use super::chunk::Chunk;
use super::errors::{Error, ErrorKind, LoxResult};
use super::interner::{InternedStr, Interner};
use super::opcode::{CodeIdx, CodeOffset, ConstantIdx, OpCode, StackIdx};
use super::value::Value;
use crate::scanner::{self, Token, TokenKind};
#[cfg(feature = "disassemble")]
use super::chunk;
#[derive(Debug)]
enum Depth {
Unitialised,
At(usize),
}
impl Depth {
fn above(&self, theirs: usize) -> bool {
match self {
Depth::Unitialised => false,
Depth::At(ours) => *ours > theirs,
}
}
fn below(&self, theirs: usize) -> bool {
match self {
Depth::Unitialised => false,
Depth::At(ours) => *ours < theirs,
}
}
}
#[derive(Debug)]
struct Local {
name: Token,
depth: Depth,
}
#[derive(Debug, Default)]
struct Locals {
locals: Vec<Local>,
scope_depth: usize,
}
struct Compiler<T: Iterator<Item = Token>> {
tokens: T,
chunk: Chunk,
panic: bool,
errors: Vec<Error>,
strings: Interner,
locals: Locals,
current: Option<Token>,
previous: Option<Token>,
}
#[derive(Debug, PartialEq, PartialOrd)]
enum Precedence {
None,
Assignment, // =
Or, // or
And, // and
Equality, // == !=
Comparison, // < > <= >=
Term, // + -
Factor, // * /
Unary, // ! -
Call, // . ()
Primary,
}
type ParseFn<T> = fn(&mut Compiler<T>) -> LoxResult<()>;
struct ParseRule<T: Iterator<Item = Token>> {
prefix: Option<ParseFn<T>>,
infix: Option<ParseFn<T>>,
precedence: Precedence,
}
impl<T: Iterator<Item = Token>> ParseRule<T> {
fn new(
prefix: Option<ParseFn<T>>,
infix: Option<ParseFn<T>>,
precedence: Precedence,
) -> Self {
ParseRule {
prefix,
infix,
precedence,
}
}
}
impl Precedence {
// Return the next highest precedence, if there is one.
fn next(&self) -> Self {
match self {
Precedence::None => Precedence::Assignment,
Precedence::Assignment => Precedence::Or,
Precedence::Or => Precedence::And,
Precedence::And => Precedence::Equality,
Precedence::Equality => Precedence::Comparison,
Precedence::Comparison => Precedence::Term,
Precedence::Term => Precedence::Factor,
Precedence::Factor => Precedence::Unary,
Precedence::Unary => Precedence::Call,
Precedence::Call => Precedence::Primary,
Precedence::Primary => panic!(
"invalid parser state: no higher precedence than Primary"
),
}
}
}
fn rule_for<T: Iterator<Item = Token>>(token: &TokenKind) -> ParseRule<T> {
match token {
TokenKind::LeftParen => {
ParseRule::new(Some(Compiler::grouping), None, Precedence::None)
}
TokenKind::Minus => ParseRule::new(
Some(Compiler::unary),
Some(Compiler::binary),
Precedence::Term,
),
TokenKind::Plus => {
ParseRule::new(None, Some(Compiler::binary), Precedence::Term)
}
TokenKind::Slash => {
ParseRule::new(None, Some(Compiler::binary), Precedence::Factor)
}
TokenKind::Star => {
ParseRule::new(None, Some(Compiler::binary), Precedence::Factor)
}
TokenKind::Number(_) => {
ParseRule::new(Some(Compiler::number), None, Precedence::None)
}
TokenKind::True => {
ParseRule::new(Some(Compiler::literal), None, Precedence::None)
}
TokenKind::False => {
ParseRule::new(Some(Compiler::literal), None, Precedence::None)
}
TokenKind::Nil => {
ParseRule::new(Some(Compiler::literal), None, Precedence::None)
}
TokenKind::Bang => {
ParseRule::new(Some(Compiler::unary), None, Precedence::None)
}
TokenKind::BangEqual => {
ParseRule::new(None, Some(Compiler::binary), Precedence::Equality)
}
TokenKind::EqualEqual => {
ParseRule::new(None, Some(Compiler::binary), Precedence::Equality)
