//! This module implements the abstract/virtual machine that runs Tvix
//! bytecode.
//!
//! The operation of the VM is facilitated by the [`Frame`] type,
//! which controls the current execution state of the VM and is
//! processed within the VM's operating loop.
//!
//! A [`VM`] is used by instantiating it with an initial [`Frame`],
//! then triggering its execution and waiting for the VM to return or
//! yield an error.
pub mod generators;
mod macros;
use codemap::Span;
use serde_json::json;
use std::{cmp::Ordering, collections::HashMap, ops::DerefMut, path::PathBuf, rc::Rc};
use crate::{
arithmetic_op,
chunk::Chunk,
cmp_op,
compiler::GlobalsMap,
errors::{CatchableErrorKind, Error, ErrorKind, EvalResult},
io::EvalIO,
lifted_pop,
nix_search_path::NixSearchPath,
observer::RuntimeObserver,
opcode::{CodeIdx, Count, JumpOffset, OpCode, StackIdx, UpvalueIdx},
spans::LightSpan,
upvalues::Upvalues,
value::{
Builtin, BuiltinResult, Closure, CoercionKind, Lambda, NixAttrs, NixContext, NixList,
PointerEquality, Thunk, Value,
},
vm::generators::GenCo,
warnings::{EvalWarning, WarningKind},
NixString,
};
use generators::{call_functor, Generator, GeneratorState};
use self::generators::{VMRequest, VMResponse};
/// Internal helper trait for taking a span from a variety of types, to make use
/// of `WithSpan` (defined below) more ergonomic at call sites.
trait GetSpan {
fn get_span(self) -> Span;
}
impl<'o> GetSpan for &VM<'o> {
fn get_span(self) -> Span {
self.reasonable_span.span()
}
}
impl GetSpan for &CallFrame {
fn get_span(self) -> Span {
self.current_span()
}
}
impl GetSpan for &LightSpan {
fn get_span(self) -> Span {
self.span()
}
}
impl GetSpan for Span {
fn get_span(self) -> Span {
self
}
}
/// Internal helper trait for ergonomically converting from a `Result<T,
/// ErrorKind>` to a `Result<T, Error>` using the current span of a call frame,
/// and chaining the VM's frame stack around it for printing a cause chain.
trait WithSpan<T, S: GetSpan> {
fn with_span(self, top_span: S, vm: &VM) -> Result<T, Error>;
}
impl<T, S: GetSpan> WithSpan<T, S> for Result<T, ErrorKind> {
fn with_span(self, top_span: S, vm: &VM) -> Result<T, Error> {
match self {
Ok(something) => Ok(something),
Err(kind) => {
let mut error = Error::new(kind, top_span.get_span());
// Wrap the top-level error in chaining errors for each element
// of the frame stack.
for frame in vm.frames.iter().rev() {
match frame {
Frame::CallFrame { span, .. } => {
error =
Error::new(ErrorKind::BytecodeError(Box::new(error)), span.span());
}
Frame::Generator { name, span, .. } => {
error = Error::new(
ErrorKind::NativeError {
err: Box::new(error),
gen_type: name,
},
span.span(),
);
}
}
}
Err(error)
}
}
}
}
struct CallFrame {
/// The lambda currently being executed.
lambda: Rc<Lambda>,
/// Optional captured upvalues of this frame (if a thunk or
/// closure if being evaluated).
upvalues: Rc<Upvalues>,
/// Instruction pointer to the instruction currently being
/// executed.
ip: CodeIdx,
/// Stack offset, i.e. the frames "view" into the VM's full stack.
stack_offset: usize,
}
impl CallFrame {
/// Retrieve an upvalue from this frame at the given index.
fn upvalue(&self, idx: UpvalueIdx) -> &Value {
&self.upvalues[idx]
}
/// Borrow the chunk of this frame's lambda.
fn chunk(&self) -> &Chunk {
&self.lambda.chunk
}
/// Increment this frame's instruction pointer and return the operation that
/// the pointer moved past.
fn inc_ip(&mut self) -> OpCode {
let op = self.chunk()[self.ip];
self.ip += 1;
op
}
/// Construct an error result from the given ErrorKind and the source span
/// of the current instruction.
pub fn error<T>(&self, vm: &VM, kind: ErrorKind) -> Result<T, Error> {
Err(kind).with_span(self, vm)
}
/// Returns the current span. This is potentially expensive and should only
/// be used when actually constructing an error or warning.
pub fn current_span(&self) -> Span {
self.chunk().get_span(self.ip - 1)
}
/// Returns the information needed to calculate the current span,
/// but without performing that calculation.
// TODO: why pub?
pub(crate) fn current_light_span(&self) -> LightSpan {
LightSpan::new_actual(self.current_span())
}
}
/// A frame represents an execution state of the VM. The VM has a stack of
/// frames representing the nesting of execution inside of the VM, and operates
/// on the frame at the top.
