#pragma once
#include "symbol-table.hh"
#include "types.hh"
#if HAVE_BOEHMGC
#include <gc/gc_allocator.h>
#endif
namespace nix {
typedef enum {
tInt = 1,
tBool,
tString,
tPath,
tNull,
tAttrs,
tList1,
tList2,
tListN,
tThunk,
tApp,
tLambda,
tBlackhole,
tPrimOp,
tPrimOpApp,
tExternal,
tFloat
} ValueType;
class Bindings;
struct Env;
struct Expr;
struct ExprLambda;
struct PrimOp;
struct PrimOp;
class Symbol;
struct Pos;
class EvalState;
class XMLWriter;
class JSONPlaceholder;
typedef int64_t NixInt;
typedef double NixFloat;
/* External values must descend from ExternalValueBase, so that
* type-agnostic nix functions (e.g. showType) can be implemented
*/
class ExternalValueBase {
friend std::ostream& operator<<(std::ostream& str,
const ExternalValueBase& v);
protected:
/* Print out the value */
virtual std::ostream& print(std::ostream& str) const = 0;
public:
/* Return a simple string describing the type */
virtual std::string showType() const = 0;
/* Return a string to be used in builtins.typeOf */
virtual std::string typeOf() const = 0;
/* How much space does this value take up */
virtual size_t valueSize(std::set<const void*>& seen) const = 0;
/* Coerce the value to a string. Defaults to uncoercable, i.e. throws an
* error
*/
virtual std::string coerceToString(const Pos& pos, PathSet& context,
bool copyMore, bool copyToStore) const;
/* Compare to another value of the same type. Defaults to uncomparable,
* i.e. always false.
*/
virtual bool operator==(const ExternalValueBase& b) const;
/* Print the value as JSON. Defaults to unconvertable, i.e. throws an error */
virtual void printValueAsJSON(EvalState& state, bool strict,
JSONPlaceholder& out, PathSet& context) const;
/* Print the value as XML. Defaults to unevaluated */
virtual void printValueAsXML(EvalState& state, bool strict, bool location,
XMLWriter& doc, PathSet& context,
PathSet& drvsSeen) const;
virtual ~ExternalValueBase(){};
};
std::ostream& operator<<(std::ostream& str, const ExternalValueBase& v);
// Forward declaration of Value is required because the following
// types are mutually recursive.
//
// TODO(tazjin): Really, these types need some serious refactoring.
struct Value;
/* Strings in the evaluator carry a so-called `context' which
is a list of strings representing store paths. This is to
allow users to write things like
"--with-freetype2-library=" + freetype + "/lib"
where `freetype' is a derivation (or a source to be copied
to the store). If we just concatenated the strings without
keeping track of the referenced store paths, then if the
string is used as a derivation attribute, the derivation
will not have the correct dependencies in its inputDrvs and
inputSrcs.
The semantics of the context is as follows: when a string
with context C is used as a derivation attribute, then the
derivations in C will be added to the inputDrvs of the
derivation, and the other store paths in C will be added to
the inputSrcs of the derivations.
For canonicity, the store paths should be in sorted order. */
struct NixString {
const char* s;
const char** context; // must be in sorted order
};
struct NixBigList {
size_t size;
Value** elems;
};
struct NixThunk {
Env* env;
Expr* expr;
};
struct NixApp {
Value *left, *right;
};
struct NixLambda {
Env* env;
ExprLambda* fun;
};
struct NixPrimOpApp {
Value *left, *right;
};
struct Value {
ValueType type;
union { // TODO(tazjin): std::variant
NixInt integer;
bool boolean;
NixString string;
const char* path;
Bindings* attrs;
NixBigList bigList;
Value* smallList[2];
NixThunk thunk;
NixApp app; // TODO(tazjin): "app"?
NixLambda lambda;
PrimOp* primOp;
NixPrimOpApp primOpApp;
ExternalValueBase* external;
NixFloat fpoint;
};
bool isList() const {
return type == tList1 || type == tList2 || type == tListN;
}
Value** listElems() {
return type == tList1 || type == tList2 ? smallList : bigList.elems;
}
const Value* const* listElems() const {
return type == tList1 || type == tList2 ? smallList : bigList.elems;
}
size_t listSize() const {
return type == tList1 ? 1 : type == tList2 ? 2 : bigList.size;
}
};
/* After overwriting an app node, be sure to clear pointers in the
Value to ensure that the target isn't kept alive unnecessarily. */
static inline void clearValue(Value& v) { v.app.left = v.app.right = 0; }
static inline void mkInt(Value& v, NixInt n) {
clearValue(v);
v.type = tInt;
v.integer = n;
}
static inline void mkFloat(Value& v, NixFloat n) {
clearValue(v);
v.type = tFloat;
v.fpoint = n;
}
static inline void mkBool(Value& v, bool b) {
clearValue(v);
v.type = tBool;
v.boolean = b;
}
static inline void mkNull(Value& v) {
clearValue(v);
v.type = tNull;
}
static inline void mkApp(Value& v, Value& left, Value& right) {
v.type = tApp;
v.app.left = &left;
v.app.right = &right;
}
static inline void mkPrimOpApp(Value& v, Value& left, Value& right) {
v.type = tPrimOpApp;
v.app.left = &left;
v.app.right = &right;
}
static inline void mkStringNoCopy(Value& v, const char* s) {
v.type = tString;
v.string.s = s;
v.string.context = 0;
}
static inline void mkString(Value& v, const Symbol& s) {
mkStringNoCopy(v, ((const std::string&)s).c_str());
}
void mkString(Value& v, const char* s);
static inline void mkPathNoCopy(Value& v, const char* s) {
clearValue(v);
v.type = tPath;
v.path = s;
}
void mkPath(Value& v, const char* s);
/* Compute the size in bytes of the given value, including all values
and environments reachable from it. Static expressions (Exprs) are
not included. */
size_t valueSize(Value& v);
typedef std::vector<Value*, gc_allocator<Value*> > ValueVector;
typedef std::map<Symbol, Value*, std::less<Symbol>,
gc_allocator<std::pair<const Symbol, Value*> > >
ValueMap;
} // namespace nix