blob: f5c0a2bb85d0f9b3d9e33023de5eac55add2282c (
plain) (
tree)
|
|
use std::ops::Index;
use super::opcode::OpCode;
use super::value;
// In the book, this type is a hand-rolled dynamic array
// implementation in C. The main benefit of following that approach
// would be avoiding issues with OpCode variants not having equal
// sizes, but for the purpose of this I'm going to ignore that
// problem.
#[derive(Debug, Default)]
pub struct Chunk {
code: Vec<OpCode>,
constants: Vec<value::Value>,
}
impl Chunk {
pub fn add_op(&mut self, data: OpCode) -> usize {
let idx = self.code.len();
self.code.push(data);
idx
}
pub fn add_constant(&mut self, data: value::Value) -> usize {
let idx = self.constants.len();
self.constants.push(data);
idx
}
}
impl Index<usize> for Chunk {
type Output = OpCode;
fn index(&self, offset: usize) -> &Self::Output {
self.code.index(offset)
}
}
// Disassembler
pub fn disassemble(chunk: &Chunk, name: &str) {
println!("== {} ==", name);
for (idx, _) in chunk.code.iter().enumerate() {
disassemble_instruction(chunk, idx);
}
}
/// Print a single disassembled instruction at the specified offset.
/// Some instructions are printed "raw", others have special handling.
fn disassemble_instruction(chunk: &Chunk, offset: usize) {
print!("{:04} ", offset);
match &chunk[offset] {
OpCode::OpConstant(idx) => println!("OpConstant idx '{:?}'", chunk.constants[*idx]),
op => println!("{:?}", op),
}
}
|