//! Implements the slightly odd "base32" encoding that's used in Nix.
//!
//! Nix uses a custom alphabet. Contrary to other implementations (RFC4648),
//! encoding to "nix base32" doesn't use any padding, and reads in characters
//! in reverse order.
//!
//! This is also the main reason why we can't use `data_encoding::Encoding` -
//! it gets things wrong if there normally would be a need for padding.
use std::fmt::Write;
use thiserror::Error;
const ALPHABET: &[u8; 32] = b"0123456789abcdfghijklmnpqrsvwxyz";
/// Errors that can occur while decoding nixbase32-encoded data.
#[derive(Debug, Eq, PartialEq, Error)]
pub enum Nixbase32DecodeError {
#[error("character {0:x} not in alphabet")]
CharacterNotInAlphabet(u8),
#[error("nonzero carry")]
NonzeroCarry,
#[error("invalid length")]
InvalidLength,
}
/// Returns encoded input
pub fn encode(input: &[u8]) -> String {
let output_len = encode_len(input.len());
let mut output = String::with_capacity(output_len);
if output_len > 0 {
for n in (0..=output_len - 1).rev() {
let b = n * 5; // bit offset within the entire input
let i = b / 8; // input byte index
let j = b % 8; // bit offset within that input byte
let mut c = input[i] >> j;
if i + 1 < input.len() {
// we want to right shift, and discard shifted out bits (unchecked)
// To do this without panicing, we need to do the shifting in u16
// and convert back to u8 afterwards.
c |= ((input[i + 1] as u16) << (8 - j as u16)) as u8
}
output
.write_char(ALPHABET[(c & 0x1f) as usize] as char)
.unwrap();
}
}
output
}
/// This maps a nixbase32-encoded character to its binary representation, which
/// is also the index of the character in the alphabet. Invalid characters are
/// mapped to 0xFF, which is itself an invalid value.
const BASE32_ORD: [u8; 256] = {
let mut ord = [0xFF; 256];
let mut alphabet = ALPHABET.as_slice();
let mut i = 0;
while let &[c, ref tail @ ..] = alphabet {
ord[c as usize] = i;
alphabet = tail;
i += 1;
}
ord
};
/// Returns decoded input
pub fn decode(input: impl AsRef<[u8]>) -> Result<Vec<u8>, Nixbase32DecodeError> {
let input = input.as_ref();
let output_len = decode_len(input.len());
let mut output: Vec<u8> = vec![0x00; output_len];
decode_inner(input, &mut output)?;
Ok(output)
}
pub fn decode_fixed<const K: usize>(
input: impl AsRef<[u8]>,
) -> Result<[u8; K], Nixbase32DecodeError> {
let input = input.as_ref();
if input.len() != encode_len(K) {
return Err(Nixbase32DecodeError::InvalidLength);
}
let mut output = [0; K];
decode_inner(input, &mut output)?;
Ok(output)
}
fn decode_inner(input: &[u8], output: &mut [u8]) -> Result<(), Nixbase32DecodeError> {
// loop over all characters in reverse, and keep the iteration count in n.
let mut carry = 0;
let mut mask = 0;
for (n, &c) in input.iter().rev().enumerate() {
let b = n * 5;
let i = b / 8;
let j = b % 8;
let digit = BASE32_ORD[c as usize];
let value = (digit as u16) << j;
output[i] |= value as u8 | carry;
carry = (value >> 8) as u8;
mask |= digit;
}
if mask == 0xFF {
let c = find_invalid(input);
return Err(Nixbase32DecodeError::CharacterNotInAlphabet(c));
}
// if we're at the end, but have a nonzero carry, the encoding is invalid.
if carry != 0 {
return Err(Nixbase32DecodeError::NonzeroCarry);
}
Ok(())
}
#[cold]
fn find_invalid(input: &[u8]) -> u8 {
for &c in input {
if !ALPHABET.contains(&c) {
return c;
}
}
unreachable!()
}
/// Returns the decoded length of an input of length len.
pub fn decode_len(len: usize) -> usize {
(len * 5) / 8
}
/// Returns the encoded length of an input of length len
pub fn encode_len(len: usize) -> usize {
(len * 8 + 4) / 5
}
#[cfg(test)]
mod tests {
use hex_literal::hex;
use test_case::test_case;
#[test_case("", &[]; "empty bytes")]
#[test_case("0z", &hex!("1f"); "one byte")]
#[test_case("00bgd045z0d4icpbc2yyz4gx48ak44la", &hex!("8a12321522fd91efbd60ebb2481af88580f61600"); "store path")]
#[test_case("0c5b8vw40dy178xlpddw65q9gf1h2186jcc3p4swinwggbllv8mk", &hex!("b3a24de97a8fdbc835b9833169501030b8977031bcb54b3b3ac13740f846ab30"); "sha256")]
fn encode(enc: &str, dec: &[u8]) {
assert_eq!(enc, super::encode(&dec));
}
#[test_case("", Some(&[]) ; "empty bytes")]
#[test_case("0z", Some(&hex!("1f")); "one byte")]
#[test_case("00bgd045z0d4icpbc2yyz4gx48ak44la", Some(&hex!("8a12321522fd91efbd60ebb2481af88580f61600")); "store path")]
#[test_case("0c5b8vw40dy178xlpddw65q9gf1h2186jcc3p4swinwggbllv8mk", Some(&hex!("b3a24de97a8fdbc835b9833169501030b8977031bcb54b3b3ac13740f846ab30")); "sha256")]
// this is invalid encoding, because it encodes 10 1-bits, so the carry
// would be 2 1-bits
#[test_case("zz", None; "invalid encoding-1")]
// this is an even more specific example - it'd decode as 00000000 11
#[test_case("c0", None; "invalid encoding-2")]
fn decode(enc: &str, dec: Option<&[u8]>) {
match dec {
Some(dec) => {
// The decode needs to match what's passed in dec
assert_eq!(dec, super::decode(enc).unwrap());
}
None => {
// the decode needs to be an error
assert!(super::decode(enc).is_err());
}
}
}
#[test]
fn decode_fixed() {
assert_eq!(
super::decode_fixed("00bgd045z0d4icpbc2yyz4gx48ak44la").unwrap(),
hex!("8a12321522fd91efbd60ebb2481af88580f61600")
);
assert_eq!(
super::decode_fixed::<32>("00").unwrap_err(),
super::Nixbase32DecodeError::InvalidLength
);
}
#[test]
fn encode_len() {
assert_eq!(super::encode_len(0), 0);
assert_eq!(super::encode_len(20), 32);
}
#[test]
fn decode_len() {
assert_eq!(super::decode_len(0), 0);
assert_eq!(super::decode_len(32), 20);
}
}