//! This module implements compiler logic related to name/value
//! binding definitions (that is, attribute sets and let-expressions).
//!
//! In the case of recursive scopes these cases share almost all of
//! their (fairly complex) logic.
use super::*;
// Data structures to track the bindings observed in the
// second pass, and forward the information needed to compile
// their value.
enum Binding {
InheritFrom {
namespace: ast::Expr,
name: SmolStr,
span: Span,
},
Plain {
expr: ast::Expr,
},
}
struct KeySlot {
slot: LocalIdx,
name: SmolStr,
}
struct TrackedBinding {
key_slot: Option<KeySlot>,
value_slot: LocalIdx,
binding: Binding,
}
/// What kind of bindings scope is being compiled?
#[derive(Clone, Copy, PartialEq)]
enum BindingsKind {
/// Standard `let ... in ...`-expression.
LetIn,
/// Non-recursive attribute set.
Attrs,
/// Recursive attribute set.
RecAttrs,
}
impl BindingsKind {
fn is_attrs(&self) -> bool {
matches!(self, BindingsKind::Attrs | BindingsKind::RecAttrs)
}
}
/// AST-traversing functions related to bindings.
impl Compiler<'_> {
/// Compile all inherits of a node with entries that do *not* have a
/// namespace to inherit from, and return the remaining ones that do.
fn compile_plain_inherits<N>(
&mut self,
slot: LocalIdx,
kind: BindingsKind,
count: &mut usize,
node: &N,
) -> Vec<(ast::Expr, String, Span)>
where
N: ToSpan + ast::HasEntry,
{
// Pass over all inherits, resolving only those without namespaces.
// Since they always resolve in a higher scope, we can just compile and
// declare them immediately.
//
// Inherits with namespaces are returned to the caller.
let mut inherit_froms: Vec<(ast::Expr, String, Span)> = vec![];
for inherit in node.inherits() {
match inherit.from() {
// Within a `let` binding, inheriting from the outer scope is a
// no-op *if* the scope is fully static.
None if !kind.is_attrs() && !self.scope().has_with() => {
self.emit_warning(&inherit, WarningKind::UselessInherit);
continue;
}
None => {
for attr in inherit.attrs() {
let name = match self.expr_static_attr_str(&attr) {
Some(name) => name,
None => {
self.emit_error(&attr, ErrorKind::DynamicKeyInScope("inherit"));
continue;
}
};
// If the identifier resolves statically in a
// `let`, it has precedence over dynamic
// bindings, and the inherit is useless.
if kind == BindingsKind::LetIn
&& matches!(
self.scope_mut().resolve_local(&name),
LocalPosition::Known(_)
)
{
self.emit_warning(&attr, WarningKind::UselessInherit);
continue;
}
*count += 1;
// Place key on the stack when compiling attribute sets.
if kind.is_attrs() {
self.emit_constant(Value::String(SmolStr::new(&name).into()), &attr);
let span = self.span_for(&attr);
self.scope_mut().declare_phantom(span, true);
}
// Place the value on the stack. Note that because plain
// inherits are always in the outer scope, the slot of
// *this* scope itself is used.
self.compile_identifier_access(slot, &name, &attr);
// In non-recursive attribute sets, the key slot must be
// a phantom (i.e. the identifier can not be resolved in
// this scope).
let idx = if kind == BindingsKind::Attrs {
let span = self.span_for(&attr);
self.scope_mut().declare_phantom(span, false)
} else {
self.declare_local(&attr, &name)
};
self.scope_mut().mark_initialised(idx);
}
}
Some(from) => {
for attr in inherit.attrs() {
let name = match self.expr_static_attr_str(&attr) {
Some(name) => name,
None => {
self.emit_error(&attr, ErrorKind::DynamicKeyInScope("inherit"));
continue;
}
};
*count += 1;
inherit_froms.push((from.expr().unwrap(), name, self.span_for(&attr)));
}
}
}
}
inherit_froms
}
/// Declare all namespaced inherits, that is inherits which are inheriting
/// values from an attribute set.