///
/// When a frame has been fully executed, it is removed from the VM's frame
/// stack and expected to leave a result [`Value`] on the top of the stack.
enum Frame {
/// CallFrame represents the execution of Tvix bytecode within a thunk,
/// function or closure.
CallFrame {
/// The call frame itself, separated out into another type to pass it
/// around easily.
call_frame: CallFrame,
/// Span from which the call frame was launched.
span: LightSpan,
},
/// Generator represents a frame that can yield further
/// instructions to the VM while its execution is being driven.
///
/// A generator is essentially an asynchronous function that can
/// be suspended while waiting for the VM to do something (e.g.
/// thunk forcing), and resume at the same point.
Generator {
/// human-readable description of the generator,
name: &'static str,
/// Span from which the generator was launched.
span: LightSpan,
state: GeneratorState,
/// Generator itself, which can be resumed with `.resume()`.
generator: Generator,
},
}
impl Frame {
pub fn span(&self) -> LightSpan {
match self {
Frame::CallFrame { span, .. } | Frame::Generator { span, .. } => span.clone(),
}
}
}
#[derive(Default)]
struct ImportCache(HashMap<PathBuf, Value>);
/// The `ImportCache` holds the `Value` resulting from `import`ing a certain
/// file, so that the same file doesn't need to be re-evaluated multiple times.
/// Currently the real path of the imported file (determined using
/// [`std::fs::canonicalize()`], not to be confused with our
/// [`crate::value::canon_path()`]) is used to identify the file,
/// just like C++ Nix does.
///
/// Errors while determining the real path are currently just ignored, since we
/// pass around some fake paths like `/__corepkgs__/fetchurl.nix`.
///
/// In the future, we could use something more sophisticated, like file hashes.
/// However, a consideration is that the eval cache is observable via impurities
/// like pointer equality and `builtins.trace`.
impl ImportCache {
fn get(&self, path: PathBuf) -> Option<&Value> {
let path = match std::fs::canonicalize(path.as_path()).map_err(ErrorKind::from) {
Ok(path) => path,
Err(_) => path,
};
self.0.get(&path)
}
fn insert(&mut self, path: PathBuf, value: Value) -> Option<Value> {
self.0.insert(
match std::fs::canonicalize(path.as_path()).map_err(ErrorKind::from) {
Ok(path) => path,
Err(_) => path,
},
value,
)
}
}
struct VM<'o> {
/// VM's frame stack, representing the execution contexts the VM is working
/// through. Elements are usually pushed when functions are called, or
/// thunks are being forced.
frames: Vec<Frame>,
/// The VM's top-level value stack. Within this stack, each code-executing
/// frame holds a "view" of the stack representing the slice of the
/// top-level stack that is relevant to its operation. This is done to avoid
/// allocating a new `Vec` for each frame's stack.
pub(crate) stack: Vec<Value>,
/// Stack indices (absolute indexes into `stack`) of attribute
/// sets from which variables should be dynamically resolved
/// (`with`).
with_stack: Vec<usize>,
/// Runtime warnings collected during evaluation.
warnings: Vec<EvalWarning>,
/// Import cache, mapping absolute file paths to the value that
/// they compile to. Note that this reuses thunks, too!
// TODO: should probably be based on a file hash
pub import_cache: ImportCache,
/// Parsed Nix search path, which is used to resolve `<...>`
/// references.
nix_search_path: NixSearchPath,
/// Implementation of I/O operations used for impure builtins and
/// features like `import`.
io_handle: Box<dyn EvalIO>,
/// Runtime observer which can print traces of runtime operations.
observer: &'o mut dyn RuntimeObserver,
/// Strong reference to the globals, guaranteeing that they are
/// kept alive for the duration of evaluation.
///
/// This is important because recursive builtins (specifically
/// `import`) hold a weak reference to the builtins, while the
/// original strong reference is held by the compiler which does
/// not exist anymore at runtime.
#[allow(dead_code)]
globals: Rc<GlobalsMap>,
/// A reasonably applicable span that can be used for errors in each
/// execution situation.
///
/// The VM should update this whenever control flow changes take place (i.e.
/// entering or exiting a frame to yield control somewhere).
reasonable_span: LightSpan,
/// This field is responsible for handling `builtins.tryEval`. When that
/// builtin is encountered, it sends a special message to the VM which
/// pushes the frame index that requested to be informed of catchable
/// errors in this field.
