//! Imports from an archive (tarballs)
use std::collections::HashMap;
use std::io::{Cursor, Write};
use std::sync::Arc;
use petgraph::graph::{DiGraph, NodeIndex};
use petgraph::visit::{DfsPostOrder, EdgeRef};
use petgraph::Direction;
use tokio::io::AsyncRead;
use tokio::sync::Semaphore;
use tokio::task::JoinSet;
use tokio_stream::StreamExt;
use tokio_tar::Archive;
use tokio_util::io::InspectReader;
use tracing::{instrument, warn, Level};
use crate::blobservice::BlobService;
use crate::directoryservice::DirectoryService;
use crate::import::{ingest_entries, IngestionEntry, IngestionError};
use crate::proto::node::Node;
use crate::B3Digest;
type TarPathBuf = std::path::PathBuf;
/// Files smaller than this threshold, in bytes, are uploaded to the [BlobService] in the
/// background.
///
/// This is a u32 since we acquire a weighted semaphore using the size of the blob.
/// [Semaphore::acquire_many_owned] takes a u32, so we need to ensure the size of
/// the blob can be represented using a u32 and will not cause an overflow.
const CONCURRENT_BLOB_UPLOAD_THRESHOLD: u32 = 1024 * 1024;
/// The maximum amount of bytes allowed to be buffered in memory to perform async blob uploads.
const MAX_TARBALL_BUFFER_SIZE: usize = 128 * 1024 * 1024;
#[derive(Debug, thiserror::Error)]
pub enum Error {
#[error("unable to construct stream of entries: {0}")]
Entries(std::io::Error),
#[error("unable to read next entry: {0}")]
NextEntry(std::io::Error),
#[error("unable to read path for entry: {0}")]
PathRead(std::io::Error),
#[error("unable to convert path {0} for entry: {1}")]
PathConvert(TarPathBuf, std::io::Error),
#[error("unable to read size field for {0}: {1}")]
Size(TarPathBuf, std::io::Error),
#[error("unable to read mode field for {0}: {1}")]
Mode(TarPathBuf, std::io::Error),
#[error("unable to read link name field for {0}: {1}")]
LinkName(TarPathBuf, std::io::Error),
#[error("unable to read blob contents for {0}: {1}")]
BlobRead(TarPathBuf, std::io::Error),
// FUTUREWORK: proper error for blob finalize
#[error("unable to finalize blob {0}: {1}")]
BlobFinalize(TarPathBuf, std::io::Error),
#[error("unsupported tar entry {0} type: {1:?}")]
EntryType(TarPathBuf, tokio_tar::EntryType),
#[error("symlink missing target {0}")]
MissingSymlinkTarget(TarPathBuf),
#[error("unexpected number of top level directory entries")]
UnexpectedNumberOfTopLevelEntries,
}
/// Ingests elements from the given tar [`Archive`] into a the passed [`BlobService`] and
/// [`DirectoryService`].
#[instrument(skip_all, ret(level = Level::TRACE), err)]
pub async fn ingest_archive<BS, DS, R>(
blob_service: BS,
directory_service: DS,
mut archive: Archive<R>,
) -> Result<Node, IngestionError<Error>>
where
BS: BlobService + Clone + 'static,
DS: DirectoryService,
R: AsyncRead + Unpin,
{
// Since tarballs can have entries in any arbitrary order, we need to
// buffer all of the directory metadata so we can reorder directory
// contents and entries to meet the requires of the castore.
