//! This module implements the virtual (or abstract) machine that runs
//! Tvix bytecode.
use std::rc::Rc;
use crate::{
chunk::Chunk,
errors::{Error, EvalResult},
opcode::OpCode,
value::{NixAttrs, NixList, Value},
};
#[cfg(feature = "disassembler")]
use crate::disassembler::Tracer;
pub struct VM {
ip: usize,
chunk: Chunk,
stack: Vec<Value>,
// Stack indices of attribute sets from which variables should be
// dynamically resolved (`with`).
with_stack: Vec<usize>,
}
macro_rules! arithmetic_op {
( $self:ident, $op:tt ) => {{
let b = $self.pop();
let a = $self.pop();
let result = arithmetic_op!(a, b, $op);
$self.push(result);
}};
( $a:ident, $b:ident, $op:tt ) => {{
match ($a, $b) {
(Value::Integer(i1), Value::Integer(i2)) => Value::Integer(i1 $op i2),
(Value::Float(f1), Value::Float(f2)) => Value::Float(f1 $op f2),
(Value::Integer(i1), Value::Float(f2)) => Value::Float(i1 as f64 $op f2),
(Value::Float(f1), Value::Integer(i2)) => Value::Float(f1 $op i2 as f64),
(v1, v2) => return Err(Error::TypeError {
expected: "number (either int or float)",
actual: if v1.is_number() {
v2.type_of()
} else {
v1.type_of()
},
}),
}
}};
}
macro_rules! cmp_op {
( $self:ident, $op:tt ) => {{
let b = $self.pop();
let a = $self.pop();
// Comparable (in terms of ordering) values are numbers and
// strings. Numbers need to be coerced similarly to arithmetic
// ops if mixed types are encountered.
let result = match (a, b) {
(Value::Integer(i1), Value::Integer(i2)) => i1 $op i2,
(Value::Float(f1), Value::Float(f2)) => f1 $op f2,
(Value::Integer(i1), Value::Float(f2)) => (i1 as f64) $op f2,
(Value::Float(f1), Value::Integer(i2)) => f1 $op (i2 as f64),
(Value::String(s1), Value::String(s2)) => s1 $op s2,
(lhs, rhs) => return Err(Error::Incomparable {
lhs: lhs.type_of(),
rhs: rhs.type_of(),
}),
};
$self.push(Value::Bool(result));
}};
}
impl VM {
fn inc_ip(&mut self) -> OpCode {
let op = self.chunk.code[self.ip];
self.ip += 1;
op
}
fn pop(&mut self) -> Value {
self.stack.pop().expect("runtime stack empty")
}
fn push(&mut self, value: Value) {
self.stack.push(value)
}
fn peek(&self, offset: usize) -> &Value {
&self.stack[self.stack.len() - 1 - offset]
}
fn run(&mut self) -> EvalResult<Value> {
#[cfg(feature = "disassembler")]
let mut tracer = Tracer::new();
'dispatch: loop {
let op = self.inc_ip();
match op {
OpCode::OpConstant(idx) => {
let c = self.chunk.constant(idx).clone();
self.push(c);
}
OpCode::OpPop => {
self.pop();
}
OpCode::OpAdd => {
let b = self.pop();
let a = self.pop();
let result = if let (Value::String(s1), Value::String(s2)) = (&a, &b) {
Value::String(s1.concat(s2))
} else {
arithmetic_op!(a, b, +)
};
self.push(result)
}
OpCode::OpSub => arithmetic_op!(self, -),
OpCode::OpMul => arithmetic_op!(self, *),
OpCode::OpDiv => arithmetic_op!(self, /),
OpCode::OpInvert => {
let v = self.pop().as_bool()?;
self.push(Value::Bool(!v));
}
OpCode::OpNegate => match self.pop() {
Value::Integer(i) => self.push(Value::Integer(-i)),
Value::Float(f) => self.push(Value::Float(-f)),
v => {
return Err(Error::TypeError {
expected: "number (either int or float)",
actual: v.type_of(),
})
}
},
OpCode::OpEqual => {
let v2 = self.pop();
let v1 = self.pop();
self.push(Value::Bool(v1 == v2))
}
OpCode::OpLess => cmp_op!(self, <),
OpCode::OpLessOrEq => cmp_op!(self, <=),
OpCode::OpMore => cmp_op!(self, >),
OpCode::OpMoreOrEq => cmp_op!(self, >=),
OpCode::OpNull => self.push(Value::Null),
OpCode::OpTrue => self.push(Value::Bool(true)),
OpCode::OpFalse => self.push(Value::Bool(false)),
OpCode::OpAttrs(count) => self.run_attrset(count)?,
OpCode::OpAttrPath(count) => self.run_attr_path(count)?,
OpCode::OpAttrsUpdate => {
let rhs = self.pop().to_attrs()?;
let lhs = self.pop().to_attrs()?;
self.push(Value::Attrs(Rc::new(lhs.update(&rhs))))
}
OpCode::OpAttrsSelect => {
let key = self.pop().to_string()?;
let attrs = self.pop().to_attrs()?;
match attrs.select(key.as_str()) {
Some(value) => self.push(value.clone()),
None => {
return Err(Error::AttributeNotFound {
name: key.as_str().to_string(),
})
}
}
}
OpCode::OpAttrOrNotFound => {
let key = self.pop().to_string()?;
let value = match self.pop() {
Value::Attrs(attrs) => match attrs.select(key.as_str()) {
Some(value) => value.clone(),
None => Value::NotFound,
},
_ => Value::NotFound,
};
self.push(value);
}
OpCode::OpAttrsIsSet => {
let key = self.pop().to_string()?;
let result = match self.pop() {
Value::Attrs(attrs) => attrs.select(key.as_str()).is_some(),
// Nix allows use of `?` on non-set types, but
// always returns false in those cases.