///
/// The frame stack is then laid out like this:
///
/// ```notrust
/// ┌──┬──────────────────────────┐
/// │ 0│ `Result`-producing frame │
/// ├──┼──────────────────────────┤
/// │-1│ `builtins.tryEval` frame │
/// ├──┼──────────────────────────┤
/// │..│ ... other frames ... │
/// └──┴──────────────────────────┘
/// ```
///
/// Control is yielded to the outer VM loop, which evaluates the next frame
/// and returns the result itself to the `builtins.tryEval` frame.
try_eval_frames: Vec<usize>,
}
impl<'o> VM<'o> {
pub fn new(
nix_search_path: NixSearchPath,
io_handle: Box<dyn EvalIO>,
observer: &'o mut dyn RuntimeObserver,
globals: Rc<GlobalsMap>,
reasonable_span: LightSpan,
) -> Self {
Self {
nix_search_path,
io_handle,
observer,
globals,
reasonable_span,
frames: vec![],
stack: vec![],
with_stack: vec![],
warnings: vec![],
import_cache: Default::default(),
try_eval_frames: vec![],
}
}
/// Push a call frame onto the frame stack.
fn push_call_frame(&mut self, span: LightSpan, call_frame: CallFrame) {
self.frames.push(Frame::CallFrame { span, call_frame })
}
/// Run the VM's primary (outer) execution loop, continuing execution based
/// on the current frame at the top of the frame stack.
fn execute(mut self) -> EvalResult<RuntimeResult> {
while let Some(frame) = self.frames.pop() {
self.reasonable_span = frame.span();
let frame_id = self.frames.len();
match frame {
Frame::CallFrame { call_frame, span } => {
self.observer
.observe_enter_call_frame(0, &call_frame.lambda, frame_id);
match self.execute_bytecode(span, call_frame) {
Ok(true) => self.observer.observe_exit_call_frame(frame_id, &self.stack),
Ok(false) => self
.observer
.observe_suspend_call_frame(frame_id, &self.stack),
Err(err) => return Err(err),
};
}
// Handle generator frames, which can request thunk forcing
// during their execution.
Frame::Generator {
name,
span,
state,
generator,
} => {
self.observer
.observe_enter_generator(frame_id, name, &self.stack);
match self.run_generator(name, span, frame_id, state, generator, None) {
Ok(true) => {
self.observer
.observe_exit_generator(frame_id, name, &self.stack)
}
Ok(false) => {
self.observer
.observe_suspend_generator(frame_id, name, &self.stack)
}
Err(err) => return Err(err),
};
}
}
}
// Once no more frames are present, return the stack's top value as the
// result.
let value = self
.stack
.pop()
.expect("tvix bug: runtime stack empty after execution");
Ok(RuntimeResult {
value,
warnings: self.warnings,
})
}
/// Run the VM's inner execution loop, processing Tvix bytecode from a
/// chunk. This function returns if:
///
/// 1. The code has run to the end, and has left a value on the top of the
/// stack. In this case, the frame is not returned to the frame stack.
///
/// 2. The code encounters a generator, in which case the frame in its
/// current state is pushed back on the stack, and the generator is left on
/// top of it for the outer loop to execute.
///
/// 3. An error is encountered.
///
/// This function *must* ensure that it leaves the frame stack in the
/// correct order, especially when re-enqueuing a frame to execute.
///
/// The return value indicates whether the bytecode has been executed to
/// completion, or whether it has been suspended in favour of a generator.
fn execute_bytecode(&mut self, span: LightSpan, mut frame: CallFrame) -> EvalResult<bool> {
loop {
let op = frame.inc_ip();
self.observer.observe_execute_op(frame.ip, &op, &self.stack);
match op {
OpCode::OpThunkSuspended(idx) | OpCode::OpThunkClosure(idx) => {
let blueprint = match &frame.chunk()[idx] {
Value::Blueprint(lambda) => lambda.clone(),
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
};
let upvalue_count = blueprint.upvalue_count;
let thunk = if matches!(op, OpCode::OpThunkClosure(_)) {
debug_assert!(
upvalue_count > 0,
"OpThunkClosure should not be called for plain lambdas"
);
Thunk::new_closure(blueprint)
} else {
Thunk::new_suspended(blueprint, frame.current_light_span())
};
let upvalues = thunk.upvalues_mut();
self.stack.push(Value::Thunk(thunk.clone()));
// From this point on we internally mutate the
// upvalues. The closure (if `is_closure`) is
// already in its stack slot, which means that it
// can capture itself as an upvalue for
// self-recursion.
self.populate_upvalues(&mut frame, upvalue_count, upvalues)?;
}
OpCode::OpForce => {
if let Some(Value::Thunk(_)) = self.stack.last() {
let thunk = match self.stack_pop() {
Value::Thunk(t) => t,
_ => unreachable!(),
};
let gen_span = frame.current_light_span();
self.push_call_frame(span, frame);
self.enqueue_generator("force", gen_span.clone(), |co| {
Thunk::force(thunk, co, gen_span)
});
return Ok(false);
}
}
OpCode::OpGetUpvalue(upv_idx) => {
let value = frame.upvalue(upv_idx).clone();
self.stack.push(value);
}
// Discard the current frame.