// In the first phase, collect up all the regular files and symlinks.
let mut nodes = IngestionEntryGraph::new();
let semaphore = Arc::new(Semaphore::new(MAX_TARBALL_BUFFER_SIZE));
let mut async_blob_uploads: JoinSet<Result<(), Error>> = JoinSet::new();
let mut entries_iter = archive.entries().map_err(Error::Entries)?;
while let Some(mut entry) = entries_iter.try_next().await.map_err(Error::NextEntry)? {
let tar_path: TarPathBuf = entry.path().map_err(Error::PathRead)?.into();
// construct a castore PathBuf, which we use in the produced IngestionEntry.
let path = crate::path::PathBuf::from_host_path(tar_path.as_path(), true)
.map_err(|e| Error::PathConvert(tar_path.clone(), e))?;
let header = entry.header();
let entry = match header.entry_type() {
tokio_tar::EntryType::Regular
| tokio_tar::EntryType::GNUSparse
| tokio_tar::EntryType::Continuous => {
let header_size = header
.size()
.map_err(|e| Error::Size(tar_path.clone(), e))?;
// If the blob is small enough, read it off the wire, compute the digest,
// and upload it to the [BlobService] in the background.
let (size, digest) = if header_size <= CONCURRENT_BLOB_UPLOAD_THRESHOLD as u64 {
let mut buffer = Vec::with_capacity(header_size as usize);
let mut hasher = blake3::Hasher::new();
let mut reader = InspectReader::new(&mut entry, |bytes| {
hasher.write_all(bytes).unwrap();
});
// Ensure that we don't buffer into memory until we've acquired a permit.
// This prevents consuming too much memory when performing concurrent
// blob uploads.
let permit = semaphore
.clone()
// This cast is safe because ensure the header_size is less than
// CONCURRENT_BLOB_UPLOAD_THRESHOLD which is a u32.
.acquire_many_owned(header_size as u32)
.await
.unwrap();
let size = tokio::io::copy(&mut reader, &mut buffer)
.await
.map_err(|e| Error::Size(tar_path.clone(), e))?;
let digest: B3Digest = hasher.finalize().as_bytes().into();
{
let blob_service = blob_service.clone();
let digest = digest.clone();
async_blob_uploads.spawn({
let tar_path = tar_path.clone();
async move {
let mut writer = blob_service.open_write().await;
tokio::io::copy(&mut Cursor::new(buffer), &mut writer)
.await
.map_err(|e| Error::BlobRead(tar_path.clone(), e))?;
let blob_digest = writer
.close()
.await
.map_err(|e| Error::BlobFinalize(tar_path, e))?;
assert_eq!(digest, blob_digest, "Tvix bug: blob digest mismatch");
// Make sure we hold the permit until we finish writing the blob
// to the [BlobService].
drop(permit);
Ok(())
}
});
}
(size, digest)
} else {
let mut writer = blob_service.open_write().await;
let size = tokio::io::copy(&mut entry, &mut writer)
.await
.map_err(|e| Error::BlobRead(tar_path.clone(), e))?;
let digest = writer
.close()
.await
.map_err(|e| Error::BlobFinalize(tar_path.clone(), e))?;
(size, digest)
};
let executable = entry
.header()
.mode()
.map_err(|e| Error::Mode(tar_path, e))?
& 64
!= 0;
IngestionEntry::Regular {
path,
size,
executable,
digest,
}
}
tokio_tar::EntryType::Symlink => IngestionEntry::Symlink {
target: entry
.link_name()
.map_err(|e| Error::LinkName(tar_path.clone(), e))?
.ok_or_else(|| Error::MissingSymlinkTarget(tar_path.clone()))?
.into_owned()
.into_os_string()
.into_encoded_bytes(),
path,
},
// Push a bogus directory marker so we can make sure this directoy gets
// created. We don't know the digest and size until after reading the full
// tarball.
tokio_tar::EntryType::Directory => IngestionEntry::Dir { path },
tokio_tar::EntryType::XGlobalHeader | tokio_tar::EntryType::XHeader => continue,
entry_type => return Err(Error::EntryType(tar_path, entry_type).into()),
};
nodes.add(entry)?;
}
while let Some(result) = async_blob_uploads.join_next().await {
result.expect("task panicked")?;
}
let root_node = ingest_entries(
directory_service,
futures::stream::iter(nodes.finalize()?.into_iter().map(Ok)),
)
.await?;
Ok(root_node)
}
/// Keep track of the directory structure of a file tree being ingested. This is used
/// for ingestion sources which do not provide any ordering or uniqueness guarantees
/// like tarballs.