///
/// This only ensures that the locals stack is aware of the inherits, it
/// does not yet emit bytecode that places them on the stack. This is up to
/// the owner of the `bindings` vector, which this function will populate.
fn declare_namespaced_inherits(
&mut self,
kind: BindingsKind,
inherit_froms: Vec<(ast::Expr, String, Span)>,
bindings: &mut Vec<TrackedBinding>,
) {
for (from, name, span) in inherit_froms {
let key_slot = if kind.is_attrs() {
// In an attribute set, the keys themselves are placed
// on the stack but their stack slot is inaccessible
// (it is only consumed by `OpAttrs`).
Some(KeySlot {
slot: self.scope_mut().declare_phantom(span, false),
name: SmolStr::new(&name),
})
} else {
None
};
let value_slot = match kind {
// In recursive scopes, the value needs to be
// accessible on the stack.
BindingsKind::LetIn | BindingsKind::RecAttrs => self.declare_local(&span, &name),
// In non-recursive attribute sets, the value is
// inaccessible (only consumed by `OpAttrs`).
BindingsKind::Attrs => self.scope_mut().declare_phantom(span, false),
};
bindings.push(TrackedBinding {
key_slot,
value_slot,
binding: Binding::InheritFrom {
namespace: from,
name: SmolStr::new(&name),
span,
},
});
}
}
/// Declare all regular bindings (i.e. `key = value;`) in a bindings scope,
/// but do not yet compile their values.
fn declare_bindings<N>(
&mut self,
kind: BindingsKind,
count: &mut usize,
bindings: &mut Vec<TrackedBinding>,
node: &N,
) where
N: ToSpan + ast::HasEntry,
{
for entry in node.attrpath_values() {
*count += 1;
let mut path = match self.normalise_ident_path(entry.attrpath().unwrap().attrs()) {
Ok(p) => p,
Err(err) => {
self.errors.push(err);
continue;
}
};
if path.len() != 1 {
self.emit_error(
&entry,
ErrorKind::NotImplemented("nested bindings in recursive scope :("),
);
continue;
}
let key_span = self.span_for(&entry.attrpath().unwrap());
let key_slot = if kind.is_attrs() {
Some(KeySlot {
slot: self.scope_mut().declare_phantom(key_span, false),
name: SmolStr::new(&path[0]),
})
} else {
None
};
let value_slot = match kind {
// In recursive scopes, the value needs to be
// accessible on the stack.
BindingsKind::LetIn | BindingsKind::RecAttrs => {
self.declare_local(&key_span, path.pop().unwrap())
}
// In non-recursive attribute sets, the value is
// inaccessible (only consumed by `OpAttrs`).
BindingsKind::Attrs => self.scope_mut().declare_phantom(key_span, false),
};
bindings.push(TrackedBinding {
key_slot,
value_slot,
binding: Binding::Plain {
expr: entry.value().unwrap(),
},
});
}
}
/// Compiles inherited values in an attribute set. Inherited
/// values are *always* inherited from the outer scope, even if
/// there is a matching name within a recursive attribute set.
fn compile_inherit_attrs(
&mut self,
slot: LocalIdx,
inherits: AstChildren<ast::Inherit>,
) -> usize {
// Count the number of inherited values, so that the outer
// constructor can emit the correct number of pairs when
// constructing attribute sets.
let mut count = 0;
for inherit in inherits {
match inherit.from() {
Some(from) => {
for attr in inherit.attrs() {
count += 1;
let name = match self.expr_static_attr_str(&attr) {
Some(name) => name,
None => {
self.emit_error(&attr, ErrorKind::DynamicKeyInScope("inherit"));
continue;
}
};
let name_span = self.span_for(&attr);
// First emit the identifier itself (this
// becomes the new key).
self.emit_constant(Value::String(SmolStr::new(&name).into()), &attr);
self.scope_mut().declare_phantom(name_span, true);
// Then emit the node that we're inheriting
// from.
