(*
Rewriting the Python implementation of the register VM in OCaml to see how
how much imperative/mutative programming OCaml allows.
Note: Some of this code is intentionally not written in a functional style
because one of the goals was to see how similar this OCaml implementation
could be to the Python implementation.
Conclusion: It's pretty easy to switch between the two languages.
Usage: Recommended compilation settings I hastily found online:
$ ocamlopt -w +A-42-48 -warn-error +A-3-44 ./register_vm.ml && ./a.out
Formatting:
$ ocamlformat --inplace --enable-outside-detected-project ./register_vm.ml
*)
type reg = X | Y | Res
type binop = int -> int -> int
type ast =
| Const of int
| Add of ast * ast
| Sub of ast * ast
| Mul of ast * ast
| Div of ast * ast
type opcode0 =
| Op0AssignRegLit of reg * int
| Op0AssignRegReg of reg * reg
| Op0BinOp of binop * reg * reg * reg
| Op0PushReg of reg
| Op0PopAndSet of reg
| Op0Null
type opcode1 =
| Op1AssignRegLit of int * int
| Op1AssignRegReg of int * int
| Op1BinOp of (int -> int -> int) * int * int * int
| Op1PushReg of int
| Op1PopAndSet of int
| Op1Null
type opcodes0 = opcode0 array
type opcodes1 = opcode1 array
let registers : int array = Array.make 8 0
let stack : int Stack.t = Stack.create ()
let reg_idx (r : reg) : int = match r with X -> 0 | Y -> 1 | Res -> 2
let reg_name (r : reg) : string =
match r with X -> "x" | Y -> "y" | Res -> "res"
let print_opcodes0 (xs : opcodes0) : opcodes0 =
let print_opcode x =
match x with
| Op0AssignRegLit (r, x) -> Printf.printf "%s <- %d\n" (reg_name r) x
| Op0AssignRegReg (dst, src) ->
Printf.printf "%s <- $%s\n" (reg_name dst) (reg_name src)
| Op0PushReg src -> Printf.printf "push $%s\n" (reg_name src)
| Op0PopAndSet dst -> Printf.printf "%s <- pop\n" (reg_name dst)
| Op0BinOp (_, lhs, rhs, dst) ->
Printf.printf "%s <- $%s ? $%s\n" (reg_name dst) (reg_name lhs)
(reg_name rhs)
| Op0Null -> ()
in
Array.iter print_opcode xs;
xs
(* Mutatively add xs to ys *)
let add_ops (xs : opcodes0) (ys : opcodes0) (i : int ref) : unit =
let j = ref 0 in
while xs.(!j) != Op0Null do
ys.(!i) <- xs.(!j);
i := !i + 1;
j := !j + 1
done
let rec compile (ast : ast) : opcodes0 =
let result : opcodes0 = Array.make 20 Op0Null and i : int ref = ref 0 in
(match ast with
| Const x ->
result.(!i) <- Op0AssignRegLit (Res, x);
i := !i + 1
| Add (lhs, rhs) -> compile_bin_op ( + ) lhs rhs result i
| Sub (lhs, rhs) -> compile_bin_op ( - ) lhs rhs result i
| Mul (lhs, rhs) -> compile_bin_op ( * ) lhs rhs result i
| Div (lhs, rhs) -> compile_bin_op ( / ) lhs rhs result i);
result
and compile_bin_op (f : binop) (lhs : ast) (rhs : ast) (result : opcodes0)
(i : int ref) =
add_ops (compile lhs) result i;
result.(!i) <- Op0PushReg Res;
i := !i + 1;
add_ops (compile rhs) result i;
result.(!i + 1) <- Op0PopAndSet X;
result.(!i) <- Op0AssignRegReg (Y, Res);
result.(!i + 2) <- Op0BinOp (f, X, Y, Res);
i := !i + 3
let compile_registers (xs : opcodes0) : opcodes1 =
let do_compile x =
match x with
| Op0AssignRegLit (dst, x) -> Op1AssignRegLit (reg_idx dst, x)
| Op0AssignRegReg (dst, src) -> Op1AssignRegReg (reg_idx dst, reg_idx src)
| Op0PushReg src -> Op1PushReg (reg_idx src)
| Op0PopAndSet dst -> Op1PopAndSet (reg_idx dst)
| Op0BinOp (f, lhs, rhs, dst) ->
Op1BinOp (f, reg_idx lhs, reg_idx rhs, reg_idx dst)
| Op0Null -> Op1Null
in
Array.map do_compile xs
let eval (xs : opcodes1) : int =
let ip = ref 0 in
while !ip < Array.length xs do
match xs.(!ip) with
| Op1AssignRegLit (dst, x) ->
registers.(dst) <- x;
ip := !ip + 1
| Op1AssignRegReg (dst, src) ->
registers.(dst) <- registers.(src);
ip := !ip + 1
| Op1PushReg src ->
Stack.push registers.(src) stack;
ip := !ip + 1
| Op1PopAndSet dst ->
registers.(dst) <- Stack.pop stack;
ip := !ip + 1
| Op1BinOp (f, lhs, rhs, dst) ->
registers.(dst) <- f registers.(lhs) registers.(rhs);
ip := !ip + 1
| Op1Null -> ip := !ip + 1
done;
registers.(reg_idx Res)
;;
Add (Mul (Const 2, Div (Const 100, Const 2)), Const 5)
|> compile |> print_opcodes0 |> compile_registers |> eval |> print_int