use crate::treewalk::errors::{Error, ErrorKind};
use crate::treewalk::parser::{self, Block, Expr, Literal, Statement};
use crate::treewalk::resolver;
use crate::treewalk::scanner::{self, TokenKind};
use crate::Lox;
use std::collections::HashMap;
use std::rc::Rc;
use std::sync::RwLock;
// Implementation of built-in functions.
mod builtins;
#[cfg(test)]
mod tests;
// Tree-walk interpreter
// Representation of all callables, including builtins & user-defined
// functions.
#[derive(Clone, Debug)]
pub enum Callable {
Builtin(&'static dyn builtins::Builtin),
Function {
func: Rc<parser::Function>,
closure: Rc<RwLock<Environment>>,
},
}
impl Callable {
fn arity(&self) -> usize {
match self {
Callable::Builtin(builtin) => builtin.arity(),
Callable::Function { func, .. } => func.params.len(),
}
}
fn call(&self, lox: &mut Interpreter, args: Vec<Value>) -> Result<Value, Error> {
match self {
Callable::Builtin(builtin) => builtin.call(args),
Callable::Function { func, closure } => {
let mut fn_env: Environment = Default::default();
fn_env.enclosing = Some(closure.clone());
for (param, value) in func.params.iter().zip(args.into_iter()) {
fn_env.define(param, value)?;
}
let result =
lox.interpret_block_with_env(Some(Rc::new(RwLock::new(fn_env))), &func.body);
match result {
// extract returned values if applicable
Err(Error {
kind: ErrorKind::FunctionReturn(value),
..
}) => Ok(value),
// otherwise just return the result itself
_ => result,
}
}
}
}
}
// Representation of an in-language value.
#[derive(Clone, Debug)]
pub enum Value {
Literal(Literal),
Callable(Callable),
}
impl PartialEq for Value {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Value::Literal(lhs), Value::Literal(rhs)) => lhs == rhs,
// functions do not have equality
_ => false,
}
}
}
impl From<Literal> for Value {
fn from(lit: Literal) -> Value {
Value::Literal(lit)
}
}
impl Value {
fn expect_literal(self) -> Result<Literal, Error> {
match self {
Value::Literal(lit) => Ok(lit),
_ => unimplemented!(), // which error? which line?
}
}
}
#[derive(Debug, Default)]
pub struct Environment {
enclosing: Option<Rc<RwLock<Environment>>>,
values: HashMap<String, Value>,
}
impl Environment {
fn define(&mut self, name: &scanner::Token, value: Value) -> Result<(), Error> {
let ident = identifier_str(name)?;
self.values.insert(ident.into(), value);
Ok(())
}
fn get(&self, ident: &str, line: usize, depth: usize) -> Result<Value, Error> {
if depth > 0 {
match &self.enclosing {
None => {
return Err(Error {
line,
kind: ErrorKind::InternalError(format!(
"invalid depth {} for {}",
depth, ident
)),
})
}
Some(parent) => {
let env = parent.read().expect("fatal: environment lock poisoned");
return env.get(ident, line, depth - 1);
}
}
}
self.values
.get(ident)
.map(Clone::clone)
.ok_or_else(|| Error {
line,
kind: ErrorKind::UndefinedVariable(ident.into()),
})
}
fn assign(&mut self, name: &scanner::Token, value: Value) -> Result<(), Error> {
let ident = identifier_str(name)?;
match self.values.get_mut(ident) {
Some(target) => {
*target = value;
Ok(())
}
None => {
if let Some(parent) = &self.enclosing {
return parent.write().unwrap().assign(name, value);
}
Err(Error {
line: name.line,
kind: ErrorKind::UndefinedVariable(ident.into()),
})
}
}
}
}
fn identifier_str(name: &scanner::Token) -> Result<&str, Error> {
if let TokenKind::Identifier(ident) = &name.kind {
Ok(ident)
} else {
Err(Error {
line: name.line,
kind: ErrorKind::InternalError("unexpected identifier kind".into()),
})
}
}
#[derive(Debug)]
pub struct Interpreter {
env: Rc<RwLock<Environment>>,
}
impl Lox for Interpreter {
type Value = Value;
type Error = Error;
/// Create a new interpreter and configure the initial global
/// variable set.
