{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
--------------------------------------------------------------------------------
module Xanthous.Generators.Level.Util
( MCells
, Cells
, CellM
, randInitialize
, initializeEmpty
, numAliveNeighborsM
, numAliveNeighbors
, fillOuterEdgesM
, cloneMArray
, floodFill
, regions
, fillAll
, fillAllM
, fromPoints
, fromPointsM
) where
--------------------------------------------------------------------------------
import Xanthous.Prelude hiding (Foldable, toList, for_)
--------------------------------------------------------------------------------
import Data.Array.ST
import Data.Array.Unboxed
import Control.Monad.ST
import Control.Monad.Random
import Data.Monoid
import Data.Foldable (Foldable, toList, for_)
import qualified Data.Set as Set
import Data.Semigroup.Foldable
import Linear.V2
--------------------------------------------------------------------------------
import Xanthous.Util (foldlMapM', maximum1, minimum1)
import Xanthous.Data (Dimensions, width, height)
--------------------------------------------------------------------------------
type MCells s = STUArray s (V2 Word) Bool
type Cells = UArray (V2 Word) Bool
type CellM g s a = RandT g (ST s) a
randInitialize :: RandomGen g => Dimensions -> Double -> CellM g s (MCells s)
randInitialize dims aliveChance = do
res <- initializeEmpty dims
for_ [0..dims ^. width] $ \i ->
for_ [0..dims ^. height] $ \j -> do
val <- (>= aliveChance) <$> getRandomR (0, 1)
lift $ writeArray res (V2 i j) val
pure res
initializeEmpty :: RandomGen g => Dimensions -> CellM g s (MCells s)
initializeEmpty dims =
lift $ newArray (0, V2 (dims ^. width) (dims ^. height)) False
-- | Returns the number of neighbors of the given point in the given array that
-- are True.
--
-- Behavior if point is out-of-bounds for the array is undefined, but will not
-- error
numAliveNeighborsM
:: forall a i m
. (MArray a Bool m, Ix i, Integral i)
=> a (V2 i) Bool
-> V2 i
-> m Word
numAliveNeighborsM cells pt@(V2 x y) = do
cellBounds <- getBounds cells
getSum <$> foldlMapM'
(fmap (Sum . fromIntegral . fromEnum) . boundedGet cellBounds)
neighborPositions
where
boundedGet :: (V2 i, V2 i) -> (Int, Int) -> m Bool
boundedGet bnds _
| not (inRange bnds pt)
= pure True
boundedGet (V2 minX minY, V2 maxX maxY) (i, j)
| (x <= minX && i < 0)
|| (y <= minY && j < 0)
|| (x >= maxX && i > 0)
|| (y >= maxY && j > 0)
= pure True
| otherwise =
let nx = fromIntegral $ fromIntegral x + i
ny = fromIntegral $ fromIntegral y + j
in readArray cells $ V2 nx ny
-- | Returns the number of neighbors of the given point in the given array that
-- are True.
--
-- Behavior if point is out-of-bounds for the array is undefined, but will not
-- error
numAliveNeighbors
:: forall a i
. (IArray a Bool, Ix i, Integral i)
=> a (V2 i) Bool
-> V2 i
-> Word
numAliveNeighbors cells pt@(V2 x y) =
let cellBounds = bounds cells
in getSum $ foldMap
(Sum . fromIntegral . fromEnum . boundedGet cellBounds)
neighborPositions
where
boundedGet :: (V2 i, V2 i) -> (Int, Int) -> Bool
boundedGet bnds _
| not (inRange bnds pt)
= True
boundedGet (V2 minX minY, V2 maxX maxY) (i, j)
| (x <= minX && i < 0)
|| (y <= minY && j < 0)
|| (x >= maxX && i > 0)
|| (y >= maxY && j > 0)
= True
| otherwise =
let nx = fromIntegral $ fromIntegral x + i
ny = fromIntegral $ fromIntegral y + j
in cells ! V2 nx ny
neighborPositions :: [(Int, Int)]
neighborPositions = [(i, j) | i <- [-1..1], j <- [-1..1], (i, j) /= (0, 0)]
fillOuterEdgesM :: (MArray a Bool m, Ix i) => a (V2 i) Bool -> m ()
fillOuterEdgesM arr = do
(V2 minX minY, V2 maxX maxY) <- getBounds arr
for_ (range (minX, maxX)) $ \x -> do
writeArray arr (V2 x minY) True
writeArray arr (V2 x maxY) True
for_ (range (minY, maxY)) $ \y -> do
writeArray arr (V2 minX y) True
writeArray arr (V2 maxX y) True
cloneMArray
:: forall a a' i e m.