}
TokenKind::Greater => {
ParseRule::new(None, Some(Compiler::binary), Precedence::Comparison)
}
TokenKind::GreaterEqual => {
ParseRule::new(None, Some(Compiler::binary), Precedence::Comparison)
}
TokenKind::Less => {
ParseRule::new(None, Some(Compiler::binary), Precedence::Comparison)
}
TokenKind::LessEqual => {
ParseRule::new(None, Some(Compiler::binary), Precedence::Comparison)
}
TokenKind::Identifier(_) => {
ParseRule::new(Some(Compiler::variable), None, Precedence::None)
}
TokenKind::String(_) => {
ParseRule::new(Some(Compiler::string), None, Precedence::None)
}
_ => ParseRule::new(None, None, Precedence::None),
}
}
macro_rules! consume {
( $self:ident, $expected:pat, $err:expr ) => {
match $self.current().kind {
$expected => $self.advance(),
_ => $self.error_at($self.current().line, $err),
}
};
}
impl<T: Iterator<Item = Token>> Compiler<T> {
fn compile(&mut self) -> LoxResult<()> {
self.advance();
while !self.match_token(&TokenKind::Eof) {
self.declaration()?;
}
self.end_compiler()
}
fn advance(&mut self) {
self.previous = self.current.take();
self.current = self.tokens.next();
}
fn expression(&mut self) -> LoxResult<()> {
self.parse_precedence(Precedence::Assignment)
}
fn var_declaration(&mut self) -> LoxResult<()> {
let idx = self.parse_variable()?;
if self.match_token(&TokenKind::Equal) {
self.expression()?;
} else {
self.emit_op(OpCode::OpNil);
}
self.expect_semicolon("expect ';' after variable declaration")?;
self.define_variable(idx)
}
fn define_variable(&mut self, var: Option<ConstantIdx>) -> LoxResult<()> {
if self.locals.scope_depth == 0 {
self.emit_op(OpCode::OpDefineGlobal(
var.expect("should be global"),
));
} else {
self.locals
.locals
.last_mut()
.expect("fatal: variable not yet added at definition")
.depth = Depth::At(self.locals.scope_depth);
}
Ok(())
}
fn declaration(&mut self) -> LoxResult<()> {
if self.match_token(&TokenKind::Var) {
self.var_declaration()?;
} else {
self.statement()?;
}
if self.panic {
self.synchronise();
}
Ok(())
}
fn statement(&mut self) -> LoxResult<()> {
if self.match_token(&TokenKind::Print) {
self.print_statement()
} else if self.match_token(&TokenKind::If) {
self.if_statement()
} else if self.match_token(&TokenKind::LeftBrace) {
self.begin_scope();
self.block()?;
self.end_scope();
Ok(())
} else {
self.expression_statement()
}
}
fn print_statement(&mut self) -> LoxResult<()> {
self.expression()?;
self.expect_semicolon("expect ';' after print statement")?;
self.emit_op(OpCode::OpPrint);
Ok(())
}
fn begin_scope(&mut self) {
self.locals.scope_depth += 1;
}
fn end_scope(&mut self) {
debug_assert!(self.locals.scope_depth > 0, "tried to end global scope");
self.locals.scope_depth -= 1;
while self.locals.locals.len() > 0
&& self.locals.locals[self.locals.locals.len() - 1]
.depth
.above(self.locals.scope_depth)
{
self.emit_op(OpCode::OpPop);
self.locals.locals.remove(self.locals.locals.len() - 1);
}
}
fn block(&mut self) -> LoxResult<()> {
while !self.check(&TokenKind::RightBrace)
&& !self.check(&TokenKind::Eof)
{
self.declaration()?;
}
consume!(
self,
TokenKind::RightBrace,
ErrorKind::ExpectedToken("Expected '}' after block.")
);
Ok(())
}
fn expression_statement(&mut self) -> LoxResult<()> {
self.expression()?;
self.expect_semicolon("expect ';' after expression")?;
// TODO(tazjin): Why did I add this originally?