fn create() -> Self {
let mut globals = HashMap::new();
globals.insert(
"clock".into(),
Value::Callable(Callable::Builtin(&builtins::Clock {})),
);
Interpreter {
env: Rc::new(RwLock::new(Environment {
enclosing: None,
values: globals,
})),
}
}
fn interpret(&mut self, code: String) -> Result<Value, Vec<Error>> {
let chars: Vec<char> = code.chars().collect();
let mut program = scanner::scan(&chars)
.map_err(|errors| errors.into_iter().map(Into::into).collect())
.and_then(|tokens| parser::parse(tokens))?;
let globals = self
.env
.read()
.expect("static globals lock poisoned")
.values
.keys()
.map(Clone::clone)
.collect::<Vec<String>>();
resolver::resolve(&globals, &mut program).map_err(|e| vec![e])?;
self.interpret_block_with_env(None, &program)
.map_err(|e| vec![e])
}
}
impl Interpreter {
// Environment modification helpers
fn define_var(&mut self, name: &scanner::Token, value: Value) -> Result<(), Error> {
self.env
.write()
.expect("environment lock is poisoned")
.define(name, value)
}
fn assign_var(&mut self, name: &scanner::Token, value: Value) -> Result<(), Error> {
self.env
.write()
.expect("environment lock is poisoned")
.assign(name, value)
}
fn get_var(&mut self, var: &parser::Variable) -> Result<Value, Error> {
let ident = identifier_str(&var.name)?;
let depth = var.depth.ok_or_else(|| Error {
line: var.name.line,
kind: ErrorKind::UndefinedVariable(ident.into()),
})?;
self.env
.read()
.expect("environment lock is poisoned")
.get(ident, var.name.line, depth)
}
/// Interpret the block in the supplied environment. If no
/// environment is supplied, a new one is created using the
/// current one as its parent.
fn interpret_block_with_env(
&mut self,
env: Option<Rc<RwLock<Environment>>>,
block: &parser::Block,
) -> Result<Value, Error> {
let env = match env {
Some(env) => env,
None => {
let env: Rc<RwLock<Environment>> = Default::default();
set_enclosing_env(&env, self.env.clone());
env
}
};
let previous = std::mem::replace(&mut self.env, env);
let result = self.interpret_block(block);
// Swap it back, discarding the child env.
self.env = previous;
return result;
}
fn interpret_block(&mut self, program: &Block) -> Result<Value, Error> {
let mut value = Value::Literal(Literal::Nil);
for stmt in program {
value = self.interpret_stmt(stmt)?;
}
Ok(value)
}
fn interpret_stmt(&mut self, stmt: &Statement) -> Result<Value, Error> {
let value = match stmt {
Statement::Expr(expr) => self.eval(expr)?,
Statement::Print(expr) => {
let result = self.eval(expr)?;
let output = format!("{:?}", result);
println!("{}", output);
Value::Literal(Literal::String(output))
}
Statement::Var(var) => return self.interpret_var(var),
Statement::Block(block) => return self.interpret_block_with_env(None, block),
Statement::If(if_stmt) => return self.interpret_if(if_stmt),
Statement::While(while_stmt) => return self.interpret_while(while_stmt),
Statement::Function(func) => return self.interpret_function(func.clone()),
Statement::Return(ret) => {
return Err(Error {
line: 0,
kind: ErrorKind::FunctionReturn(self.eval(&ret.value)?),
})
}
};
Ok(value)
}
fn interpret_var(&mut self, var: &parser::Var) -> Result<Value, Error> {
let init = var.initialiser.as_ref().ok_or_else(|| Error {
line: var.name.line,
kind: ErrorKind::InternalError("missing variable initialiser".into()),
})?;
let value = self.eval(init)?;
self.define_var(&var.name, value.clone())?;
Ok(value)
}
fn interpret_if(&mut self, if_stmt: &parser::If) -> Result<Value, Error> {
let condition = self.eval(&if_stmt.condition)?;
if eval_truthy(&condition) {
self.interpret_stmt(&if_stmt.then_branch)
} else if let Some(else_branch) = &if_stmt.else_branch {
self.interpret_stmt(else_branch)
} else {
Ok(Value::Literal(Literal::Nil))
}
}
fn interpret_while(&mut self, stmt: &parser::While) -> Result<Value, Error> {
let mut value = Value::Literal(Literal::Nil);
while eval_truthy(&self.eval(&stmt.condition)?) {
value = self.interpret_stmt(&stmt.body)?;
}
Ok(value)
}
fn interpret_function(&mut self, func: Rc<parser::Function>) -> Result<Value, Error> {
let name = func.name.clone();
let value = Value::Callable(Callable::Function {
