//! This module implements the virtual (or abstract) machine that runs
//! Tvix bytecode.
use std::{cell::RefMut, path::PathBuf, rc::Rc};
use path_clean::PathClean;
use crate::{
chunk::Chunk,
errors::{Error, ErrorKind, EvalResult},
nix_path::NixPath,
observer::RuntimeObserver,
opcode::{CodeIdx, Count, JumpOffset, OpCode, StackIdx, UpvalueIdx},
upvalues::{UpvalueCarrier, Upvalues},
value::{Builtin, Closure, CoercionKind, Lambda, NixAttrs, NixList, Thunk, Value},
warnings::{EvalWarning, WarningKind},
};
struct CallFrame {
/// The lambda currently being executed.
lambda: Rc<Lambda>,
/// Optional captured upvalues of this frame (if a thunk or
/// closure if being evaluated).
upvalues: Upvalues,
/// Instruction pointer to the instruction currently being
/// executed.
ip: CodeIdx,
/// Stack offset, i.e. the frames "view" into the VM's full stack.
stack_offset: usize,
}
impl CallFrame {
/// Retrieve an upvalue from this frame at the given index.
fn upvalue(&self, idx: UpvalueIdx) -> &Value {
&self.upvalues[idx]
}
}
pub struct VM<'o> {
frames: Vec<CallFrame>,
stack: Vec<Value>,
/// Stack indices of attribute sets from which variables should be
/// dynamically resolved (`with`).
with_stack: Vec<usize>,
/// Runtime warnings collected during evaluation.
warnings: Vec<EvalWarning>,
nix_path: NixPath,
observer: &'o mut dyn RuntimeObserver,
}
/// The result of a VM's runtime evaluation.
pub struct RuntimeResult {
pub value: Value,
pub warnings: Vec<EvalWarning>,
}
/// This macro wraps a computation that returns an ErrorKind or a
/// result, and wraps the ErrorKind in an Error struct if present.
///
/// The reason for this macro's existence is that calculating spans is
/// potentially expensive, so it should be avoided to the last moment
/// (i.e. definite instantiation of a runtime error) if possible.
macro_rules! fallible {
( $self:ident, $body:expr) => {
match $body {
Ok(result) => result,
Err(kind) => {
return Err(Error {
kind,
span: $self.current_span(),
})
}
}
};
}
#[macro_export]
macro_rules! arithmetic_op {
( $self:ident, $op:tt ) => {{
let b = $self.pop();
let a = $self.pop();
let result = fallible!($self, arithmetic_op!(&a, &b, $op));
$self.push(result);
}};
( $a:expr, $b:expr, $op:tt ) => {{
match ($a, $b) {
(Value::Integer(i1), Value::Integer(i2)) => Ok(Value::Integer(i1 $op i2)),
(Value::Float(f1), Value::Float(f2)) => Ok(Value::Float(f1 $op f2)),
(Value::Integer(i1), Value::Float(f2)) => Ok(Value::Float(*i1 as f64 $op f2)),
(Value::Float(f1), Value::Integer(i2)) => Ok(Value::Float(f1 $op *i2 as f64)),
(v1, v2) => Err(ErrorKind::TypeError {
expected: "number (either int or float)",
actual: if v1.is_number() {
v2.type_of()
} else {
v1.type_of()
},
}),
}
}};
}
#[macro_export]
macro_rules! cmp_op {
( $self:ident, $op:tt ) => {{
let b = $self.pop();
let a = $self.pop();
let result = fallible!($self, cmp_op!(&a, &b, $op));
$self.push(result);
}};
( $a:expr, $b:expr, $op:tt ) => {
// Comparable (in terms of ordering) values are numbers and
// strings. Numbers need to be coerced similarly to arithmetic
// ops if mixed types are encountered.
