//! This module implements Nix attribute sets. They have flexible
//! backing implementations, as they are used in very versatile
//! use-cases that are all exposed the same way in the language
//! surface.
//!
//! Due to this, construction and management of attribute sets has
//! some peculiarities that are encapsulated within this module.
use std::collections::btree_map;
use std::collections::BTreeMap;
use crate::errors::ErrorKind;
use crate::vm::VM;
use super::string::NixString;
use super::thunk::ThunkSet;
use super::TotalDisplay;
use super::Value;
#[cfg(test)]
mod tests;
#[derive(Clone, Debug)]
enum AttrsRep {
Empty,
Map(BTreeMap<NixString, Value>),
/// Warning: this represents a **two**-attribute attrset, with
/// attribute names "name" and "value", like `{name="foo";
/// value="bar";}`, *not* `{foo="bar";}`!
KV {
name: Value,
value: Value,
},
}
impl AttrsRep {
/// Retrieve reference to a mutable map inside of an attrs,
/// optionally changing the representation if required.
fn map_mut(&mut self) -> &mut BTreeMap<NixString, Value> {
match self {
AttrsRep::Map(m) => m,
AttrsRep::Empty => {
*self = AttrsRep::Map(BTreeMap::new());
self.map_mut()
}
AttrsRep::KV { name, value } => {
*self = AttrsRep::Map(BTreeMap::from([
(NixString::NAME, name.clone()),
(NixString::VALUE, value.clone()),
]));
self.map_mut()
}
}
}
fn select(&self, key: &str) -> Option<&Value> {
match self {
AttrsRep::Empty => None,
AttrsRep::KV { name, value } => match key {
"name" => Some(name),
"value" => Some(value),
_ => None,
},
AttrsRep::Map(map) => map.get(&key.into()),
}
}
fn contains(&self, key: &str) -> bool {
match self {
AttrsRep::Empty => false,
AttrsRep::KV { .. } => key == "name" || key == "value",
AttrsRep::Map(map) => map.contains_key(&key.into()),
}
}
}
#[repr(transparent)]
#[derive(Clone, Debug)]
pub struct NixAttrs(AttrsRep);
impl TotalDisplay for NixAttrs {
fn total_fmt(&self, f: &mut std::fmt::Formatter<'_>, set: &mut ThunkSet) -> std::fmt::Result {
f.write_str("{ ")?;
match &self.0 {
AttrsRep::KV { name, value } => {
f.write_str("name = ")?;
name.total_fmt(f, set)?;
f.write_str("; ")?;
f.write_str("value = ")?;
value.total_fmt(f, set)?;
f.write_str("; ")?;
}
AttrsRep::Map(map) => {
for (name, value) in map {
write!(f, "{} = ", name.ident_str())?;
value.total_fmt(f, set)?;
f.write_str("; ")?;
}
}
AttrsRep::Empty => { /* no values to print! */ }
}
f.write_str("}")
}
}
#[cfg(feature = "arbitrary")]
mod arbitrary {
use super::*;
use proptest::prelude::*;
use proptest::prop_oneof;
use proptest::strategy::{BoxedStrategy, Just, Strategy};
impl Arbitrary for NixAttrs {
type Parameters = <BTreeMap<NixString, Value> as Arbitrary>::Parameters;
type Strategy = BoxedStrategy<Self>;
fn arbitrary_with(args: Self::Parameters) -> Self::Strategy {
prop_oneof![
Just(Self(AttrsRep::Empty)),
(
any_with::<Value>(args.2.clone()),
any_with::<Value>(args.2.clone())
)
.prop_map(|(name, value)| Self(AttrsRep::KV { name, value })),
any_with::<BTreeMap<NixString, Value>>(args)
.prop_map(|map| Self(AttrsRep::Map(map)))
]
.boxed()
}
}
}
impl NixAttrs {
pub fn empty() -> Self {
Self(AttrsRep::Empty)
}
/// Return an attribute set containing the merge of the two
/// provided sets. Keys from the `other` set have precedence.
pub fn update(self, other: Self) -> Self {
// Short-circuit on some optimal cases:
match (&self.0, &other.0) {
(AttrsRep::Empty, AttrsRep::Empty) => return self,
(AttrsRep::Empty, _) => return other,
(_, AttrsRep::Empty) => return self,
(AttrsRep::KV { .. }, AttrsRep::KV { .. }) => return other,
// Explicitly handle all branches instead of falling
// through, to ensure that we get at least some compiler
// errors if variants are modified.
(AttrsRep::Map(_), AttrsRep::Map(_))
| (AttrsRep::Map(_), AttrsRep::KV { .. })
| (AttrsRep::KV { .. }, AttrsRep::Map(_)) => {}
};
// Slightly more advanced, but still optimised updates
match (self.0, other.0) {
(AttrsRep::Map(mut m), AttrsRep::KV { name, value }) => {
m.insert(NixString::NAME, name);
m.insert(NixString::VALUE, value);
NixAttrs(AttrsRep::Map(m))
}
(AttrsRep::KV { name, value }, AttrsRep::Map(mut m)) => {
match m.entry(NixString::NAME) {
btree_map::Entry::Vacant(e) => {
e.insert(name);
}
btree_map::Entry::Occupied(_) => { /* name from `m` has precedence */ }
};
match m.entry(NixString::VALUE) {
btree_map::Entry::Vacant(e) => {
e.insert(value);
}
btree_map::Entry::Occupied(_) => { /* value from `m` has precedence */ }
};
NixAttrs(AttrsRep::Map(m))
}
// Plain merge of maps.