//
// TODO: Likely significant optimisation
// potential in having a multi-select
// instruction followed by a merge, rather
// than pushing/popping the same attrs
// potentially a lot of times.
let val_idx = self.scope_mut().declare_phantom(name_span, false);
self.compile(val_idx, from.expr().unwrap());
self.emit_force(&from.expr().unwrap());
self.emit_constant(Value::String(name.into()), &attr);
self.push_op(OpCode::OpAttrsSelect, &attr);
self.scope_mut().mark_initialised(val_idx);
}
}
None => {
for attr in inherit.attrs() {
count += 1;
// Emit the key to use for OpAttrs
let name = match self.expr_static_attr_str(&attr) {
Some(name) => name,
None => {
self.emit_error(&attr, ErrorKind::DynamicKeyInScope("inherit"));
continue;
}
};
let name_span = self.span_for(&attr);
self.emit_constant(Value::String(SmolStr::new(&name).into()), &attr);
self.scope_mut().declare_phantom(name_span, true);
// Emit the value.
self.compile_identifier_access(slot, &name, &attr);
self.scope_mut().declare_phantom(name_span, true);
}
}
}
}
count
}
/// Compile the statically known entries of an attribute set. Which
/// keys are which is not known from the iterator, so discovered
/// dynamic keys are returned from here.
fn compile_static_attr_entries(
&mut self,
count: &mut usize,
entries: AstChildren<ast::AttrpathValue>,
) -> Vec<ast::AttrpathValue> {
let mut dynamic_attrs: Vec<ast::AttrpathValue> = vec![];
'entries: for kv in entries {
// Attempt to turn the attrpath into a list of static
// strings, but abort this process if any dynamic
// fragments are encountered.
let static_attrpath: Option<Vec<String>> = kv
.attrpath()
.unwrap()
.attrs()
.map(|a| self.expr_static_attr_str(&a))
.collect();
let fragments = match static_attrpath {
Some(fragments) => fragments,
None => {
dynamic_attrs.push(kv);
continue 'entries;
}
};
// At this point we can increase the counter because we
// know that this particular attribute is static and can
// thus be processed here.
*count += 1;
let key_count = fragments.len();
for fragment in fragments.into_iter() {
self.emit_constant(Value::String(fragment.into()), &kv.attrpath().unwrap());
}
// We're done with the key if there was only one fragment,
// otherwise we need to emit an instruction to construct
// the attribute path.
if key_count > 1 {
self.push_op(
OpCode::OpAttrPath(Count(key_count)),
&kv.attrpath().unwrap(),
);
}
// The value is just compiled as normal so that its
// resulting value is on the stack when the attribute set
// is constructed at runtime.
let value_span = self.span_for(&kv.value().unwrap());
let value_slot = self.scope_mut().declare_phantom(value_span, false);
self.compile(value_slot, kv.value().unwrap());
self.scope_mut().mark_initialised(value_slot);
}
dynamic_attrs
}
/// Compile the dynamic entries of an attribute set, where keys
/// are only known at runtime.
fn compile_dynamic_attr_entries(
&mut self,
count: &mut usize,
entries: Vec<ast::AttrpathValue>,
) {
for entry in entries.into_iter() {
*count += 1;
let mut key_count = 0;
let key_span = self.span_for(&entry.attrpath().unwrap());
let key_idx = self.scope_mut().declare_phantom(key_span, false);
for fragment in entry.attrpath().unwrap().attrs() {
// Key fragments can contain dynamic expressions,
// which makes accounting for their stack slots very
// tricky.
