//! This module implements a compiler for compiling the rnix AST
//! representation to Tvix bytecode.
use crate::chunk::Chunk;
use crate::errors::EvalResult;
use crate::opcode::OpCode;
use crate::value::Value;
use rnix;
use rnix::types::{EntryHolder, TokenWrapper, TypedNode, Wrapper};
struct Compiler {
chunk: Chunk,
}
impl Compiler {
fn compile(&mut self, node: rnix::SyntaxNode) -> EvalResult<()> {
match node.kind() {
// Root of a file contains no content, it's just a marker
// type.
rnix::SyntaxKind::NODE_ROOT => self.compile(node.first_child().expect("TODO")),
// Literals contain a single token comprising of the
// literal itself.
rnix::SyntaxKind::NODE_LITERAL => {
let value = rnix::types::Value::cast(node).unwrap();
self.compile_literal(value.to_value().expect("TODO"))
}
rnix::SyntaxKind::NODE_STRING => {
let op = rnix::types::Str::cast(node).unwrap();
self.compile_string(op)
}
// The interpolation node is just a wrapper around the
// inner value of a fragment, it only requires unwrapping.
rnix::SyntaxKind::NODE_STRING_INTERPOL => {
self.compile(node.first_child().expect("TODO (should not be possible)"))
}
rnix::SyntaxKind::NODE_BIN_OP => {
let op = rnix::types::BinOp::cast(node).expect("TODO (should not be possible)");
self.compile_binop(op)
}
rnix::SyntaxKind::NODE_UNARY_OP => {
let op = rnix::types::UnaryOp::cast(node).expect("TODO: (should not be possible)");
self.compile_unary_op(op)
}
rnix::SyntaxKind::NODE_PAREN => {
let node = rnix::types::Paren::cast(node).unwrap();
self.compile(node.inner().unwrap())
}
rnix::SyntaxKind::NODE_IDENT => {
let node = rnix::types::Ident::cast(node).unwrap();
self.compile_ident(node)
}
rnix::SyntaxKind::NODE_ATTR_SET => {
let node = rnix::types::AttrSet::cast(node).unwrap();
self.compile_attr_set(node)
}
rnix::SyntaxKind::NODE_LIST => {
let node = rnix::types::List::cast(node).unwrap();
self.compile_list(node)
}
kind => {
println!("visiting unsupported node: {:?}", kind);
Ok(())
}
}
}
fn compile_literal(&mut self, value: rnix::value::Value) -> EvalResult<()> {
match value {
rnix::NixValue::Float(f) => {
let idx = self.chunk.add_constant(Value::Float(f));
self.chunk.add_op(OpCode::OpConstant(idx));
Ok(())
}
rnix::NixValue::Integer(i) => {
let idx = self.chunk.add_constant(Value::Integer(i));
self.chunk.add_op(OpCode::OpConstant(idx));
Ok(())
}
rnix::NixValue::String(_) => todo!(),
rnix::NixValue::Path(_, _) => todo!(),
}
}
fn compile_string(&mut self, string: rnix::types::Str) -> EvalResult<()> {
let mut count = 0;
// The string parts are produced in literal order, however
// they need to be reversed on the stack in order to
// efficiently create the real string in case of
// interpolation.
for part in string.parts().into_iter().rev() {
count += 1;
match part {
// Interpolated expressions are compiled as normal and
// dealt with by the VM before being assembled into
// the final string.
