use crate::nixbase32;
use crate::nixhash::{HashAlgo, NixHash, NixHashWithMode};
use crate::store_path::StorePath;
use sha2::{Digest, Sha256};
use thiserror::Error;
use super::{NameError, STORE_DIR};
/// Errors that can occur when creating a content-addressed store path.
///
/// This wraps the main [Error] which is just about invalid store path names.
#[derive(Debug, PartialEq, Eq, Error)]
pub enum BuildStorePathError {
#[error("{0}")]
InvalidName(NameError),
/// This error occurs when we have references outside the SHA-256 +
/// Recursive case. The restriction comes from upstream Nix. It may be
/// lifted at some point but there isn't a pressing need to anticipate that.
#[error("References were not supported as much as requested")]
InvalidReference(),
}
/// compress_hash takes an arbitrarily long sequence of bytes (usually
/// a hash digest), and returns a sequence of bytes of length
/// OUTPUT_SIZE.
///
/// It's calculated by rotating through the bytes in the output buffer
/// (zero- initialized), and XOR'ing with each byte of the passed
/// input. It consumes 1 byte at a time, and XOR's it with the current
/// value in the output buffer.
///
/// This mimics equivalent functionality in C++ Nix.
pub fn compress_hash<const OUTPUT_SIZE: usize>(input: &[u8]) -> [u8; OUTPUT_SIZE] {
let mut output = [0; OUTPUT_SIZE];
for (ii, ch) in input.iter().enumerate() {
output[ii % OUTPUT_SIZE] ^= ch;
}
output
}
/// This builds a store path, by calculating the text_hash_string of either a
/// derivation or a literal text file that may contain references.
pub fn build_text_path<S: AsRef<str>, I: IntoIterator<Item = S>, C: AsRef<[u8]>>(
name: &str,
content: C,
references: I,
) -> Result<StorePath, NameError> {
build_store_path_from_fingerprint_parts(
&make_type("text", references, false),
// the nix_hash_string representation of the sha256 digest of some contents
&{
let content_digest = {
let hasher = Sha256::new_with_prefix(content);
hasher.finalize()
};
NixHash::new(crate::nixhash::HashAlgo::Sha256, content_digest.to_vec())
},
name,
)
}
/// This builds a more "regular" content-addressed store path
pub fn build_regular_ca_path<S: AsRef<str>, I: IntoIterator<Item = S>>(
name: &str,
hash_with_mode: &NixHashWithMode,
references: I,
self_reference: bool,
) -> Result<StorePath, BuildStorePathError> {
match &hash_with_mode {
NixHashWithMode::Recursive(
ref hash @ NixHash {
algo: HashAlgo::Sha256,
..
},
) => build_store_path_from_fingerprint_parts(
&make_type("source", references, self_reference),
hash,
name,
)
.map_err(BuildStorePathError::InvalidName),
_ => {
if references.into_iter().next().is_some() {
return Err(BuildStorePathError::InvalidReference());
}
if self_reference {
return Err(BuildStorePathError::InvalidReference());
}
build_store_path_from_fingerprint_parts(
"output:out",
&{
let content_digest = {
let mut hasher = Sha256::new_with_prefix("fixed:out:");
hasher.update(hash_with_mode.mode().prefix());
hasher.update(hash_with_mode.digest().algo.to_string());
hasher.update(":");
hasher.update(
&data_encoding::HEXLOWER.encode(&hash_with_mode.digest().digest),
);
hasher.update(":");
hasher.finalize()
};
NixHash::new(crate::nixhash::HashAlgo::Sha256, content_digest.to_vec())
},
name,
)
.map_err(BuildStorePathError::InvalidName)
}
}
}
/// This builds an input-addressed store path
///
/// Input-addresed store paths are always derivation outputs, the "input" in question is the
/// derivation and its closure.
pub fn build_output_path(
drv_hash: &NixHash,
output_name: &str,
output_path_name: &str,
) -> Result<StorePath, NameError> {
build_store_path_from_fingerprint_parts(
&(String::from("output:") + output_name),
drv_hash,
output_path_name,
)
}
/// This builds a store path from fingerprint parts.
/// Usually, that function is used from [build_text_path] and
/// passed a "text hash string" (starting with "text:" as fingerprint),
/// but other fingerprints starting with "output:" are also used in Derivation
/// output path calculation.