//
// In order to ensure the locals are correctly cleaned
// up, we essentially treat any key fragment after the
// first one (which has a locals index that will
// become that of the final key itself) as being part
// of a separate scope, which results in the somewhat
// annoying setup logic below.
let fragment_slot = match key_count {
0 => key_idx,
1 => {
self.scope_mut().begin_scope();
self.scope_mut().declare_phantom(key_span, false)
}
_ => self.scope_mut().declare_phantom(key_span, false),
};
key_count += 1;
self.compile_attr(fragment_slot, fragment);
self.scope_mut().mark_initialised(fragment_slot);
}
// We're done with the key if there was only one fragment,
// otherwise we need to emit an instruction to construct
// the attribute path.
if key_count > 1 {
self.push_op(
OpCode::OpAttrPath(Count(key_count)),
&entry.attrpath().unwrap(),
);
// Close the temporary scope that was set up for the
// key fragments.
self.scope_mut().end_scope();
}
// The value is just compiled as normal so that its
// resulting value is on the stack when the attribute set
// is constructed at runtime.
let value_span = self.span_for(&entry.value().unwrap());
let value_slot = self.scope_mut().declare_phantom(value_span, false);
self.compile(value_slot, entry.value().unwrap());
self.scope_mut().mark_initialised(value_slot);
}
}
/// Compile attribute set literals into equivalent bytecode.
///
/// This is complicated by a number of features specific to Nix
/// attribute sets, most importantly:
///
/// 1. Keys can be dynamically constructed through interpolation.
/// 2. Keys can refer to nested attribute sets.
/// 3. Attribute sets can (optionally) be recursive.
pub(super) fn compile_attr_set(&mut self, slot: LocalIdx, node: ast::AttrSet) {
// Open a scope to track the positions of the temporaries used
// by the `OpAttrs` instruction.
self.scope_mut().begin_scope();
if node.rec_token().is_some() {
let count = self.compile_recursive_scope(slot, BindingsKind::RecAttrs, &node);
self.push_op(OpCode::OpAttrs(Count(count)), &node);
} else {
let mut count = self.compile_inherit_attrs(slot, node.inherits());
let dynamic_entries =
self.compile_static_attr_entries(&mut count, node.attrpath_values());
self.compile_dynamic_attr_entries(&mut count, dynamic_entries);
self.push_op(OpCode::OpAttrs(Count(count)), &node);
}
// Remove the temporary scope, but do not emit any additional
// cleanup (OpAttrs consumes all of these locals).
self.scope_mut().end_scope();
}
/// Actually binds all tracked bindings by emitting the bytecode that places
/// them in their stack slots.
fn bind_values(&mut self, bindings: Vec<TrackedBinding>) {
let mut value_indices: Vec<LocalIdx> = vec![];
for binding in bindings.into_iter() {
value_indices.push(binding.value_slot);
if let Some(key_slot) = binding.key_slot {
let span = self.scope()[key_slot.slot].span;
self.emit_constant(Value::String(key_slot.name.into()), &span);
self.scope_mut().mark_initialised(key_slot.slot);
}
match binding.binding {
// This entry is an inherit (from) expr. The value is
// placed on the stack by selecting an attribute.
Binding::InheritFrom {
namespace,
name,
span,
} => {
// Create a thunk wrapping value (which may be one as well) to
// avoid forcing the from expr too early.
self.thunk(binding.value_slot, &namespace, move |c, n, s| {
c.compile(s, n.clone());
c.emit_force(n);
c.emit_constant(Value::String(name.into()), &span);
c.push_op(OpCode::OpAttrsSelect, &span);
})
}
// Binding is "just" a plain expression that needs to
// be compiled.
