|
|
use anyhow::Result;
use owning_ref::ArcRef;
use rayon::prelude::*;
use std::{fs::File, ops::Range, slice};
use polars::{
datatypes::BinaryChunked,
export::arrow::array::BinaryArray,
prelude::{ParquetReader, SerReader},
};
/// An shared `[[u8; N]]` backed by a Polars [Buffer].
pub type FixedBytes<const N: usize> =
ArcRef<'static, polars::export::arrow::buffer::Bytes<u8>, [[u8; N]]>;
pub const INDEX_NULL: u32 = !0;
pub const DONE: &str = "\u{2714}";
/// A terrific hash function, turning 20 bytes of cryptographic hash
/// into 8 bytes of cryptographic hash.
pub fn hash64(h: &[u8; 20]) -> u64 {
let mut buf = [0; 8];
buf.copy_from_slice(&h[..8]);
u64::from_ne_bytes(buf)
}
/// Read a dense `store_path_hash` array from `narinfo.parquet`,
/// returning it as an owned [FixedBytes].
pub fn load_ph_array() -> Result<FixedBytes<20>> {
eprint!("… load store_path_hash\r");
// TODO(edef): this could use a further pushdown, since polars is more hindrance than help here
// We know this has to fit in memory (we can't mmap it without further encoding constraints),
// and we want a single `Vec<[u8; 20]>` of the data.
let ph_array = into_fixed_binary_rechunk::<20>(
ParquetReader::new(File::open("narinfo.parquet").unwrap())
.with_columns(Some(vec!["store_path_hash".into()]))
.set_rechunk(true)
.finish()?
.column("store_path_hash")?
.binary()?,
);
u32::try_from(ph_array.len()).expect("dataset exceeds 2^32");
eprintln!("{DONE}");
Ok(ph_array)
}
/// Iterator over `&[[u8; N]]` from a dense [BinaryChunked].
pub fn as_fixed_binary<const N: usize>(
chunked: &BinaryChunked,
) -> impl DoubleEndedIterator<Item = &[[u8; N]]> {
chunked.downcast_iter().map(|array| {
let range = assert_fixed_dense::<N>(array);
exact_chunks(&array.values()[range]).unwrap()
})
}
/// Convert a dense [BinaryChunked] into a single chunk as [FixedBytes],
/// without taking a reference to the offsets array and validity bitmap.
fn into_fixed_binary_rechunk<const N: usize>(chunked: &BinaryChunked) -> FixedBytes<N> {
let chunked = chunked.rechunk();
let mut iter = chunked.downcast_iter();
let array = iter.next().unwrap();
assert!(iter.next().is_none());
let (buf, off, len) = {
let range = assert_fixed_dense::<N>(array);
array.values().clone().sliced(range.start, range.len())
}
.into_inner();
ArcRef::new(buf).map(|bytes| exact_chunks(&bytes[off..off + len]).unwrap())
}
/// Ensures that the supplied Arrow array consists of densely packed bytestrings of length `N`.
/// In other words, ensure that it is free of nulls, and that the offsets have a fixed stride of `N`.
#[must_use = "only the range returned is guaranteed to be conformant"]
fn assert_fixed_dense<const N: usize>(array: &BinaryArray<i64>) -> Range<usize> {
let null_count = array.validity().map_or(0, |bits| bits.unset_bits());
if null_count > 0 {
panic!("null values present");
}
let offsets = array.offsets();
let length_check = offsets
.as_slice()
.par_windows(2)
.all(|w| (w[1] - w[0]) == N as i64);
if !length_check {
panic!("lengths are inconsistent");
}
(*offsets.first() as usize)..(*offsets.last() as usize)
}
fn exact_chunks<const K: usize>(buf: &[u8]) -> Option<&[[u8; K]]> {
// SAFETY: We ensure that `buf.len()` is a multiple of K, and there are no alignment requirements.
unsafe {
let ptr = buf.as_ptr();
let len = buf.len();
if len % K != 0 {
return None;
}
let ptr = ptr as *mut [u8; K];
let len = len / K;
Some(slice::from_raw_parts(ptr, len))
}
}
|