///
/// The fingerprint is hashed with sha256, its digest is compressed to 20 bytes,
/// and nixbase32-encoded (32 characters).
fn build_store_path_from_fingerprint_parts(
ty: &str,
hash: &NixHash,
name: &str,
) -> Result<StorePath, NameError> {
let fingerprint =
String::from(ty) + ":" + &hash.to_nix_hash_string() + ":" + STORE_DIR + ":" + name;
let digest = {
let hasher = Sha256::new_with_prefix(fingerprint);
hasher.finalize()
};
let compressed = compress_hash::<20>(&digest);
StorePath::validate_name(name)?;
Ok(StorePath {
digest: compressed,
name: name.to_string(),
})
}
/// This contains the Nix logic to create "text hash strings", which are used
/// in `builtins.toFile`, as well as in Derivation Path calculation.
///
/// A text hash is calculated by concatenating the following fields, separated by a `:`:
///
/// - text
/// - references, individually joined by `:`
/// - the nix_hash_string representation of the sha256 digest of some contents
/// - the value of `storeDir`
/// - the name
fn make_type<S: AsRef<str>, I: IntoIterator<Item = S>>(
ty: &str,
references: I,
self_ref: bool,
) -> String {
let mut s = String::from(ty);
for reference in references {
s.push(':');
s.push_str(reference.as_ref());
}
if self_ref {
s.push_str(":self");
}
s
}
/// Nix placeholders (i.e. values returned by `builtins.placeholder`)
/// are used to populate outputs with paths that must be
/// string-replaced with the actual placeholders later, at runtime.
///
/// The actual placeholder is basically just a SHA256 hash encoded in
/// cppnix format.
pub fn hash_placeholder(name: &str) -> String {
let digest = {
let mut hasher = Sha256::new();
hasher.update(format!("nix-output:{}", name));
hasher.finalize()
};
format!("/{}", nixbase32::encode(&digest))
}
#[cfg(test)]
mod test {
use super::*;
use crate::nixhash::{NixHash, NixHashWithMode};
#[test]
fn build_text_path_with_zero_references() {
// This hash should match `builtins.toFile`, e.g.:
//
// nix-repl> builtins.toFile "foo" "bar"
// "/nix/store/vxjiwkjkn7x4079qvh1jkl5pn05j2aw0-foo"
let store_path = build_text_path("foo", "bar", Vec::<String>::new())
.expect("build_store_path() should succeed");
assert_eq!(
store_path.to_absolute_path().as_str(),
"/nix/store/vxjiwkjkn7x4079qvh1jkl5pn05j2aw0-foo"
);
}
#[test]
fn build_text_path_with_non_zero_references() {
// This hash should match:
//
// nix-repl> builtins.toFile "baz" "${builtins.toFile "foo" "bar"}"
// "/nix/store/5xd714cbfnkz02h2vbsj4fm03x3f15nf-baz"
let inner = build_text_path("foo", "bar", Vec::<String>::new())
.expect("path_with_references() should succeed");
let inner_path = inner.to_absolute_path();
let outer = build_text_path("baz", &inner_path, vec![inner_path.as_str()])
.expect("path_with_references() should succeed");
assert_eq!(
outer.to_absolute_path().as_str(),
"/nix/store/5xd714cbfnkz02h2vbsj4fm03x3f15nf-baz"
);
}
#[test]
fn build_sha1_path() {
let outer = build_regular_ca_path(
"bar",
&NixHashWithMode::Recursive(NixHash {
algo: HashAlgo::Sha1,
digest: data_encoding::HEXLOWER
.decode(b"0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33")
.expect("hex should decode"),
}),
Vec::<String>::new(),
false,
)
.expect("path_with_references() should succeed");
assert_eq!(
outer.to_absolute_path().as_str(),
"/nix/store/mp57d33657rf34lzvlbpfa1gjfv5gmpg-bar"
);
}
#[test]
fn build_store_path_with_non_zero_references() {
// This hash should match:
//
// nix-repl> builtins.toFile "baz" "${builtins.toFile "foo" "bar"}"
// "/nix/store/5xd714cbfnkz02h2vbsj4fm03x3f15nf-baz"
//
// $ nix store make-content-addressed /nix/store/5xd714cbfnkz02h2vbsj4fm03x3f15nf-baz
// rewrote '/nix/store/5xd714cbfnkz02h2vbsj4fm03x3f15nf-baz' to '/nix/store/s89y431zzhmdn3k8r96rvakryddkpv2v-baz'
let outer = build_regular_ca_path(
"baz",
&NixHashWithMode::Recursive(NixHash {
algo: HashAlgo::Sha256,
digest: nixbase32::decode(b"1xqkzcb3909fp07qngljr4wcdnrh1gdam1m2n29i6hhrxlmkgkv1")
.expect("hex should decode"),
}),
vec!["/nix/store/dxwkwjzdaq7ka55pkk252gh32bgpmql4-foo"],
false,
)
.expect("path_with_references() should succeed");
assert_eq!(
outer.to_absolute_path().as_str(),
"/nix/store/s89y431zzhmdn3k8r96rvakryddkpv2v-baz"
);
}
}