match ($a, $b) {
// same types
(Value::Integer(i1), Value::Integer(i2)) => Ok(Value::Bool(i1 $op i2)),
(Value::Float(f1), Value::Float(f2)) => Ok(Value::Bool(f1 $op f2)),
(Value::String(s1), Value::String(s2)) => Ok(Value::Bool(s1 $op s2)),
// different types
(Value::Integer(i1), Value::Float(f2)) => Ok(Value::Bool((*i1 as f64) $op *f2)),
(Value::Float(f1), Value::Integer(i2)) => Ok(Value::Bool(*f1 $op (*i2 as f64))),
// unsupported types
(lhs, rhs) => Err(ErrorKind::Incomparable {
lhs: lhs.type_of(),
rhs: rhs.type_of(),
}),
}
}
}
impl<'o> VM<'o> {
pub fn new(nix_path: NixPath, observer: &'o mut dyn RuntimeObserver) -> Self {
Self {
nix_path,
observer,
frames: vec![],
stack: vec![],
with_stack: vec![],
warnings: vec![],
}
}
fn frame(&self) -> &CallFrame {
&self.frames[self.frames.len() - 1]
}
fn chunk(&self) -> &Chunk {
&self.frame().lambda.chunk
}
fn frame_mut(&mut self) -> &mut CallFrame {
let idx = self.frames.len() - 1;
&mut self.frames[idx]
}
fn inc_ip(&mut self) -> OpCode {
let op = self.chunk()[self.frame().ip];
self.frame_mut().ip += 1;
op
}
pub fn pop(&mut self) -> Value {
self.stack.pop().expect("runtime stack empty")
}
pub fn push(&mut self, value: Value) {
self.stack.push(value)
}
fn peek(&self, offset: usize) -> &Value {
&self.stack[self.stack.len() - 1 - offset]
}
/// Returns the source span of the instruction currently being
/// executed.
pub(crate) fn current_span(&self) -> codemap::Span {
self.chunk().get_span(self.frame().ip - 1)
}
/// Construct an error from the given ErrorKind and the source
/// span of the current instruction.
pub fn error(&self, kind: ErrorKind) -> Error {
Error {
kind,
span: self.current_span(),
}
}
/// Push an already constructed warning.
pub fn push_warning(&mut self, warning: EvalWarning) {
self.warnings.push(warning);
}
/// Emit a warning with the given WarningKind and the source span
/// of the current instruction.
pub fn emit_warning(&mut self, kind: WarningKind) {
self.push_warning(EvalWarning {
kind,
span: self.current_span(),
});
}
/// Execute the given value in this VM's context, if it is a
/// callable.
///
/// The stack of the VM must be prepared with all required
/// arguments before calling this and the value must have already
/// been forced.
pub fn call_value(&mut self, callable: &Value) -> EvalResult<()> {
match callable {
Value::Closure(c) => self.enter_frame(c.lambda(), c.upvalues().clone(), 1),
Value::Builtin(b) => self.call_builtin(b.clone()),
Value::Thunk(t) => self.call_value(&t.value()),
// TODO: this isn't guaranteed to be a useful span, actually
other => Err(self.error(ErrorKind::NotCallable(other.type_of()))),
}
}
/// Call the given `callable` value with the given list of `args`
///
/// # Panics
///
/// Panics if the passed list of `args` is empty
#[track_caller]
pub fn call_with<I>(&mut self, callable: &Value, args: I) -> EvalResult<Value>
where
I: IntoIterator<Item = Value>,
{
let mut num_args = 0_usize;
for arg in args {
num_args += 1;
self.push(arg);
}
if num_args == 0 {
panic!("call_with called with an empty list of args");
}
self.call_value(callable)?;
let mut res = self.pop();
for _ in 0..(num_args - 1) {
self.call_value(&res)?;
res = self.pop();
}
Ok(res)
}
fn tail_call_value(&mut self, callable: Value) -> EvalResult<()> {
match callable {
Value::Builtin(builtin) => self.call_builtin(builtin),
Value::Thunk(thunk) => self.tail_call_value(thunk.value().clone()),
Value::Closure(closure) => {
let lambda = closure.lambda();
self.observer.observe_tail_call(self.frames.len(), &lambda);
// Replace the current call frames internals with
// that of the tail-called closure.
let mut frame = self.frame_mut();
frame.lambda = lambda;
frame.upvalues = closure.upvalues().clone();
frame.ip = CodeIdx(0); // reset instruction pointer to beginning
Ok(())
}
// Attribute sets with a __functor attribute are callable.
