator< - cord_internal::CordTreeMutablePath>; -extern template class Cord::GenericChunkIterator< - cord_internal::CordTreeDynamicPath>; - ABSL_NAMESPACE_END } // namespace absl @@ -1186,9 +1105,7 @@ inline bool Cord::StartsWith(absl::string_view rhs) const { return EqualsImpl(rhs, rhs_size); } -template <typename StorageType> -inline Cord::GenericChunkIterator<StorageType>::GenericChunkIterator( - const Cord* cord) +inline Cord::ChunkIterator::ChunkIterator(const Cord* cord) : bytes_remaining_(cord->size()) { if (cord->empty()) return; if (cord->contents_.is_tree()) { @@ -1199,50 +1116,37 @@ inline Cord::GenericChunkIterator<StorageType>::GenericChunkIterator( } } -template <typename StorageType> -inline Cord::GenericChunkIterator<StorageType> -Cord::GenericChunkIterator<StorageType>::operator++(int) { - GenericChunkIterator tmp(*this); +inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) { + ChunkIterator tmp(*this); operator++(); return tmp; } -template <typename StorageType> -inline bool Cord::GenericChunkIterator<StorageType>::operator==( - const GenericChunkIterator<StorageType>& other) const { +inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const { return bytes_remaining_ == other.bytes_remaining_; } -template <typename StorageType> -inline bool Cord::GenericChunkIterator<StorageType>::operator!=( - const GenericChunkIterator<StorageType>& other) const { +inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const { return !(*this == other); } -template <typename StorageType> -inline typename Cord::GenericChunkIterator<StorageType>::reference -Cord::GenericChunkIterator<StorageType>::operator*() const { +inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const { ABSL_HARDENING_ASSERT(bytes_remaining_ != 0); return current_chunk_; } -template <typename StorageType> -inline typename Cord::GenericChunkIterator<StorageType>::pointer -Cord::GenericChunkIterator<StorageType>::operator->() const { +inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const { ABSL_HARDENING_ASSERT(bytes_remaining_ != 0); return ¤t_chunk_; } -template <typename StorageType> -inline void Cord::GenericChunkIterator<StorageType>::RemoveChunkPrefix( - size_t n) { +inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) { assert(n < current_chunk_.size()); current_chunk_.remove_prefix(n); bytes_remaining_ -= n; } -template <typename StorageType> -inline void Cord::GenericChunkIterator<StorageType>::AdvanceBytes(size_t n) { +inline void Cord::ChunkIterator::AdvanceBytes(size_t n) { if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) { RemoveChunkPrefix(n); } else if (n != 0) { @@ -1256,6 +1160,14 @@ inline Cord::ChunkIterator Cord::chunk_begin() const { inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); } +inline Cord::ChunkIterator Cord::ChunkRange::begin() const { + return cord_->chunk_begin(); +} + +inline Cord::ChunkIterator Cord::ChunkRange::end() const { + return cord_->chunk_end(); +} + inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); } inline Cord::CharIterator& Cord::CharIterator::operator++() { diff --git a/absl/strings/cord_test.cc b/absl/strings/cord_test.cc index 0ec93b4c45b9..49178498feae 100644 --- a/absl/strings/cord_test.cc +++ b/absl/strings/cord_test.cc @@ -1403,53 +1403,6 @@ TEST(CordChunkIterator, Operations) { VerifyChunkIterator(subcords, 128); } -TEST(CordChunkIterator, MaxLengthFullTree) { - // Start with a 1-byte cord, and then double its length in a loop. We should - // be able to do this until the point where we would overflow size_t. - - absl::Cord cord; - size_t size = 1; - AddExternalMemory("x", &cord); - EXPECT_EQ(cord.size(), size); - - const int kCordLengthDoublingLimit = std::numeric_limits<size_t>::digits - 1; - for (int i = 0; i < kCordLengthDoublingLimit; ++i) { - cord.Prepend(absl::Cord(cord)); - size <<= 1; - - EXPECT_EQ(cord.size(), size); - - auto chunk_it = cord.chunk_begin(); - EXPECT_EQ(*chunk_it, "x"); - } - - EXPECT_DEATH_IF_SUPPORTED( - (cord.Prepend(absl::Cord(cord)), *cord.chunk_begin()), - "Cord is too long"); -} - -TEST(CordChunkIterator, MaxDepth) { - // By reusing nodes, it's possible in pathological cases to build a Cord that - // exceeds both the maximum permissible length and depth. In this case, the - // violation of the maximum depth is reported. - absl::Cord left_child; - AddExternalMemory("x", &left_child); - absl::Cord root = left_child; - - for (int i = 0; i < absl::cord_internal::MaxCordDepth() - 2; ++i) { - size_t new_size = left_child.size() + root.size(); - root.Prepend(left_child); - EXPECT_EQ(root.size(), new_size); - - auto chunk_it = root.chunk_begin(); - EXPECT_EQ(*chunk_it, "x"); - - std::swap(left_child, root); - } - - EXPECT_DEATH_IF_SUPPORTED(root.Prepend(left_child), "Cord is too long"); -} - TEST(CordCharIterator, Traits) { static_assert(std::is_copy_constructible<absl::Cord::CharIterator>::value, ""); |