OpCode::OpReturn => {
// TODO(amjoseph): I think this should assert `==` rather
// than `<=` but it fails with the stricter condition.
debug_assert!(self.stack.len() - 1 <= frame.stack_offset);
return Ok(true);
}
OpCode::OpConstant(idx) => {
let c = frame.chunk()[idx].clone();
self.stack.push(c);
}
OpCode::OpCall => {
let callable = self.stack_pop();
self.call_value(frame.current_light_span(), Some((span, frame)), callable)?;
// exit this loop and let the outer loop enter the new call
return Ok(true);
}
// Remove the given number of elements from the stack,
// but retain the top value.
OpCode::OpCloseScope(Count(count)) => {
// Immediately move the top value into the right
// position.
let target_idx = self.stack.len() - 1 - count;
self.stack[target_idx] = self.stack_pop();
// Then drop the remaining values.
for _ in 0..(count - 1) {
self.stack.pop();
}
}
OpCode::OpClosure(idx) => {
let blueprint = match &frame.chunk()[idx] {
Value::Blueprint(lambda) => lambda.clone(),
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
};
let upvalue_count = blueprint.upvalue_count;
debug_assert!(
upvalue_count > 0,
"OpClosure should not be called for plain lambdas"
);
let mut upvalues = Upvalues::with_capacity(blueprint.upvalue_count);
self.populate_upvalues(&mut frame, upvalue_count, &mut upvalues)?;
self.stack
.push(Value::Closure(Rc::new(Closure::new_with_upvalues(
Rc::new(upvalues),
blueprint,
))));
}
OpCode::OpAttrsSelect => lifted_pop! {
self(key, attrs) => {
let key = key.to_str().with_span(&frame, self)?;
let attrs = attrs.to_attrs().with_span(&frame, self)?;
match attrs.select(key.as_str()) {
Some(value) => self.stack.push(value.clone()),
None => {
return frame.error(
self,
ErrorKind::AttributeNotFound {
name: key.as_str().to_string(),
},
);
}
}
}
},
OpCode::OpJumpIfFalse(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if !self.stack_peek(0).as_bool().with_span(&frame, self)? {
frame.ip += offset;
}
}
OpCode::OpJumpIfCatchable(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if self.stack_peek(0).is_catchable() {
frame.ip += offset;
}
}
OpCode::OpJumpIfNoFinaliseRequest(JumpOffset(offset)) => {
debug_assert!(offset != 0);
match self.stack_peek(0) {
Value::FinaliseRequest(finalise) => {
if !finalise {
frame.ip += offset;
}
},
val => panic!("Tvix bug: OpJumIfNoFinaliseRequest: expected FinaliseRequest, but got {}", val.type_of()),
}
}
OpCode::OpPop => {
self.stack.pop();
}
OpCode::OpAttrsTrySelect => {
let key = self.stack_pop().to_str().with_span(&frame, self)?;
let value = match self.stack_pop() {
Value::Attrs(attrs) => match attrs.select(key.as_str()) {
Some(value) => value.clone(),
None => Value::AttrNotFound,
},
_ => Value::AttrNotFound,
};
self.stack.push(value);
}
OpCode::OpGetLocal(StackIdx(local_idx)) => {
let idx = frame.stack_offset + local_idx;
self.stack.push(self.stack[idx].clone());
}
OpCode::OpJumpIfNotFound(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if matches!(self.stack_peek(0), Value::AttrNotFound) {
self.stack_pop();
frame.ip += offset;
}
}
OpCode::OpJump(JumpOffset(offset)) => {
debug_assert!(offset != 0);
frame.ip += offset;
}
OpCode::OpEqual => lifted_pop! {
self(b, a) => {
let gen_span = frame.current_light_span();
self.push_call_frame(span, frame);
self.enqueue_generator("nix_eq", gen_span.clone(), |co| {
a.nix_eq_owned_genco(b, co, PointerEquality::ForbidAll, gen_span)
});
return Ok(false);
}
},
// These assertion operations error out if the stack
// top is not of the expected type. This is necessary
// to implement some specific behaviours of Nix
// exactly.