Value::Attrs(ref attrs) => match attrs.select("__functor") {
None => Err(self.error(ErrorKind::NotCallable(callable.type_of()))),
Some(functor) => {
// The functor receives the set itself as its first argument
// and needs to be called with it. However, this call is
// synthetic (i.e. there is no corresponding OpCall for the
// first call in the bytecode.)
self.push(callable.clone());
self.call_value(functor)?;
let primed = self.pop();
self.tail_call_value(primed)
}
},
_ => Err(self.error(ErrorKind::NotCallable(callable.type_of()))),
}
}
/// Execute the given lambda in this VM's context, returning its
/// value after its stack frame completes.
pub fn enter_frame(
&mut self,
lambda: Rc<Lambda>,
upvalues: Upvalues,
arg_count: usize,
) -> EvalResult<()> {
self.observer
.observe_enter_frame(arg_count, &lambda, self.frames.len() + 1);
let frame = CallFrame {
lambda,
upvalues,
ip: CodeIdx(0),
stack_offset: self.stack.len() - arg_count,
};
self.frames.push(frame);
let result = self.run();
self.observer.observe_exit_frame(self.frames.len() + 1);
result
}
/// Run the VM's current call frame to completion.
///
/// On successful return, the top of the stack is the value that
/// the frame evaluated to. The frame itself is popped off. It is
/// up to the caller to consume the value.
fn run(&mut self) -> EvalResult<()> {
loop {
// Break the loop if this call frame has already run to
// completion, pop it off, and return the value to the
// caller.
if self.frame().ip.0 == self.chunk().code.len() {
self.frames.pop();
return Ok(());
}
let op = self.inc_ip();
self.observer
.observe_execute_op(self.frame().ip, &op, &self.stack);
match op {
OpCode::OpConstant(idx) => {
let c = self.chunk()[idx].clone();
self.push(c);
}
OpCode::OpPop => {
self.pop();
}
OpCode::OpAdd => {
let b = self.pop();
let a = self.pop();
let result = match (&a, &b) {
(Value::String(s1), Value::String(s2)) => Value::String(s1.concat(s2)),
(Value::Path(p), v) => {
let mut path = p.to_string_lossy().into_owned();
path.push_str(
&v.coerce_to_string(CoercionKind::Weak, self)
.map_err(|ek| self.error(ek))?,
);
PathBuf::from(path).clean().into()
}
_ => fallible!(self, arithmetic_op!(&a, &b, +)),
};
self.push(result)
}
OpCode::OpSub => arithmetic_op!(self, -),
OpCode::OpMul => arithmetic_op!(self, *),
OpCode::OpDiv => arithmetic_op!(self, /),
OpCode::OpInvert => {
let v = fallible!(self, self.pop().as_bool());
self.push(Value::Bool(!v));
}
OpCode::OpNegate => match self.pop() {
Value::Integer(i) => self.push(Value::Integer(-i)),
Value::Float(f) => self.push(Value::Float(-f)),
v => {
return Err(self.error(ErrorKind::TypeError {
expected: "number (either int or float)",
actual: v.type_of(),
}));
}
},
OpCode::OpEqual => {
let v2 = self.pop();
let v1 = self.pop();
let res = fallible!(self, v1.nix_eq(&v2, self));
self.push(Value::Bool(res))
}
OpCode::OpLess => cmp_op!(self, <),
OpCode::OpLessOrEq => cmp_op!(self, <=),
OpCode::OpMore => cmp_op!(self, >),
OpCode::OpMoreOrEq => cmp_op!(self, >=),
OpCode::OpNull => self.push(Value::Null),
OpCode::OpTrue => self.push(Value::Bool(true)),
OpCode::OpFalse => self.push(Value::Bool(false)),
OpCode::OpAttrs(Count(count)) => self.run_attrset(count)?,
OpCode::OpAttrsUpdate => {
let rhs = unwrap_or_clone_rc(fallible!(self, self.pop().to_attrs()));
let lhs = unwrap_or_clone_rc(fallible!(self, self.pop().to_attrs()));
self.push(Value::attrs(lhs.update(rhs)))
}
OpCode::OpAttrsSelect => {
let key = fallible!(self, self.pop().to_str());
let attrs = fallible!(self, self.pop().to_attrs());
match attrs.select(key.as_str()) {
Some(value) => self.push(value.clone()),
None => {
return Err(self.error(ErrorKind::AttributeNotFound {
name: key.as_str().to_string(),
}))
}
}
}
OpCode::OpAttrsTrySelect => {
let key = fallible!(self, self.pop().to_str());
let value = match self.pop() {
Value::Attrs(attrs) => match attrs.select(key.as_str()) {
Some(value) => value.clone(),
None => Value::AttrNotFound,
},
_ => Value::AttrNotFound,
};
self.push(value);
}
OpCode::OpHasAttr => {
let key = fallible!(self, self.pop().to_str());
let result = match self.pop() {
Value::Attrs(attrs) => attrs.contains(key.as_str()),
// Nix allows use of `?` on non-set types, but
// always returns false in those cases.