// self.emit_op(OpCode::OpPop);
Ok(())
}
fn if_statement(&mut self) -> LoxResult<()> {
consume!(
self,
TokenKind::LeftParen,
ErrorKind::ExpectedToken("Expected '(' after 'if'")
);
self.expression()?;
consume!(
self,
TokenKind::RightParen,
ErrorKind::ExpectedToken("Expected ')' after condition")
);
let then_jump = self.emit_op(OpCode::OpJumpPlaceholder(false));
self.statement()?;
self.patch_jump(then_jump);
Ok(())
}
fn number(&mut self) -> LoxResult<()> {
if let TokenKind::Number(num) = self.previous().kind {
self.emit_constant(Value::Number(num), true);
return Ok(());
}
unreachable!("internal parser error: entered number() incorrectly")
}
fn grouping(&mut self) -> LoxResult<()> {
self.expression()?;
consume!(
self,
TokenKind::RightParen,
ErrorKind::ExpectedToken("Expected ')' after expression")
);
Ok(())
}
fn unary(&mut self) -> LoxResult<()> {
// TODO(tazjin): Avoid clone
let kind = self.previous().kind.clone();
// Compile the operand
self.parse_precedence(Precedence::Unary)?;
// Emit operator instruction
match kind {
TokenKind::Bang => self.emit_op(OpCode::OpNot),
TokenKind::Minus => self.emit_op(OpCode::OpNegate),
_ => unreachable!("only called for unary operator tokens"),
};
Ok(())
}
fn binary(&mut self) -> LoxResult<()> {
// Remember the operator
let operator = self.previous().kind.clone();
// Compile the right operand
let rule: ParseRule<T> = rule_for(&operator);
self.parse_precedence(rule.precedence.next())?;
// Emit operator instruction
match operator {
TokenKind::Minus => self.emit_op(OpCode::OpSubtract),
TokenKind::Plus => self.emit_op(OpCode::OpAdd),
TokenKind::Star => self.emit_op(OpCode::OpMultiply),
TokenKind::Slash => self.emit_op(OpCode::OpDivide),
TokenKind::BangEqual => {
self.emit_op(OpCode::OpEqual);
self.emit_op(OpCode::OpNot)
}
TokenKind::EqualEqual => self.emit_op(OpCode::OpEqual),
TokenKind::Greater => self.emit_op(OpCode::OpGreater),
TokenKind::GreaterEqual => {
self.emit_op(OpCode::OpLess);
self.emit_op(OpCode::OpNot)
}
TokenKind::Less => self.emit_op(OpCode::OpLess),
TokenKind::LessEqual => {
self.emit_op(OpCode::OpGreater);
self.emit_op(OpCode::OpNot)
}
_ => unreachable!("only called for binary operator tokens"),
};
Ok(())
}
fn literal(&mut self) -> LoxResult<()> {
match self.previous().kind {
TokenKind::Nil => self.emit_op(OpCode::OpNil),
TokenKind::True => self.emit_op(OpCode::OpTrue),
TokenKind::False => self.emit_op(OpCode::OpFalse),
_ => unreachable!("only called for literal value tokens"),
};
Ok(())
}
fn string(&mut self) -> LoxResult<()> {
let val = match &self.previous().kind {
TokenKind::String(s) => s.clone(),
_ => unreachable!("only called for strings"),
};
let id = self.strings.intern(val);
self.emit_constant(Value::String(id.into()), true);
Ok(())
}
fn named_variable(&mut self, name: Token) -> LoxResult<()> {
let local_idx = self.resolve_local(&name);
let ident = if local_idx.is_some() {
None
} else {
Some(self.identifier_constant(&name)?)
};
if self.match_token(&TokenKind::Equal) {
self.expression()?;
match local_idx {
Some(idx) => self.emit_op(OpCode::OpSetLocal(idx)),
None => self.emit_op(OpCode::OpSetGlobal(ident.unwrap())),
};
} else {
match local_idx {
Some(idx) => self.emit_op(OpCode::OpGetLocal(idx)),
None => self.emit_op(OpCode::OpGetGlobal(ident.unwrap())),
};
}
Ok(())
}
fn variable(&mut self) -> LoxResult<()> {
let name = self.previous().clone();
self.named_variable(name)
}
fn parse_precedence(&mut self, precedence: Precedence) -> LoxResult<()> {
self.advance();
let rule: ParseRule<T> = rule_for(&self.previous().kind);
let prefix_fn = match rule.prefix {
None => unimplemented!("expected expression or something, unclear"),
Some(func) => func,
};
prefix_fn(self)?;
while precedence <= rule_for::<T>(&self.current().kind).precedence {
self.advance();
match rule_for::<T>(&self.previous().kind).infix {
Some(func) => {
func(self)?;
}
None => {
unreachable!("invalid compiler state: error in parse rules")
}
}
}
Ok(())
}
fn identifier_str(&mut self, token: &Token) -> LoxResult<InternedStr> {
let ident = match &token.kind {
TokenKind::Identifier(ident) => ident.to_string(),
_ => {
return Err(Error {