///
/// If we ingest multiple entries with the same paths and both entries are not directories,
/// the newer entry will replace the latter entry, disconnecting the old node's children
/// from the graph.
///
/// Once all nodes are ingested a call to [IngestionEntryGraph::finalize] will return
/// a list of entries compute by performaing a DFS post order traversal of the graph
/// from the top-level directory entry.
///
/// This expects the directory structure to contain a single top-level directory entry.
/// An error is returned if this is not the case and ingestion will fail.
struct IngestionEntryGraph {
graph: DiGraph<IngestionEntry, ()>,
path_to_index: HashMap<crate::path::PathBuf, NodeIndex>,
root_node: Option<NodeIndex>,
}
impl Default for IngestionEntryGraph {
fn default() -> Self {
Self::new()
}
}
impl IngestionEntryGraph {
/// Creates a new ingestion entry graph.
pub fn new() -> Self {
IngestionEntryGraph {
graph: DiGraph::new(),
path_to_index: HashMap::new(),
root_node: None,
}
}
/// Adds a new entry to the graph. Parent directories are automatically inserted.
/// If a node exists in the graph with the same name as the new entry and both the old
/// and new nodes are not directories, the node is replaced and is disconnected from its
/// children.
pub fn add(&mut self, entry: IngestionEntry) -> Result<NodeIndex, Error> {
let path = entry.path().to_owned();
let index = match self.path_to_index.get(entry.path()) {
Some(&index) => {
// If either the old entry or new entry are not directories, we'll replace the old
// entry.
if !entry.is_dir() || !self.get_node(index).is_dir() {
self.replace_node(index, entry);
}
index
}
None => self.graph.add_node(entry),
};
// A path with 1 component is the root node
if path.components().count() == 1 {
// We expect archives to contain a single root node, if there is another root node
// entry with a different path name, this is unsupported.
if let Some(root_node) = self.root_node {
if self.get_node(root_node).path() != &path {
return Err(Error::UnexpectedNumberOfTopLevelEntries);
}
}
self.root_node = Some(index)
} else if let Some(parent_path) = path.parent() {
// Recursively add the parent node until it hits the root node.
let parent_index = self.add(IngestionEntry::Dir {
path: parent_path.to_owned(),
})?;
// Insert an edge from the parent directory to the child entry.
self.graph.add_edge(parent_index, index, ());
}
self.path_to_index.insert(path, index);
Ok(index)
}
/// Traverses the graph in DFS post order and collects the entries into a [Vec<IngestionEntry>].
///
/// Unreachable parts of the graph are not included in the result.
pub fn finalize(self) -> Result<Vec<IngestionEntry>, Error> {
// There must be a root node.
let Some(root_node_index) = self.root_node else {
return Err(Error::UnexpectedNumberOfTopLevelEntries);
};
// The root node must be a directory.
if !self.get_node(root_node_index).is_dir() {
return Err(Error::UnexpectedNumberOfTopLevelEntries);
}
let mut traversal = DfsPostOrder::new(&self.graph, root_node_index);
let mut nodes = Vec::with_capacity(self.graph.node_count());
while let Some(node_index) = traversal.next(&self.graph) {
nodes.push(self.get_node(node_index).clone());
}
Ok(nodes)
}
/// Replaces the node with the specified entry. The node's children are disconnected.