OpCode::OpAssertBool => {
let val = self.stack_peek(0);
// TODO(edef): propagate this into is_bool, since bottom values *are* values of any type
if !val.is_catchable() && !val.is_bool() {
return frame.error(
self,
ErrorKind::TypeError {
expected: "bool",
actual: val.type_of(),
},
);
}
}
OpCode::OpAssertAttrs => {
let val = self.stack_peek(0);
// TODO(edef): propagate this into is_attrs, since bottom values *are* values of any type
if !val.is_catchable() && !val.is_attrs() {
return frame.error(
self,
ErrorKind::TypeError {
expected: "set",
actual: val.type_of(),
},
);
}
}
OpCode::OpAttrs(Count(count)) => self.run_attrset(&frame, count)?,
OpCode::OpAttrsUpdate => lifted_pop! {
self(rhs, lhs) => {
let rhs = rhs.to_attrs().with_span(&frame, self)?;
let lhs = lhs.to_attrs().with_span(&frame, self)?;
self.stack.push(Value::attrs(lhs.update(*rhs)))
}
},
OpCode::OpInvert => lifted_pop! {
self(v) => {
let v = v.as_bool().with_span(&frame, self)?;
self.stack.push(Value::Bool(!v));
}
},
OpCode::OpList(Count(count)) => {
let list =
NixList::construct(count, self.stack.split_off(self.stack.len() - count));
self.stack.push(Value::List(list));
}
OpCode::OpJumpIfTrue(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if self.stack_peek(0).as_bool().with_span(&frame, self)? {
frame.ip += offset;
}
}
OpCode::OpHasAttr => lifted_pop! {
self(key, attrs) => {
let key = key.to_str().with_span(&frame, self)?;
let result = match attrs {
Value::Attrs(attrs) => attrs.contains(key.as_str()),
// Nix allows use of `?` on non-set types, but
// always returns false in those cases.
_ => false,
};
self.stack.push(Value::Bool(result));
}
},
OpCode::OpConcat => lifted_pop! {
self(rhs, lhs) => {
let rhs = rhs.to_list().with_span(&frame, self)?.into_inner();
let lhs = lhs.to_list().with_span(&frame, self)?.into_inner();
self.stack.push(Value::List(NixList::from(lhs + rhs)))
}
},
OpCode::OpResolveWith => {
let ident = self.stack_pop().to_str().with_span(&frame, self)?;
// Re-enqueue this frame.
let op_span = frame.current_light_span();
self.push_call_frame(span, frame);
// Construct a generator frame doing the lookup in constant
// stack space.
let with_stack_len = self.with_stack.len();
let closed_with_stack_len = self
.last_call_frame()
.map(|frame| frame.upvalues.with_stack_len())
.unwrap_or(0);
self.enqueue_generator("resolve_with", op_span, |co| {
resolve_with(
co,
ident.as_str().to_owned(),
with_stack_len,
closed_with_stack_len,
)
});
return Ok(false);
}
OpCode::OpFinalise(StackIdx(idx)) => match &self.stack[frame.stack_offset + idx] {
Value::Closure(_) => panic!("attempted to finalise a closure"),
Value::Thunk(thunk) => thunk.finalise(&self.stack[frame.stack_offset..]),
_ => panic!("attempted to finalise a non-thunk"),
},
OpCode::OpCoerceToString(kind) => {
let value = self.stack_pop();
let gen_span = frame.current_light_span();
self.push_call_frame(span, frame);
self.enqueue_generator("coerce_to_string", gen_span.clone(), |co| {
value.coerce_to_string(co, kind, gen_span)
});
return Ok(false);
}
OpCode::OpInterpolate(Count(count)) => self.run_interpolate(&frame, count)?,
OpCode::OpValidateClosedFormals => {
let formals = frame.lambda.formals.as_ref().expect(
"OpValidateClosedFormals called within the frame of a lambda without formals",
);
let peeked = self.stack_peek(0);
if peeked.is_catchable() {
continue;
}
let args = peeked.to_attrs().with_span(&frame, self)?;
for arg in args.keys() {
if !formals.contains(arg) {
return frame.error(
self,
ErrorKind::UnexpectedArgument {
arg: arg.clone(),
formals_span: formals.span,
},
);
}
}
}
OpCode::OpAdd => lifted_pop! {
self(b, a) => {
let gen_span = frame.current_light_span();
self.push_call_frame(span, frame);
// OpAdd can add not just numbers, but also string-like
// things, which requires more VM logic. This operation is
// evaluated in a generator frame.