( Ix i
, MArray a e m
, MArray a' e m
, IArray UArray e
)
=> a i e
-> m (a' i e)
cloneMArray = thaw @_ @UArray <=< freeze
--------------------------------------------------------------------------------
-- | Flood fill a cell array starting at a point, returning a list of all the
-- (true) cell locations reachable from that point
floodFill :: forall a i.
( IArray a Bool
, Ix i
, Enum i
, Bounded i
, Eq i
)
=> a (V2 i) Bool -- ^ array
-> (V2 i) -- ^ position
-> Set (V2 i)
floodFill = go mempty
where
go :: Set (V2 i) -> a (V2 i) Bool -> (V2 i) -> Set (V2 i)
go res arr@(bounds -> arrBounds) idx@(V2 x y)
| not (inRange arrBounds idx) = res
| not (arr ! idx) = res
| otherwise =
let neighbors
= filter (inRange arrBounds)
. filter (/= idx)
. filter (`notMember` res)
$ V2
<$> [(if x == minBound then x else pred x)
..
(if x == maxBound then x else succ x)]
<*> [(if y == minBound then y else pred y)
..
(if y == maxBound then y else succ y)]
in foldl' (\r idx' ->
if arr ! idx'
then r <> (let r' = r & contains idx' .~ True
in r' `seq` go r' arr idx')
else r)
(res & contains idx .~ True) neighbors
{-# SPECIALIZE floodFill :: UArray (V2 Word) Bool -> (V2 Word) -> Set (V2 Word) #-}
-- | Gives a list of all the disconnected regions in a cell array, represented
-- each as lists of points
regions :: forall a i.
( IArray a Bool
, Ix i
, Enum i
, Bounded i
, Eq i
)
=> a (V2 i) Bool
-> [Set (V2 i)]
regions arr
| Just firstPoint <- findFirstPoint arr =
let region = floodFill arr firstPoint
arr' = fillAll region arr
in region : regions arr'
| otherwise = []
where
findFirstPoint :: a (V2 i) Bool -> Maybe (V2 i)
findFirstPoint = fmap fst . headMay . filter snd . assocs
{-# SPECIALIZE regions :: UArray (V2 Word) Bool -> [Set (V2 Word)] #-}
fillAll :: (IArray a Bool, Ix i, Foldable f) => f i -> a i Bool -> a i Bool
fillAll ixes a = accum (const fst) a $ (, (False, ())) <$> toList ixes
fillAllM :: (MArray a Bool m, Ix i, Foldable f) => f i -> a i Bool -> m ()
fillAllM ixes a = for_ ixes $ \i -> writeArray a i False
fromPoints
:: forall a f i.
( IArray a Bool
, Ix i
, Functor f
, Foldable1 f
)
=> f (i, i)
-> a (i, i) Bool
fromPoints points =
let pts = Set.fromList $ toList points
dims = ( (minimum1 $ fst <$> points, minimum1 $ snd <$> points)
, (maximum1 $ fst <$> points, maximum1 $ snd <$> points)
)
in array dims $ range dims <&> \i -> (i, i `member` pts)
fromPointsM
:: (MArray a Bool m, Ix i, Element f ~ i, MonoFoldable f)
=> NonNull f
-> m (a i Bool)
fromPointsM points = do
arr <- newArray (minimum points, maximum points) False
fillAllM (otoList points) arr
pure arr