///
/// This should never be called if both the old and new nodes are directories.
fn replace_node(&mut self, index: NodeIndex, new_entry: IngestionEntry) {
let entry = self
.graph
.node_weight_mut(index)
.expect("Tvix bug: missing node entry");
debug_assert!(!(entry.is_dir() && new_entry.is_dir()));
// Replace the node itself.
warn!(
"saw duplicate entry in archive at path {:?}. old: {:?} new: {:?}",
entry.path(),
&entry,
&new_entry
);
*entry = new_entry;
// Remove any outgoing edges to disconnect the old node's children.
let edges = self
.graph
.edges_directed(index, Direction::Outgoing)
.map(|edge| edge.id())
.collect::<Vec<_>>();
for edge in edges {
self.graph.remove_edge(edge);
}
}
fn get_node(&self, index: NodeIndex) -> &IngestionEntry {
self.graph
.node_weight(index)
.expect("Tvix bug: missing node entry")
}
}
#[cfg(test)]
mod test {
use crate::import::IngestionEntry;
use crate::B3Digest;
use super::{Error, IngestionEntryGraph};
use lazy_static::lazy_static;
use rstest::rstest;
lazy_static! {
pub static ref EMPTY_DIGEST: B3Digest = blake3::hash(&[]).as_bytes().into();
pub static ref DIR_A: IngestionEntry = IngestionEntry::Dir {
path: "a".parse().unwrap()
};
pub static ref DIR_B: IngestionEntry = IngestionEntry::Dir {
path: "b".parse().unwrap()
};
pub static ref DIR_A_B: IngestionEntry = IngestionEntry::Dir {
path: "a/b".parse().unwrap()
};
pub static ref FILE_A: IngestionEntry = IngestionEntry::Regular {
path: "a".parse().unwrap(),
size: 0,
executable: false,
digest: EMPTY_DIGEST.clone(),
};
pub static ref FILE_A_B: IngestionEntry = IngestionEntry::Regular {
path: "a/b".parse().unwrap(),
size: 0,
executable: false,
digest: EMPTY_DIGEST.clone(),
};
pub static ref FILE_A_B_C: IngestionEntry = IngestionEntry::Regular {
path: "a/b/c".parse().unwrap(),
size: 0,
executable: false,
digest: EMPTY_DIGEST.clone(),
};
}
#[rstest]
#[case::implicit_directories(&[&*FILE_A_B_C], &[&*FILE_A_B_C, &*DIR_A_B, &*DIR_A])]
#[case::explicit_directories(&[&*DIR_A, &*DIR_A_B, &*FILE_A_B_C], &[&*FILE_A_B_C, &*DIR_A_B, &*DIR_A])]
#[case::inaccesible_tree(&[&*DIR_A, &*DIR_A_B, &*FILE_A_B], &[&*FILE_A_B, &*DIR_A])]
fn node_ingestion_success(
#[case] in_entries: &[&IngestionEntry],
#[case] exp_entries: &[&IngestionEntry],
) {
let mut nodes = IngestionEntryGraph::new();
for entry in in_entries {
nodes.add((*entry).clone()).expect("failed to add entry");
}
let entries = nodes.finalize().expect("invalid entries");
let exp_entries: Vec<IngestionEntry> =
exp_entries.iter().map(|entry| (*entry).clone()).collect();
assert_eq!(entries, exp_entries);
}
#[rstest]
#[case::no_top_level_entries(&[], Error::UnexpectedNumberOfTopLevelEntries)]
#[case::multiple_top_level_dirs(&[&*DIR_A, &*DIR_B], Error::UnexpectedNumberOfTopLevelEntries)]
#[case::top_level_file_entry(&[&*FILE_A], Error::UnexpectedNumberOfTopLevelEntries)]
fn node_ingestion_error(#[case] in_entries: &[&IngestionEntry], #[case] exp_error: Error) {
let mut nodes = IngestionEntryGraph::new();
let result = (|| {
for entry in in_entries {
nodes.add((*entry).clone())?;
}
nodes.finalize()
})();
let error = result.expect_err("expected error");
assert_eq!(error.to_string(), exp_error.to_string());
}
}