self.enqueue_generator("add_values", gen_span, |co| add_values(co, a, b));
return Ok(false);
}
},
OpCode::OpSub => lifted_pop! {
self(b, a) => {
let result = arithmetic_op!(&a, &b, -).with_span(&frame, self)?;
self.stack.push(result);
}
},
OpCode::OpMul => lifted_pop! {
self(b, a) => {
let result = arithmetic_op!(&a, &b, *).with_span(&frame, self)?;
self.stack.push(result);
}
},
OpCode::OpDiv => lifted_pop! {
self(b, a) => {
match b {
Value::Integer(0) => return frame.error(self, ErrorKind::DivisionByZero),
Value::Float(b) if b == 0.0_f64 => {
return frame.error(self, ErrorKind::DivisionByZero)
}
_ => {}
};
let result = arithmetic_op!(&a, &b, /).with_span(&frame, self)?;
self.stack.push(result);
}
},
OpCode::OpNegate => match self.stack_pop() {
Value::Integer(i) => self.stack.push(Value::Integer(-i)),
Value::Float(f) => self.stack.push(Value::Float(-f)),
Value::Catchable(cex) => self.stack.push(Value::Catchable(cex)),
v => {
return frame.error(
self,
ErrorKind::TypeError {
expected: "number (either int or float)",
actual: v.type_of(),
},
);
}
},
OpCode::OpLess => cmp_op!(self, frame, span, <),
OpCode::OpLessOrEq => cmp_op!(self, frame, span, <=),
OpCode::OpMore => cmp_op!(self, frame, span, >),
OpCode::OpMoreOrEq => cmp_op!(self, frame, span, >=),
OpCode::OpFindFile => match self.stack_pop() {
Value::UnresolvedPath(path) => {
let resolved = self
.nix_search_path
.resolve(&mut *self.io_handle, *path)
.with_span(&frame, self)?;
self.stack.push(resolved.into());
}
_ => panic!("tvix compiler bug: OpFindFile called on non-UnresolvedPath"),
},
OpCode::OpResolveHomePath => match self.stack_pop() {
Value::UnresolvedPath(path) => {
match dirs::home_dir() {
None => {
return frame.error(
self,
ErrorKind::RelativePathResolution(
"failed to determine home directory".into(),
),
);
}
Some(mut buf) => {
buf.push(*path);
self.stack.push(buf.into());
}
};
}
_ => {
panic!("tvix compiler bug: OpResolveHomePath called on non-UnresolvedPath")
}
},
OpCode::OpPushWith(StackIdx(idx)) => self.with_stack.push(frame.stack_offset + idx),
OpCode::OpPopWith => {
self.with_stack.pop();
}
OpCode::OpAssertFail => {
self.stack
.push(Value::Catchable(CatchableErrorKind::AssertionFailed));
}
// Data-carrying operands should never be executed,
// that is a critical error in the VM/compiler.
OpCode::DataStackIdx(_)
| OpCode::DataDeferredLocal(_)
| OpCode::DataUpvalueIdx(_)
| OpCode::DataCaptureWith => {
panic!("Tvix bug: attempted to execute data-carrying operand")
}
}
}
}
}
/// Implementation of helper functions for the runtime logic above.
impl<'o> VM<'o> {
pub(crate) fn stack_pop(&mut self) -> Value {
self.stack.pop().expect("runtime stack empty")
}
fn stack_peek(&self, offset: usize) -> &Value {
&self.stack[self.stack.len() - 1 - offset]
}
fn run_attrset(&mut self, frame: &CallFrame, count: usize) -> EvalResult<()> {
let attrs = NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2))
.with_span(frame, self)?;
self.stack.push(Value::attrs(attrs));
Ok(())
}
/// Access the last call frame present in the frame stack.
fn last_call_frame(&self) -> Option<&CallFrame> {
for frame in self.frames.iter().rev() {
if let Frame::CallFrame { call_frame, .. } = frame {
return Some(call_frame);
}
}
None
}
/// Push an already constructed warning.
pub fn push_warning(&mut self, warning: EvalWarning) {
self.warnings.push(warning);
}
/// Emit a warning with the given WarningKind and the source span
/// of the current instruction.
pub fn emit_warning(&mut self, kind: WarningKind) {
self.push_warning(EvalWarning {
kind,
span: self.get_span(),
});
}
/// Interpolate string fragments by popping the specified number of
/// fragments of the stack, evaluating them to strings, and pushing
/// the concatenated result string back on the stack.
fn run_interpolate(&mut self, frame: &CallFrame, count: usize) -> EvalResult<()> {
let mut out = String::new();
// Interpolation propagates the context and union them.
let mut context: NixContext = NixContext::new();
for i in 0..count {
let val = self.stack_pop();
if val.is_catchable() {
for _ in (i + 1)..count {
self.stack.pop();
}
self.stack.push(val);
return Ok(());
}
let mut nix_string = val.to_contextful_str().with_span(frame, self)?;
out.push_str(nix_string.as_str());
if let Some(nix_string_ctx) = nix_string.context_mut() {
context = context.join(nix_string_ctx);
}
}
// FIXME: consume immediately here the String.
self.stack
.push(Value::String(NixString::new_context_from(context, &out)));
Ok(())
}
/// Returns a reasonable light span for the current situation that the VM is
/// in.
pub fn reasonable_light_span(&self) -> LightSpan {
self.reasonable_span.clone()
}
/// Apply an argument from the stack to a builtin, and attempt to call it.
///
/// All calls are tail-calls in Tvix, as every function application is a
/// separate thunk and OpCall is thus the last result in the thunk.
///
/// Due to this, once control flow exits this function, the generator will
/// automatically be run by the VM.
fn call_builtin(&mut self, span: LightSpan, mut builtin: Builtin) -> EvalResult<()> {
let builtin_name = builtin.name();
self.observer.observe_enter_builtin(builtin_name);
builtin.apply_arg(self.stack_pop());
match builtin.call() {
// Partially applied builtin is just pushed back on the stack.
