{-# LANGUAGE TemplateHaskell #-}
--------------------------------------------------------------------------------
module Xanthous.Generators.Level.Dungeon
( Params(..)
, defaultParams
, parseParams
, generate
) where
--------------------------------------------------------------------------------
import Xanthous.Prelude hiding ((:>))
--------------------------------------------------------------------------------
import Control.Monad.Random
import Data.Array.ST
import Data.Array.IArray (amap)
import Data.Stream.Infinite (Stream(..))
import qualified Data.Stream.Infinite as Stream
import qualified Data.Graph.Inductive.Graph as Graph
import Data.Graph.Inductive.PatriciaTree
import qualified Data.List.NonEmpty as NE
import Data.Maybe (fromJust)
import Linear.V2
import Linear.Metric
import qualified Options.Applicative as Opt
--------------------------------------------------------------------------------
import Xanthous.Random
import Xanthous.Data hiding (x, y, _x, _y, edges)
import Xanthous.Generators.Level.Util
import Xanthous.Util.Graphics (delaunay, straightLine)
import Xanthous.Util.Graph (mstSubGraph)
--------------------------------------------------------------------------------
data Params = Params
{ _numRoomsRange :: (Word, Word)
, _roomDimensionRange :: (Word, Word)
, _connectednessRatioRange :: (Double, Double)
}
deriving stock (Show, Eq, Ord, Generic)
makeLenses ''Params
defaultParams :: Params
defaultParams = Params
{ _numRoomsRange = (6, 8)
, _roomDimensionRange = (3, 12)
, _connectednessRatioRange = (0.1, 0.15)
}
parseParams :: Opt.Parser Params
parseParams = Params
<$> parseRange
"num-rooms"
"number of rooms to generate in the dungeon"
"ROOMS"
(defaultParams ^. numRoomsRange)
<*> parseRange
"room-size"
"size in tiles of one of the sides of a room"
"TILES"
(defaultParams ^. roomDimensionRange)
<*> parseRange
"connectedness-ratio"
( "ratio of edges from the delaunay triangulation to re-add to the "
<> "minimum-spanning-tree")
"RATIO"
(defaultParams ^. connectednessRatioRange)
<**> Opt.helper
where
parseRange name desc metavar (defMin, defMax) =
(,)
<$> Opt.option Opt.auto
( Opt.long ("min-" <> name)
<> Opt.value defMin
<> Opt.showDefault
<> Opt.help ("Minimum " <> desc)
<> Opt.metavar metavar
)
<*> Opt.option Opt.auto
( Opt.long ("max-" <> name)
<> Opt.value defMax
<> Opt.showDefault
<> Opt.help ("Maximum " <> desc)
<> Opt.metavar metavar
)
generate :: RandomGen g => Params -> Dimensions -> g -> Cells
generate params dims gen
= amap not
$ runSTUArray
$ fmap fst
$ flip runRandT gen
$ generate' params dims
--------------------------------------------------------------------------------
generate' :: RandomGen g => Params -> Dimensions -> CellM g s (MCells s)
generate' params dims = do
cells <- initializeEmpty dims
rooms <- genRooms params dims
for_ rooms $ fillRoom cells
let fullRoomGraph = delaunayRoomGraph rooms
mst = mstSubGraph fullRoomGraph
mstEdges = Graph.edges mst
nonMSTEdges = filter (\(n₁, n₂, _) -> (n₁, n₂) `notElem` mstEdges)
$ Graph.labEdges fullRoomGraph
reintroEdgeCount <- floor . (* fromIntegral (length nonMSTEdges))
<$> getRandomR (params ^. connectednessRatioRange)
let reintroEdges = take reintroEdgeCount nonMSTEdges
corridorGraph = Graph.insEdges reintroEdges mst
corridors <- traverse
( uncurry corridorBetween
. over both (fromJust . Graph.lab corridorGraph)
) $ Graph.edges corridorGraph
for_ (join corridors) $ \pt -> lift $ writeArray cells pt True
pure cells
type Room = Box Word
genRooms :: MonadRandom m => Params -> Dimensions -> m [Room]
genRooms params dims = do
numRooms <- fromIntegral <$> getRandomR (params ^. numRoomsRange)
subRand . fmap (Stream.take numRooms . removeIntersecting []) . infinitely $ do
roomWidth <- getRandomR $ params ^. roomDimensionRange
roomHeight <- getRandomR $ params ^. roomDimensionRange
xPos <- getRandomR (0, dims ^. width - roomWidth)
yPos <- getRandomR (0, dims ^. height - roomHeight)
pure Box
{ _topLeftCorner = V2 xPos yPos
, _dimensions = V2 roomWidth roomHeight
}
where
removeIntersecting seen (room :> rooms)
| any (boxIntersects room) seen
= removeIntersecting seen rooms
| otherwise
= room :> removeIntersecting (room : seen) rooms
streamRepeat x = x :> streamRepeat x
infinitely = sequence . streamRepeat
delaunayRoomGraph :: [Room] -> Gr Room Double
delaunayRoomGraph rooms =
Graph.insEdges edges . Graph.insNodes nodes $ Graph.empty
where
edges = map (\((n₁, room₁), (n₂, room₂)) -> (n₁, n₂, roomDist room₁ room₂))
. over (mapped . both) snd
. delaunay @Double
. NE.fromList
. map (\p@(_, room) -> (boxCenter $ fromIntegral <$> room, p))
$ nodes
nodes = zip [0..] rooms
roomDist = distance `on` (boxCenter . fmap fromIntegral)
fillRoom :: MCells s -> Room -> CellM g s ()
fillRoom cells room =
let V2 posx posy = room ^. topLeftCorner
V2 dimx dimy = room ^. dimensions
in for_ [posx .. posx + dimx] $ \x ->
for_ [posy .. posy + dimy] $ \y ->
lift $ writeArray cells (V2 x y) True
corridorBetween :: MonadRandom m => Room -> Room -> m [V2 Word]
corridorBetween originRoom destinationRoom
= straightLine <$> origin <*> destination
where
origin = choose . NE.fromList =<< originEdge
destination = choose . NE.fromList =<< destinationEdge
originEdge = pickEdge originRoom originCorner
destinationEdge = pickEdge destinationRoom destinationCorner
pickEdge room corner = choose . over both (boxEdge room) $ cornerEdges corner
originCorner =
case ( compare (originRoom ^. topLeftCorner . _x)
(destinationRoom ^. topLeftCorner . _x)
, compare (originRoom ^. topLeftCorner . _y)
(destinationRoom ^. topLeftCorner . _y)
) of
(LT, LT) -> BottomRight
(LT, GT) -> TopRight
(GT, LT) -> BottomLeft
(GT, GT) -> TopLeft
(EQ, LT) -> BottomLeft
(EQ, GT) -> TopRight
(GT, EQ) -> TopLeft
(LT, EQ) -> BottomRight
(EQ, EQ) -> TopLeft -- should never happen
destinationCorner = opposite originCorner