rnix::StrPart::Ast(node) => self.compile(node)?,
rnix::StrPart::Literal(lit) => {
let idx = self.chunk.add_constant(Value::String(lit.into()));
self.chunk.add_op(OpCode::OpConstant(idx));
}
}
}
if count != 1 {
self.chunk.add_op(OpCode::OpInterpolate(count));
}
Ok(())
}
fn compile_binop(&mut self, op: rnix::types::BinOp) -> EvalResult<()> {
self.compile(op.lhs().unwrap())?;
self.compile(op.rhs().unwrap())?;
use rnix::types::BinOpKind;
match op.operator().unwrap() {
BinOpKind::Add => self.chunk.add_op(OpCode::OpAdd),
BinOpKind::Sub => self.chunk.add_op(OpCode::OpSub),
BinOpKind::Mul => self.chunk.add_op(OpCode::OpMul),
BinOpKind::Div => self.chunk.add_op(OpCode::OpDiv),
BinOpKind::Update => self.chunk.add_op(OpCode::OpAttrsUpdate),
BinOpKind::Equal => self.chunk.add_op(OpCode::OpEqual),
BinOpKind::Less => self.chunk.add_op(OpCode::OpLess),
BinOpKind::LessOrEq => self.chunk.add_op(OpCode::OpLessOrEq),
BinOpKind::More => self.chunk.add_op(OpCode::OpMore),
BinOpKind::MoreOrEq => self.chunk.add_op(OpCode::OpMoreOrEq),
BinOpKind::Concat => self.chunk.add_op(OpCode::OpConcat),
BinOpKind::NotEqual => {
self.chunk.add_op(OpCode::OpEqual);
self.chunk.add_op(OpCode::OpInvert)
}
_ => todo!(),
};
Ok(())
}
fn compile_unary_op(&mut self, op: rnix::types::UnaryOp) -> EvalResult<()> {
self.compile(op.value().unwrap())?;
use rnix::types::UnaryOpKind;
let opcode = match op.operator() {
UnaryOpKind::Invert => OpCode::OpInvert,
UnaryOpKind::Negate => OpCode::OpNegate,
};
self.chunk.add_op(opcode);
Ok(())
}
fn compile_ident(&mut self, node: rnix::types::Ident) -> EvalResult<()> {
match node.as_str() {
// TODO(tazjin): Nix technically allows code like
//
// let null = 1; in null
// => 1
//
// which we do *not* want to check at runtime. Once
// scoping is introduced, the compiler should carry some
// optimised information about any "weird" stuff that's
// happened to the scope (such as overrides of these
// literals, or builtins).
"true" => self.chunk.add_op(OpCode::OpTrue),
"false" => self.chunk.add_op(OpCode::OpFalse),
"null" => self.chunk.add_op(OpCode::OpNull),
_ => todo!("identifier access"),
};
Ok(())
}
// Compile attribute set literals into equivalent bytecode.
//
// This is complicated by a number of features specific to Nix
// attribute sets, most importantly:
//
// 1. Keys can be dynamically constructed through interpolation.
// 2. Keys can refer to nested attribute sets.
// 3. Attribute sets can (optionally) be recursive.
fn compile_attr_set(&mut self, node: rnix::types::AttrSet) -> EvalResult<()> {
if node.recursive() {
todo!("recursive attribute sets are not yet implemented")
}
let mut count = 0;
for kv in node.entries() {
count += 1;
// Because attribute set literals can contain nested keys,
// there is potentially more than one key fragment. If
// this is the case, a special operation to construct a
// runtime value representing the attribute path is
// emitted.
let mut key_count = 0;
for fragment in kv.key().unwrap().path() {
key_count += 1;
match fragment.kind() {
rnix::SyntaxKind::NODE_IDENT => {
let ident = rnix::types::Ident::cast(fragment).unwrap();
// TODO(tazjin): intern!
let idx = self
.chunk
.add_constant(Value::String(ident.as_str().to_string().into()));
self.chunk.add_op(OpCode::OpConstant(idx));
}
// For all other expression types, we simply
// compile them as normal. The operation should
// result in a string value, which is checked at
// runtime on construction.
_ => self.compile(fragment)?,
}
}
// We're done with the key if there was only one fragment,
// otherwise we need to emit an instruction to construct
// the attribute path.
if key_count > 1 {
self.chunk.add_op(OpCode::OpAttrPath(2));
}
// The value is just compiled as normal so that its
// resulting value is on the stack when the attribute set
// is constructed at runtime.
self.compile(kv.value().unwrap())?;
}
self.chunk.add_op(OpCode::OpAttrs(count));
Ok(())
}
// Compile list literals into equivalent bytecode. List
// construction is fairly simple, composing of pushing code for
// each literal element and an instruction with the element count.
//
// The VM, after evaluating the code for each element, simply
// constructs the list from the given number of elements.
fn compile_list(&mut self, node: rnix::types::List) -> EvalResult<()> {
let mut count = 0;
for item in node.items() {
count += 1;
self.compile(item)?;
}
self.chunk.add_op(OpCode::OpList(count));
Ok(())
}
}
pub fn compile(ast: rnix::AST) -> EvalResult<Chunk> {
let mut c = Compiler {
chunk: Chunk::default(),
};
c.compile(ast.node())?;
Ok(c.chunk)
}