func,
closure: self.env.clone(),
});
self.define_var(&name, value.clone())?;
Ok(value)
}
fn eval(&mut self, expr: &Expr) -> Result<Value, Error> {
match expr {
Expr::Assign(assign) => self.eval_assign(assign),
Expr::Literal(lit) => Ok(lit.clone().into()),
Expr::Grouping(grouping) => self.eval(&*grouping.0),
Expr::Unary(unary) => self.eval_unary(unary),
Expr::Binary(binary) => self.eval_binary(binary),
Expr::Variable(var) => self.get_var(var),
Expr::Logical(log) => self.eval_logical(log),
Expr::Call(call) => self.eval_call(call),
}
}
fn eval_unary(&mut self, expr: &parser::Unary) -> Result<Value, Error> {
let right = self.eval(&*expr.right)?;
match (&expr.operator.kind, right) {
(TokenKind::Minus, Value::Literal(Literal::Number(num))) => {
Ok(Literal::Number(-num).into())
}
(TokenKind::Bang, right) => Ok(Literal::Boolean(!eval_truthy(&right)).into()),
(op, right) => Err(Error {
line: expr.operator.line,
kind: ErrorKind::TypeError(format!(
"Operator '{:?}' can not be called with argument '{:?}'",
op, right
)),
}),
}
}
fn eval_binary(&mut self, expr: &parser::Binary) -> Result<Value, Error> {
let left = self.eval(&*expr.left)?.expect_literal()?;
let right = self.eval(&*expr.right)?.expect_literal()?;
let result = match (&expr.operator.kind, left, right) {
// Numeric
(TokenKind::Minus, Literal::Number(l), Literal::Number(r)) => Literal::Number(l - r),
(TokenKind::Slash, Literal::Number(l), Literal::Number(r)) => Literal::Number(l / r),
(TokenKind::Star, Literal::Number(l), Literal::Number(r)) => Literal::Number(l * r),
(TokenKind::Plus, Literal::Number(l), Literal::Number(r)) => Literal::Number(l + r),
// Strings
(TokenKind::Plus, Literal::String(l), Literal::String(r)) => {
Literal::String(format!("{}{}", l, r))
}
// Comparators (on numbers only?)
(TokenKind::Greater, Literal::Number(l), Literal::Number(r)) => Literal::Boolean(l > r),
(TokenKind::GreaterEqual, Literal::Number(l), Literal::Number(r)) => {
Literal::Boolean(l >= r)
}
(TokenKind::Less, Literal::Number(l), Literal::Number(r)) => Literal::Boolean(l < r),
(TokenKind::LessEqual, Literal::Number(l), Literal::Number(r)) => {
Literal::Boolean(l <= r)
}
// Equality
(TokenKind::Equal, l, r) => Literal::Boolean(l == r),
(TokenKind::BangEqual, l, r) => Literal::Boolean(l != r),
(op, left, right) => {
return Err(Error {
line: expr.operator.line,
kind: ErrorKind::TypeError(format!(
"Operator '{:?}' can not be called with arguments '({:?}, {:?})'",
op, left, right
)),
})
}
};
Ok(result.into())
}
fn eval_assign(&mut self, assign: &parser::Assign) -> Result<Value, Error> {
let value = self.eval(&assign.value)?;
self.assign_var(&assign.name, value.clone())?;
Ok(value)
}
fn eval_logical(&mut self, logical: &parser::Logical) -> Result<Value, Error> {
let left = eval_truthy(&self.eval(&logical.left)?);
let right = eval_truthy(&self.eval(&logical.right)?);
match &logical.operator.kind {
TokenKind::And => Ok(Literal::Boolean(left && right).into()),
TokenKind::Or => Ok(Literal::Boolean(left || right).into()),
kind => Err(Error {
line: logical.operator.line,
kind: ErrorKind::InternalError(format!("Invalid logical operator: {:?}", kind)),
}),
}
}
fn eval_call(&mut self, call: &parser::Call) -> Result<Value, Error> {
let callable = match self.eval(&call.callee)? {
Value::Callable(c) => c,
Value::Literal(v) => {
return Err(Error {
line: call.paren.line,
kind: ErrorKind::RuntimeError(format!("not callable: {:?}", v)),
})
}
};
let mut args = vec![];
for arg in &call.args {
args.push(self.eval(arg)?);
}
if callable.arity() != args.len() {
return Err(Error {
line: call.paren.line,
kind: ErrorKind::RuntimeError(format!(
"Expected {} arguments, but got {}",
callable.arity(),
args.len(),
)),
});
}
callable.call(self, args)
}
}
// Interpreter functions not dependent on interpreter-state.
fn eval_truthy(lit: &Value) -> bool {
if let Value::Literal(lit) = lit {
match lit {
Literal::Nil => false,
Literal::Boolean(b) => *b,
_ => true,
}
} else {
false
}
}
fn set_enclosing_env(this: &RwLock<Environment>, parent: Rc<RwLock<Environment>>) {
this.write()
.expect("environment lock is poisoned")
.enclosing = Some(parent);
}