_ => false,
};
self.push(Value::Bool(result));
}
OpCode::OpList(Count(count)) => {
let list =
NixList::construct(count, self.stack.split_off(self.stack.len() - count));
self.push(Value::List(list));
}
OpCode::OpConcat => {
let rhs = fallible!(self, self.pop().to_list());
let lhs = fallible!(self, self.pop().to_list());
self.push(Value::List(lhs.concat(&rhs)))
}
OpCode::OpInterpolate(Count(count)) => self.run_interpolate(count)?,
OpCode::OpCoerceToString => {
// TODO: handle string context, copying to store
let string = fallible!(
self,
// note that coerce_to_string also forces
self.pop().coerce_to_string(CoercionKind::Weak, self)
);
self.push(Value::String(string));
}
OpCode::OpFindFile => {
let path = self.pop().to_str().map_err(|e| self.error(e))?;
let resolved = self.nix_path.resolve(path).map_err(|e| self.error(e))?;
self.push(resolved.into());
}
OpCode::OpJump(JumpOffset(offset)) => {
debug_assert!(offset != 0);
self.frame_mut().ip += offset;
}
OpCode::OpJumpIfTrue(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if fallible!(self, self.peek(0).as_bool()) {
self.frame_mut().ip += offset;
}
}
OpCode::OpJumpIfFalse(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if !fallible!(self, self.peek(0).as_bool()) {
self.frame_mut().ip += offset;
}
}
OpCode::OpJumpIfNotFound(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if matches!(self.peek(0), Value::AttrNotFound) {
self.pop();
self.frame_mut().ip += offset;
}
}
// These assertion operations error out if the stack
// top is not of the expected type. This is necessary
// to implement some specific behaviours of Nix
// exactly.
OpCode::OpAssertBool => {
let val = self.peek(0);
if !val.is_bool() {
return Err(self.error(ErrorKind::TypeError {
expected: "bool",
actual: val.type_of(),
}));
}
}
// Remove the given number of elements from the stack,
// but retain the top value.
OpCode::OpCloseScope(Count(count)) => {
// Immediately move the top value into the right
// position.
let target_idx = self.stack.len() - 1 - count;
self.stack[target_idx] = self.pop();
// Then drop the remaining values.
for _ in 0..(count - 1) {
self.pop();
}
}
OpCode::OpGetLocal(StackIdx(local_idx)) => {
let idx = self.frame().stack_offset + local_idx;
self.push(self.stack[idx].clone());
}
OpCode::OpPushWith(StackIdx(idx)) => {
self.with_stack.push(self.frame().stack_offset + idx)
}
OpCode::OpPopWith => {
self.with_stack.pop();
}
OpCode::OpResolveWith => {
let ident = fallible!(self, self.pop().to_str());
let value = self.resolve_with(ident.as_str())?;
self.push(value)
}
OpCode::OpResolveWithOrUpvalue(idx) => {
let ident = fallible!(self, self.pop().to_str());
match self.resolve_with(ident.as_str()) {
// Variable found in local `with`-stack.
Ok(value) => self.push(value),
// Variable not found => check upvalues.
Err(Error {
kind: ErrorKind::UnknownDynamicVariable(_),
..
