blob: 6d70795d35ac094d6942d8c43156ccad520d9eff (
plain) (
tree)
|
|
#pragma once
#include <cassert>
#include <functional>
#include <limits>
#include <list>
#include <memory>
#include "ref.hh"
#include "sync.hh"
namespace nix {
/* This template class implements a simple pool manager of resources
of some type R, such as database connections. It is used as
follows:
class Connection { ... };
Pool<Connection> pool;
{
auto conn(pool.get());
conn->exec("select ...");
}
Here, the Connection object referenced by ‘conn’ is automatically
returned to the pool when ‘conn’ goes out of scope.
*/
template <class R>
class Pool {
public:
/* A function that produces new instances of R on demand. */
typedef std::function<ref<R>()> Factory;
/* A function that checks whether an instance of R is still
usable. Unusable instances are removed from the pool. */
typedef std::function<bool(const ref<R>&)> Validator;
private:
Factory factory;
Validator validator;
struct State {
size_t inUse = 0;
size_t max;
std::vector<ref<R>> idle;
};
Sync<State> state;
std::condition_variable wakeup;
public:
Pool(
size_t max = std::numeric_limits<size_t>::max(),
const Factory& factory = []() { return make_ref<R>(); },
const Validator& validator = [](ref<R> r) { return true; })
: factory(factory), validator(validator) {
auto state_(state.lock());
state_->max = max;
}
void incCapacity() {
auto state_(state.lock());
state_->max++;
/* we could wakeup here, but this is only used when we're
* about to nest Pool usages, and we want to save the slot for
* the nested use if we can
*/
}
void decCapacity() {
auto state_(state.lock());
state_->max--;
}
~Pool() {
auto state_(state.lock());
assert(!state_->inUse);
state_->max = 0;
state_->idle.clear();
}
class Handle {
private:
Pool& pool;
std::shared_ptr<R> r;
bool bad = false;
friend Pool;
Handle(Pool& pool, std::shared_ptr<R> r) : pool(pool), r(r) {}
public:
Handle(Handle&& h) : pool(h.pool), r(h.r) { h.r.reset(); }
Handle(const Handle& l) = delete;
~Handle() {
if (!r) {
return;
}
{
auto state_(pool.state.lock());
if (!bad) {
state_->idle.push_back(ref<R>(r));
}
assert(state_->inUse);
state_->inUse--;
}
pool.wakeup.notify_one();
}
R* operator->() { return &*r; }
R& operator*() { return *r; }
void markBad() { bad = true; }
};
Handle get() {
{
auto state_(state.lock());
/* If we're over the maximum number of instance, we need
to wait until a slot becomes available. */
while (state_->idle.empty() && state_->inUse >= state_->max)
state_.wait(wakeup);
while (!state_->idle.empty()) {
auto p = state_->idle.back();
state_->idle.pop_back();
if (validator(p)) {
state_->inUse++;
return Handle(*this, p);
}
}
state_->inUse++;
}
/* We need to create a new instance. Because that might take a
while, we don't hold the lock in the meantime. */
try {
Handle h(*this, factory());
return h;
} catch (...) {
auto state_(state.lock());
state_->inUse--;
wakeup.notify_one();
throw;
}
}
size_t count() {
auto state_(state.lock());
return state_->idle.size() + state_->inUse;
}
size_t capacity() { return state.lock()->max; }
void flushBad() {
auto state_(state.lock());
std::vector<ref<R>> left;
for (auto& p : state_->idle)
if (validator(p)) {
left.push_back(p);
}
std::swap(state_->idle, left);
}
};
} // namespace nix
|