use pin_project_lite::pin_project;
use std::{
ops::{Bound, RangeBounds, RangeInclusive},
task::{ready, Poll},
};
use tokio::io::AsyncRead;
use super::{padding_len, BytesPacketPosition, LEN_SIZE};
pin_project! {
/// Reads a "bytes wire packet" from the underlying reader.
/// The format is the same as in [crate::wire::bytes::read_bytes],
/// however this structure provides a [AsyncRead] interface,
/// allowing to not having to pass around the entire payload in memory.
///
/// After being constructed with the underlying reader and an allowed size,
/// subsequent requests to poll_read will return payload data until the end
/// of the packet is reached.
///
/// Internally, it will first read over the size packet, filling payload_size,
/// ensuring it fits allowed_size, then return payload data.
/// It will only signal EOF (returning `Ok(())` without filling the buffer anymore)
/// when all padding has been successfully consumed too.
///
/// This also means, it's important for a user to always read to the end,
/// and not just call read_exact - otherwise it might not skip over the
/// padding, and return garbage when reading the next packet.
///
/// In case of an error due to size constraints, or in case of not reading
/// all the way to the end (and getting a EOF), the underlying reader is no
/// longer usable and might return garbage.
pub struct BytesReader<R>
where
R: AsyncRead
{
#[pin]
inner: R,
allowed_size: RangeInclusive<u64>,
payload_size: [u8; 8],
state: BytesPacketPosition,
}
}
impl<R> BytesReader<R>
where
R: AsyncRead + Unpin,
{
/// Constructs a new BytesReader, using the underlying passed reader.
pub fn new<S: RangeBounds<u64>>(r: R, allowed_size: S) -> Self {
let user_len_min = match allowed_size.start_bound() {
Bound::Included(&n) => n,
Bound::Excluded(&n) => n.saturating_add(1),
Bound::Unbounded => 0,
};
let user_len_max = match allowed_size.end_bound() {
Bound::Included(&n) => n,
Bound::Excluded(&n) => n.checked_sub(1).unwrap(),
Bound::Unbounded => u64::MAX,
};
Self {
inner: r,
allowed_size: user_len_min..=user_len_max,
payload_size: [0; 8],
state: BytesPacketPosition::Size(0),
}
}
}
/// Returns an error if the passed usize is 0.
#[inline]
fn ensure_nonzero_bytes_read(bytes_read: usize) -> Result<usize, std::io::Error> {
if bytes_read == 0 {
Err(std::io::Error::new(
std::io::ErrorKind::UnexpectedEof,
"underlying reader returned EOF",
))
} else {
Ok(bytes_read)
}
}
impl<R> AsyncRead for BytesReader<R>
where
R: AsyncRead,
{
fn poll_read(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &mut tokio::io::ReadBuf<'_>,
) -> Poll<std::io::Result<()>> {
let mut this = self.project();
// Use a loop, so we can deal with (multiple) state transitions.
loop {
match *this.state {
BytesPacketPosition::Size(LEN_SIZE) => {
// used in case an invalid size was signalled.
Err(std::io::Error::new(
std::io::ErrorKind::InvalidData,
"signalled package size not in allowed range",
))?
}
BytesPacketPosition::Size(pos) => {
// try to read more of the size field.
// We wrap a ReadBuf around this.payload_size here, and set_filled.
let mut read_buf = tokio::io::ReadBuf::new(this.payload_size);
read_buf.advance(pos);
ready!(this.inner.as_mut().poll_read(cx, &mut read_buf))?;
ensure_nonzero_bytes_read(read_buf.filled().len() - pos)?;
let total_size_read = read_buf.filled().len();
if total_size_read == LEN_SIZE {
// If the entire payload size was read, parse it
let payload_size = u64::from_le_bytes(*this.payload_size);
if !this.allowed_size.contains(&payload_size) {
// If it's not in the allowed
// range, transition to failure mode
// `BytesPacketPosition::Size(LEN_SIZE)`, where only
// an error is returned.
*this.state = BytesPacketPosition::Size(LEN_SIZE)
} else if payload_size == 0 {
// If the payload size is 0, move on to reading padding directly.
