use crate::errors::{Error, ErrorKind};
use crate::parser::{self, Block, Expr, Literal, Statement};
use crate::scanner::{self, TokenKind};
use std::collections::HashMap;
use std::rc::Rc;
use std::sync::RwLock;
// Tree-walk interpreter
#[derive(Debug, Default)]
struct Environment {
enclosing: Option<Rc<RwLock<Environment>>>,
values: HashMap<String, Literal>,
}
impl Environment {
fn define(&mut self, name: &scanner::Token, value: Literal) -> Result<(), Error> {
let ident = identifier_str(name)?;
self.values.insert(ident.into(), value);
Ok(())
}
fn get(&self, name: &parser::Variable) -> Result<Literal, Error> {
let ident = identifier_str(&name.0)?;
self.values
.get(ident)
.map(Clone::clone)
.ok_or_else(|| Error {
line: name.0.line,
kind: ErrorKind::UndefinedVariable(ident.into()),
})
.or_else(|err| {
if let Some(parent) = &self.enclosing {
parent.read().unwrap().get(name)
} else {
Err(err)
}
})
}
fn assign(&mut self, name: &scanner::Token, value: Literal) -> Result<(), Error> {
let ident = identifier_str(name)?;
match self.values.get_mut(ident) {
Some(target) => {
*target = value;
Ok(())
}
None => {
if let Some(parent) = &self.enclosing {
return parent.write().unwrap().assign(name, value);
}
Err(Error {
line: name.line,
kind: ErrorKind::UndefinedVariable(ident.into()),
})
}
}
}
}
fn identifier_str<'a>(name: &'a scanner::Token) -> Result<&'a str, Error> {
if let TokenKind::Identifier(ident) = &name.kind {
Ok(ident)
} else {
Err(Error {
line: name.line,
kind: ErrorKind::InternalError("unexpected identifier kind".into()),
})
}
}
#[derive(Debug, Default)]
pub struct Interpreter {
env: Rc<RwLock<Environment>>,
}
impl Interpreter {
// Environment modification helpers
fn define_var(&mut self, name: &scanner::Token, value: Literal) -> Result<(), Error> {
self.env
.write()
.expect("environment lock is poisoned")
.define(name, value)
}
fn assign_var(&mut self, name: &scanner::Token, value: Literal) -> Result<(), Error> {
self.env
.write()
.expect("environment lock is poisoned")
.assign(name, value)
}
fn get_var(&mut self, var: &parser::Variable) -> Result<Literal, Error> {
self.env
.read()
.expect("environment lock is poisoned")
.get(var)
}
fn set_enclosing(&mut self, parent: Rc<RwLock<Environment>>) {
self.env
.write()
.expect("environment lock is poisoned")
.enclosing = Some(parent);
}
// Interpreter itself
pub fn interpret<'a>(&mut self, program: &Block<'a>) -> Result<(), Error> {
for stmt in program {
self.interpret_stmt(stmt)?;
}
Ok(())
}
fn interpret_stmt<'a>(&mut self, stmt: &Statement<'a>) -> Result<(), Error> {
match stmt {
Statement::Expr(expr) => {
self.eval(expr)?;
}
Statement::Print(expr) => {
let result = self.eval(expr)?;
println!("{:?}", result)
}
Statement::Var(var) => return self.interpret_var(var),
Statement::Block(block) => return self.interpret_block(block),
Statement::If(if_stmt) => return self.interpret_if(if_stmt),
Statement::While(while_stmt) => return self.interpret_while(while_stmt),
}
Ok(())
}
fn interpret_var<'a>(&mut self, var: &parser::Var<'a>) -> Result<(), Error> {
let init = var.initialiser.as_ref().ok_or_else(|| Error {
line: var.name.line,
kind: ErrorKind::InternalError("missing variable initialiser".into()),
})?;
let value = self.eval(init)?;
self.define_var(&var.name, value)?;
return Ok(());
}
fn interpret_block<'a>(&mut self, block: &parser::Block<'a>) -> Result<(), Error> {
// Initialise a new environment and point it at the parent
// (this is a bit tedious because we need to wrap it in and
// out of the Rc).