(AttrsRep::Map(mut m1), AttrsRep::Map(mut m2)) => {
m1.append(&mut m2);
NixAttrs(AttrsRep::Map(m1))
}
// Cases handled above by the borrowing match:
_ => unreachable!(),
}
}
/// Return the number of key-value entries in an attrset.
pub fn len(&self) -> usize {
match &self.0 {
AttrsRep::Map(map) => map.len(),
AttrsRep::Empty => 0,
AttrsRep::KV { .. } => 2,
}
}
/// Select a value from an attribute set by key.
pub fn select(&self, key: &str) -> Option<&Value> {
self.0.select(key)
}
/// Select a required value from an attribute set by key, return
/// an `AttributeNotFound` error if it is missing.
pub fn select_required(&self, key: &str) -> Result<&Value, ErrorKind> {
self.select(key)
.ok_or_else(|| ErrorKind::AttributeNotFound { name: key.into() })
}
pub fn contains(&self, key: &str) -> bool {
self.0.contains(key)
}
/// Construct an iterator over all the key-value pairs in the attribute set.
#[allow(clippy::needless_lifetimes)]
pub fn iter<'a>(&'a self) -> Iter<KeyValue<'a>> {
Iter(match &self.0 {
AttrsRep::Map(map) => KeyValue::Map(map.iter()),
AttrsRep::Empty => KeyValue::Empty,
AttrsRep::KV {
ref name,
ref value,
} => KeyValue::KV {
name,
value,
at: IterKV::default(),
},
})
}
/// Construct an iterator over all the keys of the attribute set
pub fn keys(&self) -> Keys {
Keys(match &self.0 {
AttrsRep::Empty => KeysInner::Empty,
AttrsRep::Map(m) => KeysInner::Map(m.keys()),
AttrsRep::KV { .. } => KeysInner::KV(IterKV::default()),
})
}
/// Implement construction logic of an attribute set, to encapsulate
/// logic about attribute set optimisations inside of this module.
pub fn construct(count: usize, mut stack_slice: Vec<Value>) -> Result<Self, ErrorKind> {
debug_assert!(
stack_slice.len() == count * 2,
"construct_attrs called with count == {}, but slice.len() == {}",
count,
stack_slice.len(),
);
// Optimisation: Empty attribute set
if count == 0 {
return Ok(NixAttrs(AttrsRep::Empty));
}
// Optimisation: KV pattern
if count == 2 {
if let Some(kv) = attempt_optimise_kv(&mut stack_slice) {
return Ok(kv);
}
}
// TODO(tazjin): extend_reserve(count) (rust#72631)
let mut attrs = NixAttrs(AttrsRep::Map(BTreeMap::new()));
for _ in 0..count {
let value = stack_slice.pop().unwrap();
let key = stack_slice.pop().unwrap();
match key {
Value::String(ks) => set_attr(&mut attrs, ks, value)?,
Value::Null => {
// This is in fact valid, but leads to the value
// being ignored and nothing being set, i.e. `{
// ${null} = 1; } => { }`.
continue;
}
other => return Err(ErrorKind::InvalidAttributeName(other)),
}
}
Ok(attrs)
}
/// Construct an attribute set directly from a BTreeMap
/// representation. This is only visible inside of the crate, as
/// it is intended exclusively for use with the construction of
/// global sets for the compiler.
pub(crate) fn from_map(map: BTreeMap<NixString, Value>) -> Self {
NixAttrs(AttrsRep::Map(map))
}
/// Construct an optimized "KV"-style attribute set given the value for the
/// `"name"` key, and the value for the `"value"` key
pub(crate) fn from_kv(name: Value, value: Value) -> Self {
NixAttrs(AttrsRep::KV { name, value })
}
/// Compare `self` against `other` for equality using Nix equality semantics
pub fn nix_eq(&self, other: &Self, vm: &mut VM) -> Result<bool, ErrorKind> {
match (&self.0, &other.0) {
(AttrsRep::Empty, AttrsRep::Empty) => Ok(true),
// It is possible to create an empty attribute set that
// has Map representation like so: ` { ${null} = 1; }`.
//
// Preventing this would incur a cost on all attribute set
// construction (we'd have to check the actual number of
// elements after key construction). In practice this
// probably does not happen, so it's better to just bite
// the bullet and implement this branch.
(AttrsRep::Empty, AttrsRep::Map(map)) | (AttrsRep::Map(map), AttrsRep::Empty) => {
Ok(map.is_empty())
}
// Other specialised representations (KV ...) definitely
// do not match `Empty`.