*this.state = BytesPacketPosition::Padding(0)
} else {
// Else, transition to reading the payload.
*this.state = BytesPacketPosition::Payload(0)
}
} else {
// If we still need to read more of payload size, update
// our position in the state.
*this.state = BytesPacketPosition::Size(total_size_read)
}
}
BytesPacketPosition::Payload(pos) => {
let signalled_size = u64::from_le_bytes(*this.payload_size);
// We don't enter this match arm at all if we're expecting empty payload
debug_assert!(signalled_size > 0, "signalled size must be larger than 0");
// Read from the underlying reader into buf
// We cap the ReadBuf to the size of the payload, as we
// don't want to leak padding to the caller.
let bytes_read = ensure_nonzero_bytes_read({
// Reducing these two u64 to usize on 32bits is fine - we
// only care about not reading too much, not too less.
let mut limited_buf = buf.take((signalled_size - pos) as usize);
ready!(this.inner.as_mut().poll_read(cx, &mut limited_buf))?;
limited_buf.filled().len()
})?;
// SAFETY: we just did populate this, but through limited_buf.
unsafe { buf.assume_init(bytes_read) }
buf.advance(bytes_read);
if pos + bytes_read as u64 == signalled_size {
// If we now read all payload, transition to padding
// state.
*this.state = BytesPacketPosition::Padding(0);
} else {
// if we didn't read everything yet, update our position
// in the state.
*this.state = BytesPacketPosition::Payload(pos + bytes_read as u64);
}
// We return from poll_read here.
// This is important, as any error (or even Pending) from
// the underlying reader on the next read (be it padding or
// payload) would require us to roll back buf, as generally
// a AsyncRead::poll_read may not advance the buffer in case
// of a nonsuccessful read.
// It can't be misinterpreted as EOF, as we definitely *did*
// write something into buf if we come to here (we pass
// `ensure_nonzero_bytes_read`).
return Ok(()).into();
}
BytesPacketPosition::Padding(pos) => {
// Consume whatever padding is left, ensuring it's all null
// bytes. Only return `Ready(Ok(()))` once we're past the
// padding (or in cases where polling the inner reader
// returns `Poll::Pending`).
let signalled_size = u64::from_le_bytes(*this.payload_size);
let total_padding_len = padding_len(signalled_size) as usize;
let padding_len_remaining = total_padding_len - pos;
if padding_len_remaining != 0 {
// create a buffer only accepting the number of remaining padding bytes.
let mut buf = [0; 8];
let mut padding_buf = tokio::io::ReadBuf::new(&mut buf);
let mut padding_buf = padding_buf.take(padding_len_remaining);
// read into padding_buf.
ready!(this.inner.as_mut().poll_read(cx, &mut padding_buf))?;
let bytes_read = ensure_nonzero_bytes_read(padding_buf.filled().len())?;
*this.state = BytesPacketPosition::Padding(pos + bytes_read);
// ensure the bytes are not null bytes
if !padding_buf.filled().iter().all(|e| *e == b'\0') {
return Err(std::io::Error::new(
std::io::ErrorKind::InvalidData,
"padding is not all zeroes",
))
.into();
}
// if we still have padding to read, run the loop again.
continue;
}
// return EOF
return Ok(()).into();
}
}
}
}
}
#[cfg(test)]
mod tests {
use std::time::Duration;
use crate::wire::bytes::write_bytes;
use hex_literal::hex;
use lazy_static::lazy_static;
use rstest::rstest;
use tokio::io::AsyncReadExt;
use tokio_test::{assert_err, io::Builder};
use super::*;
/// The maximum length of bytes packets we're willing to accept in the test
/// cases.
const MAX_LEN: u64 = 1024;
lazy_static! {
pub static ref LARGE_PAYLOAD: Vec<u8> = (0..255).collect::<Vec<u8>>().repeat(4 * 1024);
}
/// Helper function, calling the (simpler) write_bytes with the payload.