line: self.current().line,
kind: ErrorKind::ExpectedToken("Expected identifier"),
})
}
};
Ok(self.strings.intern(ident))
}
fn identifier_constant(&mut self, name: &Token) -> LoxResult<ConstantIdx> {
let ident = self.identifier_str(name)?;
Ok(self.emit_constant(Value::String(ident.into()), false))
}
fn resolve_local(&self, name: &Token) -> Option<StackIdx> {
for (idx, local) in self.locals.locals.iter().enumerate().rev() {
if name.lexeme == local.name.lexeme {
if let Depth::Unitialised = local.depth {
// TODO(tazjin): *return* err
panic!("can't read variable in its own initialiser");
}
return Some(StackIdx(idx));
}
}
None
}
fn add_local(&mut self, name: Token) {
let local = Local {
name,
depth: Depth::Unitialised,
};
self.locals.locals.push(local);
}
fn declare_variable(&mut self) -> LoxResult<()> {
if self.locals.scope_depth == 0 {
return Ok(());
}
let name = self.previous().clone();
for local in self.locals.locals.iter().rev() {
if local.depth.below(self.locals.scope_depth) {
break;
}
if name.lexeme == local.name.lexeme {
return Err(Error {
kind: ErrorKind::VariableShadowed(name.lexeme.into()),
line: name.line,
});
}
}
self.add_local(name);
Ok(())
}
fn parse_variable(&mut self) -> LoxResult<Option<ConstantIdx>> {
consume!(
self,
TokenKind::Identifier(_),
ErrorKind::ExpectedToken("expected identifier")
);
self.declare_variable()?;
if self.locals.scope_depth > 0 {
return Ok(None);
}
let name = self.previous().clone();
let id = self.identifier_str(&name)?;
Ok(Some(self.emit_constant(Value::String(id.into()), false)))
}
fn current_chunk(&mut self) -> &mut Chunk {
&mut self.chunk
}
fn end_compiler(&mut self) -> LoxResult<()> {
self.emit_op(OpCode::OpReturn);
#[cfg(feature = "disassemble")]
{
chunk::disassemble_chunk(&self.chunk);
println!("== compilation finished ==");
}
Ok(())
}
fn emit_op(&mut self, op: OpCode) -> CodeIdx {
let line = self.previous().line;
self.current_chunk().add_op(op, line)
}
fn emit_constant(&mut self, val: Value, with_op: bool) -> ConstantIdx {
let idx = ConstantIdx(self.chunk.add_constant(val));
if with_op {
self.emit_op(OpCode::OpConstant(idx));
}
idx
}
fn patch_jump(&mut self, idx: CodeIdx) {
let offset = CodeOffset(self.chunk.code.len() - idx.0 - 1);
if let OpCode::OpJumpPlaceholder(false) = self.chunk.code[idx.0] {
self.chunk.code[idx.0] = OpCode::OpJumpIfFalse(offset);
return;
}
panic!(
"attempted to patch unsupported op: {:?}",
self.chunk.code[idx.0]
);
}
fn previous(&self) -> &Token {
self.previous
.as_ref()
.expect("invalid internal compiler state: missing previous token")
}
fn current(&self) -> &Token {
self.current
.as_ref()
.expect("invalid internal compiler state: missing current token")
}
fn error_at(&mut self, line: usize, kind: ErrorKind) {
if self.panic {
return;
}
self.panic = true;
self.errors.push(Error { kind, line })
}
fn match_token(&mut self, token: &TokenKind) -> bool {
if !self.check(token) {
return false;
}
self.advance();
true
}
fn check(&self, token: &TokenKind) -> bool {
return self.current().kind == *token;
}
fn synchronise(&mut self) {
self.panic = false;
while self.current().kind != TokenKind::Eof {
if self.previous().kind == TokenKind::Semicolon {
return;
}
match self.current().kind {
TokenKind::Class
| TokenKind::Fun
| TokenKind::Var
| TokenKind::For
| TokenKind::If
| TokenKind::While
| TokenKind::Print
| TokenKind::Return => return,
_ => {
self.advance();
}
}
}
}
fn expect_semicolon(&mut self, msg: &'static str) -> LoxResult<()> {
consume!(self, TokenKind::Semicolon, ErrorKind::ExpectedToken(msg));
Ok(())
}
}
pub fn compile(code: &str) -> Result<(Interner, Chunk), Vec<Error>> {
let chars = code.chars().collect::<Vec<char>>();
let tokens = scanner::scan(&chars).map_err(|errors| {
errors.into_iter().map(Into::into).collect::<Vec<Error>>()
})?;
let mut compiler = Compiler {
tokens: tokens.into_iter().peekable(),
chunk: Default::default(),
panic: false,
errors: vec![],
strings: Interner::with_capacity(1024),
locals: Default::default(),
current: None,
previous: None,
};
compiler.compile()?;
if compiler.errors.is_empty() {
Ok((compiler.strings, compiler.chunk))
} else {
Err(compiler.errors)
}
}