(AttrsRep::Empty, _) | (_, AttrsRep::Empty) => Ok(false),
(
AttrsRep::KV {
name: n1,
value: v1,
},
AttrsRep::KV {
name: n2,
value: v2,
},
) => Ok(n1.nix_eq(n2, vm)? && v1.nix_eq(v2, vm)?),
(AttrsRep::Map(map), AttrsRep::KV { name, value })
| (AttrsRep::KV { name, value }, AttrsRep::Map(map)) => {
if map.len() != 2 {
return Ok(false);
}
if let (Some(m_name), Some(m_value)) =
(map.get(&NixString::NAME), map.get(&NixString::VALUE))
{
return Ok(name.nix_eq(m_name, vm)? && value.nix_eq(m_value, vm)?);
}
Ok(false)
}
(AttrsRep::Map(m1), AttrsRep::Map(m2)) => {
if m1.len() != m2.len() {
return Ok(false);
}
for (k, v1) in m1 {
if let Some(v2) = m2.get(k) {
if !v1.nix_eq(v2, vm)? {
return Ok(false);
}
} else {
return Ok(false);
}
}
Ok(true)
}
}
}
}
/// In Nix, name/value attribute pairs are frequently constructed from
/// literals. This particular case should avoid allocation of a map,
/// additional heap values etc. and use the optimised `KV` variant
/// instead.
///
/// ```norust
/// `slice` is the top of the stack from which the attrset is being
/// constructed, e.g.
///
/// slice: [ "value" 5 "name" "foo" ]
/// index: 0 1 2 3
/// stack: 3 2 1 0
/// ```
fn attempt_optimise_kv(slice: &mut [Value]) -> Option<NixAttrs> {
let (name_idx, value_idx) = {
match (&slice[2], &slice[0]) {
(Value::String(s1), Value::String(s2))
if (*s1 == NixString::NAME && *s2 == NixString::VALUE) =>
{
(3, 1)
}
(Value::String(s1), Value::String(s2))
if (*s1 == NixString::VALUE && *s2 == NixString::NAME) =>
{
(1, 3)
}
// Technically this branch lets type errors pass,
// but they will be caught during normal attribute
// set construction instead.
_ => return None,
}
};
Some(NixAttrs::from_kv(
slice[name_idx].clone(),
slice[value_idx].clone(),
))
}
/// Set an attribute on an in-construction attribute set, while
/// checking against duplicate keys.
fn set_attr(attrs: &mut NixAttrs, key: NixString, value: Value) -> Result<(), ErrorKind> {
match attrs.0.map_mut().entry(key) {
btree_map::Entry::Occupied(entry) => Err(ErrorKind::DuplicateAttrsKey {
key: entry.key().as_str().to_string(),
}),
btree_map::Entry::Vacant(entry) => {
entry.insert(value);
Ok(())
}
}
}
/// Internal helper type to track the iteration status of an iterator
/// over the name/value representation.
#[derive(Debug, Default)]
pub enum IterKV {
#[default]
Name,
Value,
Done,
}
impl IterKV {
fn next(&mut self) {
match *self {
Self::Name => *self = Self::Value,
Self::Value => *self = Self::Done,
Self::Done => {}
}
}
}
/// Iterator representation over the keys *and* values of an attribute
/// set.
#[derive(Debug)]
pub enum KeyValue<'a> {
Empty,
KV {
name: &'a Value,
value: &'a Value,
at: IterKV,
},
Map(btree_map::Iter<'a, NixString, Value>),
}
/// Iterator over a Nix attribute set.
// This wrapper type exists to make the inner "raw" iterator
// inaccessible.
#[repr(transparent)]
pub struct Iter<T>(T);
impl<'a> Iterator for Iter<KeyValue<'a>> {
type Item = (&'a NixString, &'a Value);
fn next(&mut self) -> Option<Self::Item> {
match &mut self.0 {
KeyValue::Map(inner) => inner.next(),
KeyValue::Empty => None,
KeyValue::KV { name, value, at } => match at {
IterKV::Name => {
at.next();
Some((NixString::NAME_REF, name))
}
IterKV::Value => {
at.next();
Some((NixString::VALUE_REF, value))
}
IterKV::Done => None,
},
}
}
}
enum KeysInner<'a> {
Empty,
KV(IterKV),
Map(btree_map::Keys<'a, NixString, Value>),
}
pub struct Keys<'a>(KeysInner<'a>);
impl<'a> Iterator for Keys<'a> {
type Item = &'a NixString;
fn next(&mut self) -> Option<Self::Item> {
match &mut self.0 {
KeysInner::Empty => None,
KeysInner::KV(at @ IterKV::Name) => {
at.next();
Some(NixString::NAME_REF)
}
KeysInner::KV(at @ IterKV::Value) => {
at.next();
Some(NixString::VALUE_REF)
}
KeysInner::KV(IterKV::Done) => None,
KeysInner::Map(m) => m.next(),
}
}
}
impl<'a> IntoIterator for &'a NixAttrs {
type Item = (&'a NixString, &'a Value);
type IntoIter = Iter<KeyValue<'a>>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}