/// We use this to create data we want to read from the wire.
async fn produce_packet_bytes(payload: &[u8]) -> Vec<u8> {
let mut exp = vec![];
write_bytes(&mut exp, payload).await.unwrap();
exp
}
/// Read bytes packets of various length, and ensure read_to_end returns the
/// expected payload.
#[rstest]
#[case::empty(&[])] // empty bytes packet
#[case::size_1b(&[0xff])] // 1 bytes payload
#[case::size_8b(&hex!("0001020304050607"))] // 8 bytes payload (no padding)
#[case::size_9b( &hex!("000102030405060708"))] // 9 bytes payload (7 bytes padding)
#[case::size_1m(LARGE_PAYLOAD.as_slice())] // larger bytes packet
#[tokio::test]
async fn read_payload_correct(#[case] payload: &[u8]) {
let mut mock = Builder::new()
.read(&produce_packet_bytes(payload).await)
.build();
let mut r = BytesReader::new(&mut mock, ..=LARGE_PAYLOAD.len() as u64);
let mut buf = Vec::new();
r.read_to_end(&mut buf).await.expect("must succeed");
assert_eq!(payload, &buf[..]);
}
/// Fail if the bytes packet is larger than allowed
#[tokio::test]
async fn read_bigger_than_allowed_fail() {
let payload = LARGE_PAYLOAD.as_slice();
let mut mock = Builder::new()
.read(&produce_packet_bytes(payload).await[0..8]) // We stop reading after the size packet
.build();
let mut r = BytesReader::new(&mut mock, ..2048);
let mut buf = Vec::new();
assert_err!(r.read_to_end(&mut buf).await);
}
/// Fail if the bytes packet is smaller than allowed
#[tokio::test]
async fn read_smaller_than_allowed_fail() {
let payload = &[0x00, 0x01, 0x02];
let mut mock = Builder::new()
.read(&produce_packet_bytes(payload).await[0..8]) // We stop reading after the size packet
.build();
let mut r = BytesReader::new(&mut mock, 1024..2048);
let mut buf = Vec::new();
assert_err!(r.read_to_end(&mut buf).await);
}
/// Fail if the padding is not all zeroes
#[tokio::test]
async fn read_fail_if_nonzero_padding() {
let payload = &[0x00, 0x01, 0x02];
let mut packet_bytes = produce_packet_bytes(payload).await;
// Flip some bits in the padding
packet_bytes[12] = 0xff;
let mut mock = Builder::new().read(&packet_bytes).build(); // We stop reading after the faulty bit
let mut r = BytesReader::new(&mut mock, ..MAX_LEN);
let mut buf = Vec::new();
r.read_to_end(&mut buf).await.expect_err("must fail");
}
/// Start a 9 bytes payload packet, but have the underlying reader return
/// EOF in the middle of the size packet (after 4 bytes).
/// We should get an unexpected EOF error, already when trying to read the
/// first byte (of payload)
#[tokio::test]
async fn read_9b_eof_during_size() {
let payload = &hex!("FF0102030405060708");
let mut mock = Builder::new()
.read(&produce_packet_bytes(payload).await[..4])
.build();
let mut r = BytesReader::new(&mut mock, ..MAX_LEN);
let mut buf = [0u8; 1];
assert_eq!(
r.read_exact(&mut buf).await.expect_err("must fail").kind(),
std::io::ErrorKind::UnexpectedEof
);
assert_eq!(&[0], &buf, "buffer should stay empty");
}
/// Start a 9 bytes payload packet, but have the underlying reader return
/// EOF in the middle of the payload (4 bytes into the payload).
/// We should get an unexpected EOF error, after reading the first 4 bytes
/// (successfully).
#[tokio::test]
async fn read_9b_eof_during_payload() {
let payload = &hex!("FF0102030405060708");
let mut mock = Builder::new()
.read(&produce_packet_bytes(payload).await[..8 + 4])
.build();
let mut r = BytesReader::new(&mut mock, ..MAX_LEN);
let mut buf = [0; 9];
r.read_exact(&mut buf[..4]).await.expect("must succeed");
assert_eq!(
r.read_exact(&mut buf[4..=4])
.await
.expect_err("must fail")
.kind(),
std::io::ErrorKind::UnexpectedEof
);
}
/// Start a 9 bytes payload packet, but return an error at various stages *after* the actual payload.