Binding::Plain { expr } => self.compile(binding.value_slot, expr),
}
// Any code after this point will observe the value in the
// right stack slot, so mark it as initialised.
self.scope_mut().mark_initialised(binding.value_slot);
}
// Final pass to emit finaliser instructions if necessary.
for idx in value_indices {
if self.scope()[idx].needs_finaliser {
let stack_idx = self.scope().stack_index(idx);
let span = self.scope()[idx].span;
self.push_op(OpCode::OpFinalise(stack_idx), &span);
}
}
}
fn compile_recursive_scope<N>(&mut self, slot: LocalIdx, kind: BindingsKind, node: &N) -> usize
where
N: ToSpan + ast::HasEntry,
{
let mut count = 0;
self.scope_mut().begin_scope();
// Vector to track all observed bindings.
let mut bindings: Vec<TrackedBinding> = vec![];
let inherit_froms = self.compile_plain_inherits(slot, kind, &mut count, node);
self.declare_namespaced_inherits(kind, inherit_froms, &mut bindings);
self.declare_bindings(kind, &mut count, &mut bindings, node);
// Actually bind values and ensure they are on the stack.
self.bind_values(bindings);
count
}
/// Compile a standard `let ...; in ...` expression.
///
/// Unless in a non-standard scope, the encountered values are
/// simply pushed on the stack and their indices noted in the
/// entries vector.
pub(super) fn compile_let_in(&mut self, slot: LocalIdx, node: ast::LetIn) {
self.compile_recursive_scope(slot, BindingsKind::LetIn, &node);
// Deal with the body, then clean up the locals afterwards.
self.compile(slot, node.body().unwrap());
self.cleanup_scope(&node);
}
pub(super) fn compile_legacy_let(&mut self, slot: LocalIdx, node: ast::LegacyLet) {
self.emit_warning(&node, WarningKind::DeprecatedLegacyLet);
self.scope_mut().begin_scope();
self.compile_recursive_scope(slot, BindingsKind::RecAttrs, &node);
self.push_op(OpCode::OpAttrs(Count(node.entries().count())), &node);
self.emit_constant(Value::String(SmolStr::new_inline("body").into()), &node);
self.push_op(OpCode::OpAttrsSelect, &node);
}
/// Resolve and compile access to an identifier in the scope.
fn compile_identifier_access<N: ToSpan + Clone>(
&mut self,
slot: LocalIdx,
ident: &str,
node: &N,
) {
// If the identifier is a global, and it is not poisoned, emit
// the global directly.
if let Some(global) = self.globals.get(ident) {
if !self.scope().is_poisoned(ident) {
global.clone()(self, self.span_for(node));
return;
}
}
match self.scope_mut().resolve_local(ident) {
LocalPosition::Unknown => {
// Are we possibly dealing with an upvalue?
if let Some(idx) = self.resolve_upvalue(self.contexts.len() - 1, ident, node) {
self.push_op(OpCode::OpGetUpvalue(idx), node);
return;
}
// If there is a non-empty `with`-stack (or a parent
// context with one), emit a runtime dynamic
// resolution instruction.
if self.has_dynamic_ancestor() {
self.emit_constant(Value::String(SmolStr::new(ident).into()), node);
self.push_op(OpCode::OpResolveWith, node);
return;
}
// Otherwise, this variable is missing.
self.emit_error(node, ErrorKind::UnknownStaticVariable);
}
LocalPosition::Known(idx) => {
let stack_idx = self.scope().stack_index(idx);
self.push_op(OpCode::OpGetLocal(stack_idx), node);
}
// This identifier is referring to a value from the same
// scope which is not yet defined. This identifier access
// must be thunked.