}) => {
let value = self.frame().upvalue(idx).clone();
self.push(value);
}
Err(err) => return Err(err),
}
}
OpCode::OpAssertFail => {
return Err(self.error(ErrorKind::AssertionFailed));
}
OpCode::OpCall => {
let callable = self.pop();
self.call_value(&callable)?;
}
OpCode::OpTailCall => {
let callable = self.pop();
self.tail_call_value(callable)?;
}
OpCode::OpGetUpvalue(upv_idx) => {
let value = self.frame().upvalue(upv_idx).clone();
self.push(value);
}
OpCode::OpClosure(idx) => {
let blueprint = match &self.chunk()[idx] {
Value::Blueprint(lambda) => lambda.clone(),
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
};
let upvalue_count = blueprint.upvalue_count;
debug_assert!(
upvalue_count > 0,
"OpClosure should not be called for plain lambdas"
);
let closure = Closure::new(blueprint);
let upvalues = closure.upvalues_mut();
self.push(Value::Closure(closure.clone()));
// From this point on we internally mutate the
// closure object's upvalues. The closure is
// already in its stack slot, which means that it
// can capture itself as an upvalue for
// self-recursion.
self.populate_upvalues(upvalue_count, upvalues)?;
}
OpCode::OpThunk(idx) => {
let blueprint = match &self.chunk()[idx] {
Value::Blueprint(lambda) => lambda.clone(),
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
};
let upvalue_count = blueprint.upvalue_count;
let thunk = Thunk::new(blueprint, self.current_span());
let upvalues = thunk.upvalues_mut();
self.push(Value::Thunk(thunk.clone()));
self.populate_upvalues(upvalue_count, upvalues)?;
}
OpCode::OpForce => {
let mut value = self.pop();
if let Value::Thunk(thunk) = value {
fallible!(self, thunk.force(self));
value = thunk.value().clone();
}
self.push(value);
}
OpCode::OpFinalise(StackIdx(idx)) => {
match &self.stack[self.frame().stack_offset + idx] {
Value::Closure(closure) => closure
.resolve_deferred_upvalues(&self.stack[self.frame().stack_offset..]),
Value::Thunk(thunk) => thunk
.resolve_deferred_upvalues(&self.stack[self.frame().stack_offset..]),
// In functions with "formals" attributes, it is
// possible for `OpFinalise` to be called on a
// non-capturing value, in which case it is a no-op.
//
// TODO: detect this in some phase and skip the finalise; fail here
_ => { /* TODO: panic here again to catch bugs */ }
}
}
// Data-carrying operands should never be executed,
// that is a critical error in the VM.
OpCode::DataLocalIdx(_)
| OpCode::DataDeferredLocal(_)
| OpCode::DataUpvalueIdx(_)
| OpCode::DataCaptureWith => {
panic!("VM bug: attempted to execute data-carrying operand")
}
}
}
}
fn run_attrset(&mut self, count: usize) -> EvalResult<()> {
let attrs = fallible!(
self,
NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2))
);
self.push(Value::attrs(attrs));
Ok(())
}
/// Interpolate string fragments by popping the specified number of
/// fragments of the stack, evaluating them to strings, and pushing
/// the concatenated result string back on the stack.
fn run_interpolate(&mut self, count: usize) -> EvalResult<()> {
let mut out = String::new();
for _ in 0..count {
out.push_str(fallible!(self, self.pop().to_str()).as_str());
}
self.push(Value::String(out.into()));
Ok(())
}
/// Resolve a dynamic identifier through the with-stack at runtime.
fn resolve_with(&mut self, ident: &str) -> EvalResult<Value> {
// Iterate over the with_stack manually to avoid borrowing
// self, which is required for forcing the set.
for with_stack_idx in (0..self.with_stack.len()).rev() {
let with = self.stack[self.with_stack[with_stack_idx]].clone();
if let Value::Thunk(thunk) = &with {
fallible!(self, thunk.force(self));
}
match fallible!(self, with.to_attrs()).select(ident) {
None => continue,
Some(val) => return Ok(val.clone()),
}
}
// Iterate over the captured with stack if one exists. This is
// extra tricky to do without a lot of cloning.