BuiltinResult::Partial(partial) => self.stack.push(Value::Builtin(partial)),
// Builtin is fully applied and the generator needs to be run by the VM.
BuiltinResult::Called(name, generator) => self.frames.push(Frame::Generator {
generator,
span,
name,
state: GeneratorState::Running,
}),
}
Ok(())
}
fn call_value(
&mut self,
span: LightSpan,
parent: Option<(LightSpan, CallFrame)>,
callable: Value,
) -> EvalResult<()> {
match callable {
Value::Builtin(builtin) => self.call_builtin(span, builtin),
Value::Thunk(thunk) => self.call_value(span, parent, thunk.value().clone()),
Value::Closure(closure) => {
let lambda = closure.lambda();
self.observer.observe_tail_call(self.frames.len(), &lambda);
// The stack offset is always `stack.len() - arg_count`, and
// since this branch handles native Nix functions (which always
// take only a single argument and are curried), the offset is
// `stack_len - 1`.
let stack_offset = self.stack.len() - 1;
// Reenqueue the parent frame, which should only have
// `OpReturn` left. Not throwing it away leads to more
// useful error traces.
if let Some((parent_span, parent_frame)) = parent {
self.push_call_frame(parent_span, parent_frame);
}
self.push_call_frame(
span,
CallFrame {
lambda,
upvalues: closure.upvalues(),
ip: CodeIdx(0),
stack_offset,
},
);
Ok(())
}
// Attribute sets with a __functor attribute are callable.
val @ Value::Attrs(_) => {
if let Some((parent_span, parent_frame)) = parent {
self.push_call_frame(parent_span, parent_frame);
}
self.enqueue_generator("__functor call", span, |co| call_functor(co, val));
Ok(())
}
val @ Value::Catchable(_) => {
// the argument that we tried to apply a catchable to
self.stack.pop();
// applying a `throw` to anything is still a `throw`, so we just
// push it back on the stack.
self.stack.push(val);
Ok(())
}
v => Err(ErrorKind::NotCallable(v.type_of())).with_span(&span, self),
}
}
/// Populate the upvalue fields of a thunk or closure under construction.
fn populate_upvalues(
&mut self,
frame: &mut CallFrame,
count: usize,
mut upvalues: impl DerefMut<Target = Upvalues>,
) -> EvalResult<()> {
for _ in 0..count {
match frame.inc_ip() {
OpCode::DataStackIdx(StackIdx(stack_idx)) => {
let idx = frame.stack_offset + stack_idx;
let val = match self.stack.get(idx) {
Some(val) => val.clone(),
None => {
return frame.error(
self,
ErrorKind::TvixBug {
msg: "upvalue to be captured was missing on stack",
metadata: Some(Rc::new(json!({
"ip": format!("{:#x}", frame.ip.0 - 1),
"stack_idx(relative)": stack_idx,
"stack_idx(absolute)": idx,
}))),
},
);
}
};
upvalues.deref_mut().push(val);
}
OpCode::DataUpvalueIdx(upv_idx) => {
upvalues.deref_mut().push(frame.upvalue(upv_idx).clone());
}
OpCode::DataDeferredLocal(idx) => {
upvalues.deref_mut().push(Value::DeferredUpvalue(idx));
}
OpCode::DataCaptureWith => {
// Start the captured with_stack off of the
// current call frame's captured with_stack, ...
let mut captured_with_stack = frame
.upvalues
.with_stack()
.map(Clone::clone)
// ... or make an empty one if there isn't one already.
.unwrap_or_else(|| Vec::with_capacity(self.with_stack.len()));
for idx in &self.with_stack {
captured_with_stack.push(self.stack[*idx].clone());
}
upvalues.deref_mut().set_with_stack(captured_with_stack);
}
_ => panic!("compiler error: missing closure operand"),
}
}
Ok(())
}
}
// TODO(amjoseph): de-asyncify this
/// Resolve a dynamically bound identifier (through `with`) by looking
/// for matching values in the with-stacks carried at runtime.
async fn resolve_with(
co: GenCo,
ident: String,
vm_with_len: usize,
upvalue_with_len: usize,
) -> Result<Value, ErrorKind> {
/// Fetch and force a value on the with-stack from the VM.
async fn fetch_forced_with(co: &GenCo, idx: usize) -> Value {
match co.yield_(VMRequest::WithValue(idx)).await {
VMResponse::Value(value) => value,
msg => panic!(
"Tvix bug: VM responded with incorrect generator message: {}",
msg
),
}
}
/// Fetch and force a value on the *captured* with-stack from the VM.