LocalPosition::Recursive(idx) => self.thunk(slot, node, move |compiler, node, _| {
let upvalue_idx = compiler.add_upvalue(
compiler.contexts.len() - 1,
node,
UpvalueKind::Local(idx),
);
compiler.push_op(OpCode::OpGetUpvalue(upvalue_idx), node);
}),
};
}
pub(super) fn compile_ident(&mut self, slot: LocalIdx, node: ast::Ident) {
let ident = node.ident_token().unwrap();
self.compile_identifier_access(slot, ident.text(), &node);
}
}
/// Private compiler helpers related to bindings.
impl Compiler<'_> {
fn resolve_upvalue<N: ToSpan>(
&mut self,
ctx_idx: usize,
name: &str,
node: &N,
) -> Option<UpvalueIdx> {
if ctx_idx == 0 {
// There can not be any upvalue at the outermost context.
return None;
}
// Determine whether the upvalue is a local in the enclosing context.
match self.contexts[ctx_idx - 1].scope.resolve_local(name) {
// recursive upvalues are dealt with the same way as
// standard known ones, as thunks and closures are
// guaranteed to be placed on the stack (i.e. in the right
// position) *during* their runtime construction
LocalPosition::Known(idx) | LocalPosition::Recursive(idx) => {
return Some(self.add_upvalue(ctx_idx, node, UpvalueKind::Local(idx)))
}
LocalPosition::Unknown => { /* continue below */ }
};
// If the upvalue comes from even further up, we need to
// recurse to make sure that the upvalues are created at each
// level.
if let Some(idx) = self.resolve_upvalue(ctx_idx - 1, name, node) {
return Some(self.add_upvalue(ctx_idx, node, UpvalueKind::Upvalue(idx)));
}
None
}
fn add_upvalue<N: ToSpan>(
&mut self,
ctx_idx: usize,
node: &N,
kind: UpvalueKind,
) -> UpvalueIdx {
// If there is already an upvalue closing over the specified
// index, retrieve that instead.
for (idx, existing) in self.contexts[ctx_idx].scope.upvalues.iter().enumerate() {
if existing.kind == kind {
return UpvalueIdx(idx);
}
}
let span = self.span_for(node);
self.contexts[ctx_idx]
.scope
.upvalues
.push(Upvalue { kind, span });
let idx = UpvalueIdx(self.contexts[ctx_idx].lambda.upvalue_count);
self.contexts[ctx_idx].lambda.upvalue_count += 1;
idx
}
/// Convert a single identifier path fragment of a let binding to
/// a string if possible, or raise an error about the node being
/// dynamic.
fn binding_name(&self, node: ast::Attr) -> EvalResult<String> {
match self.expr_static_attr_str(&node) {
Some(s) => Ok(s),
None => Err(Error {
// this code path will go away soon, hence the TODO below
kind: ErrorKind::DynamicKeyInScope("TODO"),
span: self.span_for(&node),
}),
}
}
/// Normalises identifier fragments into a single string vector
/// for `let`-expressions; fails if fragments requiring dynamic
/// computation are encountered.
fn normalise_ident_path<I: Iterator<Item = ast::Attr>>(
&self,
path: I,
) -> EvalResult<Vec<String>> {
path.map(|node| self.binding_name(node)).collect()
}
/// Convert a non-dynamic string expression to a string if possible.
fn expr_static_str(&self, node: &ast::Str) -> Option<String> {
let mut parts = node.normalized_parts();
if parts.len() != 1 {
return None;
}
if let Some(ast::InterpolPart::Literal(lit)) = parts.pop() {
return Some(lit);
}
None
}
/// Convert the provided `ast::Attr` into a statically known
/// string if possible.
// TODO(tazjin): these should probably be SmolStr
fn expr_static_attr_str(&self, node: &ast::Attr) -> Option<String> {
match node {
ast::Attr::Ident(ident) => Some(ident.ident_token().unwrap().text().into()),
ast::Attr::Str(s) => self.expr_static_str(s),
// The dynamic node type is just a wrapper. C++ Nix does not
// care about the dynamic wrapper when determining whether the
// node itself is dynamic, it depends solely on the expression
// inside (i.e. `let ${"a"} = 1; in a` is valid).
ast::Attr::Dynamic(ref dynamic) => match dynamic.expr().unwrap() {
ast::Expr::Str(s) => self.expr_static_str(&s),
_ => None,
},
}
}
}