for idx in (0..self.frame().upvalues.with_stack_len()).rev() {
// This is safe because having an index here guarantees
// that the stack is present.
let with =
unsafe { self.frame().upvalues.with_stack().unwrap_unchecked()[idx].clone() };
if let Value::Thunk(thunk) = &with {
fallible!(self, thunk.force(self));
}
match fallible!(self, with.to_attrs()).select(ident) {
None => continue,
Some(val) => return Ok(val.clone()),
}
}
Err(self.error(ErrorKind::UnknownDynamicVariable(ident.to_string())))
}
/// Populate the upvalue fields of a thunk or closure under construction.
fn populate_upvalues(
&mut self,
count: usize,
mut upvalues: RefMut<'_, Upvalues>,
) -> EvalResult<()> {
for _ in 0..count {
match self.inc_ip() {
OpCode::DataLocalIdx(StackIdx(local_idx)) => {
let idx = self.frame().stack_offset + local_idx;
upvalues.push(self.stack[idx].clone());
}
OpCode::DataUpvalueIdx(upv_idx) => {
upvalues.push(self.frame().upvalue(upv_idx).clone());
}
OpCode::DataDeferredLocal(idx) => {
upvalues.push(Value::DeferredUpvalue(idx));
}
OpCode::DataCaptureWith => {
// Start the captured with_stack off of the
// current call frame's captured with_stack, ...
let mut captured_with_stack = self
.frame()
.upvalues
.with_stack()
.map(Clone::clone)
// ... or make an empty one if there isn't one already.
.unwrap_or_else(|| Vec::with_capacity(self.with_stack.len()));
for idx in &self.with_stack {
captured_with_stack.push(self.stack[*idx].clone());
}
upvalues.set_with_stack(captured_with_stack);
}
_ => panic!("compiler error: missing closure operand"),
}
}
Ok(())
}
/// Strictly evaluate the supplied value for outputting it. This
/// will ensure that lists and attribute sets do not contain
/// chunks which, for users, are displayed in a strange and often
/// unexpected way.
fn force_for_output(&mut self, value: &Value) -> EvalResult<()> {
match value {
Value::Attrs(attrs) => {
for (_, value) in attrs.iter() {
self.force_for_output(value)?;
}
Ok(())
}
Value::List(list) => list.iter().try_for_each(|elem| self.force_for_output(elem)),
Value::Thunk(thunk) => {
fallible!(self, thunk.force(self));
let value = thunk.value().clone();
self.force_for_output(&value)
}
// If any of these internal values are encountered here a
// critical error has happened (likely a compiler bug).
Value::AttrNotFound
| Value::DynamicUpvalueMissing(_)
| Value::Blueprint(_)
| Value::DeferredUpvalue(_) => {
panic!("tvix bug: internal value left on stack: {:?}", value)
}
Value::Null
| Value::Bool(_)
| Value::Integer(_)
| Value::Float(_)
| Value::String(_)
| Value::Path(_)
| Value::Closure(_)
| Value::Builtin(_) => Ok(()),
}
}
pub fn call_builtin(&mut self, builtin: Builtin) -> EvalResult<()> {
let builtin_name = builtin.name();
self.observer.observe_enter_builtin(builtin_name);
let arg = self.pop();
let result = fallible!(self, builtin.apply(self, arg));
self.observer.observe_exit_builtin(builtin_name);
self.push(result);
Ok(())
}
}
// TODO: use Rc::unwrap_or_clone once it is stabilised.
// https://doc.rust-lang.org/std/rc/struct.Rc.html#method.unwrap_or_clone
fn unwrap_or_clone_rc<T: Clone>(rc: Rc<T>) -> T {
Rc::try_unwrap(rc).unwrap_or_else(|rc| (*rc).clone())
}
pub fn run_lambda(
nix_path: NixPath,
observer: &mut dyn RuntimeObserver,
lambda: Rc<Lambda>,
) -> EvalResult<RuntimeResult> {
let mut vm = VM::new(nix_path, observer);
vm.enter_frame(lambda, Upvalues::with_capacity(0), 0)?;
let value = vm.pop();
vm.force_for_output(&value)?;
Ok(RuntimeResult {
value,
warnings: vm.warnings,
})
}