async fn fetch_captured_with(co: &GenCo, idx: usize) -> Value {
match co.yield_(VMRequest::CapturedWithValue(idx)).await {
VMResponse::Value(value) => value,
msg => panic!(
"Tvix bug: VM responded with incorrect generator message: {}",
msg
),
}
}
for with_stack_idx in (0..vm_with_len).rev() {
// TODO(tazjin): is this branch still live with the current with-thunking?
let with = fetch_forced_with(&co, with_stack_idx).await;
if with.is_catchable() {
return Ok(with);
}
match with.to_attrs()?.select(&ident) {
None => continue,
Some(val) => return Ok(val.clone()),
}
}
for upvalue_with_idx in (0..upvalue_with_len).rev() {
let with = fetch_captured_with(&co, upvalue_with_idx).await;
if with.is_catchable() {
return Ok(with);
}
match with.to_attrs()?.select(&ident) {
None => continue,
Some(val) => return Ok(val.clone()),
}
}
Err(ErrorKind::UnknownDynamicVariable(ident))
}
// TODO(amjoseph): de-asyncify this
async fn add_values(co: GenCo, a: Value, b: Value) -> Result<Value, ErrorKind> {
// What we try to do is solely determined by the type of the first value!
let result = match (a, b) {
(Value::Path(p), v) => {
let mut path = p.to_string_lossy().into_owned();
match generators::request_string_coerce(
&co,
v,
CoercionKind {
strong: false,
// Concatenating a Path with something else results in a
// Path, so we don't need to import any paths (paths
// imported by Nix always exist as a string, unless
// converted by the user). In C++ Nix they even may not
// contain any string context, the resulting error of such a
// case can not be replicated by us.
import_paths: false,
// FIXME(raitobezarius): per https://b.tvl.fyi/issues/364, this is a usecase
// for having a `reject_context: true` option here. This didn't occur yet in
// nixpkgs during my evaluations, therefore, I skipped it.
},
)
.await
{
Ok(vs) => {
path.push_str(vs.as_str());
crate::value::canon_path(PathBuf::from(path)).into()
}
Err(c) => Value::Catchable(c),
}
}
(Value::String(s1), Value::String(s2)) => Value::String(s1.concat(&s2)),
(Value::String(s1), v) => generators::request_string_coerce(
&co,
v,
CoercionKind {
strong: false,
// Behaves the same as string interpolation
import_paths: true,
},
)
.await
.map(|s2| Value::String(s1.concat(&s2)))
.into(),
(a @ Value::Integer(_), b) | (a @ Value::Float(_), b) => arithmetic_op!(&a, &b, +)?,
(a, b) => {
let r1 = generators::request_string_coerce(
&co,
a,
CoercionKind {
strong: false,
import_paths: false,
},
)
.await;
let r2 = generators::request_string_coerce(
&co,
b,
CoercionKind {
strong: false,
import_paths: false,
},
)
.await;
match (r1, r2) {
(Ok(s1), Ok(s2)) => Value::String(s1.concat(&s2)),
(Err(c), _) => return Ok(Value::Catchable(c)),
(_, Err(c)) => return Ok(Value::Catchable(c)),
}
}
};
Ok(result)
}
/// The result of a VM's runtime evaluation.
pub struct RuntimeResult {
pub value: Value,
pub warnings: Vec<EvalWarning>,
}
// TODO(amjoseph): de-asyncify this
/// Generator that retrieves the final value from the stack, and deep-forces it
/// before returning.
async fn final_deep_force(co: GenCo) -> Result<Value, ErrorKind> {
let value = generators::request_stack_pop(&co).await;
Ok(generators::request_deep_force(&co, value).await)
}
pub fn run_lambda(
nix_search_path: NixSearchPath,
io_handle: Box<dyn EvalIO>,
observer: &mut dyn RuntimeObserver,
globals: Rc<GlobalsMap>,
lambda: Rc<Lambda>,
strict: bool,
) -> EvalResult<RuntimeResult> {
// Retain the top-level span of the expression in this lambda, as
// synthetic "calls" in deep_force will otherwise not have a span
// to fall back to.
//
// We exploit the fact that the compiler emits a final instruction
// with the span of the entire file for top-level expressions.
let root_span = lambda.chunk.get_span(CodeIdx(lambda.chunk.code.len() - 1));
let mut vm = VM::new(
nix_search_path,
io_handle,
observer,
globals,
root_span.into(),
);
// When evaluating strictly, synthesise a frame that will instruct
// the VM to deep-force the final value before returning it.
if strict {
vm.enqueue_generator("final_deep_force", root_span.into(), final_deep_force);
}
vm.frames.push(Frame::CallFrame {
span: root_span.into(),
call_frame: CallFrame {
lambda,
upvalues: Rc::new(Upvalues::with_capacity(0)),
ip: CodeIdx(0),
stack_offset: 0,
},
});
vm.execute()
}