//
// TODO(tazjin): Refactor this to use Rc on the interpreter itself.
let previous = std::mem::replace(&mut self.env, Default::default());
self.set_enclosing(previous.clone());
let result = self.interpret(block);
// Swap it back, discarding the child env.
self.env = previous;
return result;
}
fn interpret_if<'a>(&mut self, if_stmt: &parser::If<'a>) -> Result<(), Error> {
let condition = self.eval(&if_stmt.condition)?;
if eval_truthy(&condition) {
self.interpret_stmt(&if_stmt.then_branch)
} else if let Some(else_branch) = &if_stmt.else_branch {
self.interpret_stmt(else_branch)
} else {
Ok(())
}
}
fn interpret_while<'a>(&mut self, stmt: &parser::While<'a>) -> Result<(), Error> {
while eval_truthy(&self.eval(&stmt.condition)?) {
self.interpret_stmt(&stmt.body)?;
}
Ok(())
}
fn eval<'a>(&mut self, expr: &Expr<'a>) -> Result<Literal, Error> {
match expr {
Expr::Assign(assign) => self.eval_assign(assign),
Expr::Literal(lit) => Ok(lit.clone()),
Expr::Grouping(grouping) => self.eval(&*grouping.0),
Expr::Unary(unary) => self.eval_unary(unary),
Expr::Binary(binary) => self.eval_binary(binary),
Expr::Variable(var) => self.get_var(var),
Expr::Logical(log) => self.eval_logical(log),
}
}
fn eval_unary<'a>(&mut self, expr: &parser::Unary<'a>) -> Result<Literal, Error> {
let right = self.eval(&*expr.right)?;
match (&expr.operator.kind, right) {
(TokenKind::Minus, Literal::Number(num)) => Ok(Literal::Number(-num)),
(TokenKind::Bang, right) => Ok(Literal::Boolean(!eval_truthy(&right))),
(op, right) => Err(Error {
line: expr.operator.line,
kind: ErrorKind::TypeError(format!(
"Operator '{:?}' can not be called with argument '{:?}'",
op, right
)),
}),
}
}
fn eval_binary<'a>(&mut self, expr: &parser::Binary<'a>) -> Result<Literal, Error> {
let left = self.eval(&*expr.left)?;
let right = self.eval(&*expr.right)?;
let result = match (&expr.operator.kind, left, right) {
// Numeric
(TokenKind::Minus, Literal::Number(l), Literal::Number(r)) => Literal::Number(l - r),
(TokenKind::Slash, Literal::Number(l), Literal::Number(r)) => Literal::Number(l / r),
(TokenKind::Star, Literal::Number(l), Literal::Number(r)) => Literal::Number(l * r),
(TokenKind::Plus, Literal::Number(l), Literal::Number(r)) => Literal::Number(l + r),
// Strings
(TokenKind::Plus, Literal::String(l), Literal::String(r)) => {
Literal::String(format!("{}{}", l, r))
}
// Comparators (on numbers only?)
(TokenKind::Greater, Literal::Number(l), Literal::Number(r)) => Literal::Boolean(l > r),
(TokenKind::GreaterEqual, Literal::Number(l), Literal::Number(r)) => {
Literal::Boolean(l >= r)
}
(TokenKind::Less, Literal::Number(l), Literal::Number(r)) => Literal::Boolean(l < r),
(TokenKind::LessEqual, Literal::Number(l), Literal::Number(r)) => {
Literal::Boolean(l <= r)
}
// Equality
(TokenKind::Equal, l, r) => Literal::Boolean(l == r),
(TokenKind::BangEqual, l, r) => Literal::Boolean(l != r),
(op, left, right) => {
return Err(Error {
line: expr.operator.line,
kind: ErrorKind::TypeError(format!(
"Operator '{:?}' can not be called with arguments '({:?}, {:?})'",
op, left, right
)),
})
}
};
Ok(result)
}
fn eval_assign<'a>(&mut self, assign: &parser::Assign<'a>) -> Result<Literal, Error> {
let value = self.eval(&assign.value)?;
self.assign_var(&assign.name, value.clone())?;
Ok(value)
}
fn eval_logical<'a>(&mut self, logical: &parser::Logical<'a>) -> Result<Literal, Error> {
let left = eval_truthy(&self.eval(&logical.left)?);
let right = eval_truthy(&self.eval(&logical.right)?);
match &logical.operator.kind {
TokenKind::And => Ok(Literal::Boolean(left && right)),
TokenKind::Or => Ok(Literal::Boolean(left || right)),
kind => Err(Error {
line: logical.operator.line,
kind: ErrorKind::InternalError(format!("Invalid logical operator: {:?}", kind)),
}),
}
}
}
// Interpreter functions not dependent on interpreter-state.
fn eval_truthy(lit: &Literal) -> bool {
match lit {
Literal::Nil => false,
Literal::Boolean(b) => *b,
_ => true,
}
}