/// read_exact with a 9 bytes buffer is expected to succeed, but any further
/// read, as well as read_to_end are expected to fail.
#[rstest]
#[case::before_padding(8 + 9)]
#[case::during_padding(8 + 9 + 2)]
#[case::after_padding(8 + 9 + padding_len(9) as usize)]
#[tokio::test]
async fn read_9b_eof_after_payload(#[case] offset: usize) {
let payload = &hex!("FF0102030405060708");
let mut mock = Builder::new()
.read(&produce_packet_bytes(payload).await[..offset])
.build();
let mut r = BytesReader::new(&mut mock, ..MAX_LEN);
let mut buf = [0; 9];
// read_exact of the payload will succeed, but a subsequent read will
// return UnexpectedEof error.
r.read_exact(&mut buf).await.expect("should succeed");
assert_eq!(
r.read_exact(&mut buf[4..=4])
.await
.expect_err("must fail")
.kind(),
std::io::ErrorKind::UnexpectedEof
);
// read_to_end will fail.
let mut mock = Builder::new()
.read(&produce_packet_bytes(payload).await[..8 + payload.len()])
.build();
let mut r = BytesReader::new(&mut mock, ..MAX_LEN);
let mut buf = Vec::new();
assert_eq!(
r.read_to_end(&mut buf).await.expect_err("must fail").kind(),
std::io::ErrorKind::UnexpectedEof
);
}
/// Start a 9 bytes payload packet, but return an error after a certain position.
/// Ensure that error is propagated.
#[rstest]
#[case::during_size(4)]
#[case::before_payload(8)]
#[case::during_payload(8 + 4)]
#[case::before_padding(8 + 4)]
#[case::during_padding(8 + 9 + 2)]
#[tokio::test]
async fn propagate_error_from_reader(#[case] offset: usize) {
let payload = &hex!("FF0102030405060708");
let mut mock = Builder::new()
.read(&produce_packet_bytes(payload).await[..offset])
.read_error(std::io::Error::new(std::io::ErrorKind::Other, "foo"))
.build();
let mut r = BytesReader::new(&mut mock, ..MAX_LEN);
let mut buf = Vec::new();
let err = r.read_to_end(&mut buf).await.expect_err("must fail");
assert_eq!(
err.kind(),
std::io::ErrorKind::Other,
"error kind must match"
);
assert_eq!(
err.into_inner().unwrap().to_string(),
"foo",
"error payload must contain foo"
);
}
/// If there's an error right after the padding, we don't propagate it, as
/// we're done reading. We just return EOF.
#[tokio::test]
async fn no_error_after_eof() {
let payload = &hex!("FF0102030405060708");
let mut mock = Builder::new()
.read(&produce_packet_bytes(payload).await)
.read_error(std::io::Error::new(std::io::ErrorKind::Other, "foo"))
.build();
let mut r = BytesReader::new(&mut mock, ..MAX_LEN);
let mut buf = Vec::new();
r.read_to_end(&mut buf).await.expect("must succeed");
assert_eq!(buf.as_slice(), payload);
}
/// Introduce various stalls in various places of the packet, to ensure we
/// handle these cases properly, too.
#[rstest]
#[case::beginning(0)]
#[case::before_payload(8)]
#[case::during_payload(8 + 4)]
#[case::before_padding(8 + 4)]
#[case::during_padding(8 + 9 + 2)]
#[tokio::test]
async fn read_payload_correct_pending(#[case] offset: usize) {
let payload = &hex!("FF0102030405060708");
let mut mock = Builder::new()
.read(&produce_packet_bytes(payload).await[..offset])
.wait(Duration::from_nanos(0))
.read(&produce_packet_bytes(payload).await[offset..])
.build();
let mut r = BytesReader::new(&mut mock, ..=LARGE_PAYLOAD.len() as u64);
let mut buf = Vec::new();
r.read_to_end(&mut buf).await.expect("must succeed");
assert_eq!(payload, &buf[..]);
}
}