_ => false,
};
self.push(Value::Bool(result));
}
OpCode::OpList(count) => {
let list =
NixList::construct(count, self.stack.split_off(self.stack.len() - count));
self.push(Value::List(list));
}
OpCode::OpConcat => {
let rhs = self.pop().to_list()?;
let lhs = self.pop().to_list()?;
self.push(Value::List(lhs.concat(&rhs)))
}
OpCode::OpInterpolate(count) => self.run_interpolate(count)?,
OpCode::OpJump(offset) => {
self.ip += offset;
}
OpCode::OpJumpIfTrue(offset) => {
if self.peek(0).as_bool()? {
self.ip += offset;
}
}
OpCode::OpJumpIfFalse(offset) => {
if !self.peek(0).as_bool()? {
self.ip += offset;
}
}
OpCode::OpJumpIfNotFound(offset) => {
if matches!(self.peek(0), Value::NotFound) {
self.pop();
self.ip += offset;
}
}
// These assertion operations error out if the stack
// top is not of the expected type. This is necessary
// to implement some specific behaviours of Nix
// exactly.
OpCode::OpAssertBool => {
let val = self.peek(0);
if !val.is_bool() {
return Err(Error::TypeError {
expected: "bool",
actual: val.type_of(),
});
}
}
// Remove the given number of elements from the stack,
// but retain the top value.
OpCode::OpCloseScope(count) => {
// Immediately move the top value into the right
// position.
let target_idx = self.stack.len() - 1 - count;
self.stack[target_idx] = self.pop();
// Then drop the remaining values.
for _ in 0..(count - 1) {
self.pop();
}
}
OpCode::OpGetLocal(local_idx) => {
let value = self.stack[local_idx].clone();
self.push(value)
}
OpCode::OpPushWith(idx) => self.with_stack.push(idx),
OpCode::OpPopWith => {
self.with_stack.pop();
}
OpCode::OpResolveWith => {
let ident = self.pop().to_string()?;
// Attempt to resolve the variable, starting at
// the back of the with_stack.
'with: for idx in self.with_stack.iter().rev() {
let with = self.stack[*idx].as_attrs()?;
match with.select(ident.as_str()) {
None => continue 'with,
Some(val) => {
self.push(val.clone());
continue 'dispatch;
}
}
}
return Err(Error::UnknownDynamicVariable(ident.to_string()));
}
OpCode::OpAssert => {
if !self.pop().as_bool()? {
return Err(Error::AssertionFailed);
}
}
}
#[cfg(feature = "disassembler")]
{
tracer.trace(&op, self.ip, &self.stack);
}
if self.ip == self.chunk.code.len() {
return Ok(self.pop());
}
}
}
// Construct runtime representation of an attr path (essentially
// just a list of strings).
//
// The difference to the list construction operation is that this
// forces all elements into strings, as attribute set keys are
// required to be strict in Nix.
fn run_attr_path(&mut self, count: usize) -> EvalResult<()> {
debug_assert!(count > 1, "AttrPath needs at least two fragments");
let mut path = Vec::with_capacity(count);
for _ in 0..count {
path.push(self.pop().to_string()?);
}
self.push(Value::AttrPath(path));
Ok(())
}
fn run_attrset(&mut self, count: usize) -> EvalResult<()> {
let attrs = NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2))?;
self.push(Value::Attrs(Rc::new(attrs)));
Ok(())
}
// Interpolate string fragments by popping the specified number of
// fragments of the stack, evaluating them to strings, and pushing
// the concatenated result string back on the stack.
fn run_interpolate(&mut self, count: usize) -> EvalResult<()> {
let mut out = String::new();
for _ in 0..count {
out.push_str(self.pop().to_string()?.as_str());
}
self.push(Value::String(out.into()));
Ok(())
}
}
pub fn run_chunk(chunk: Chunk) -> EvalResult<Value> {
let mut vm = VM {
chunk,
ip: 0,
stack: vec![],
with_stack: vec![],
};
vm.run()
}