#include "libexpr/eval.hh"
#include <algorithm>
#include <chrono>
#include <cstdint>
#include <cstring>
#include <fstream>
#include <iostream>
#include <memory>
#include <new>
#include <optional>
#include <variant>
#include <absl/base/call_once.h>
#include <absl/container/flat_hash_set.h>
#include <absl/strings/match.h>
#include <glog/logging.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include "libexpr/eval-inline.hh"
#include "libexpr/function-trace.hh"
#include "libexpr/value.hh"
#include "libstore/derivations.hh"
#include "libstore/download.hh"
#include "libstore/globals.hh"
#include "libstore/store-api.hh"
#include "libutil/hash.hh"
#include "libutil/json.hh"
#include "libutil/util.hh"
#include "libutil/visitor.hh"
namespace nix {
namespace {
void ConfigureGc() { /* This function intentionally left blank. */
}
} // namespace
namespace expr {
absl::once_flag gc_flag;
void InitGC() { absl::call_once(gc_flag, &ConfigureGc); }
} // namespace expr
static char* dupString(const char* s) {
char* t;
t = strdup(s);
if (t == nullptr) {
throw std::bad_alloc();
}
return t;
}
std::shared_ptr<Value*> allocRootValue(Value* v) {
return std::make_shared<Value*>(v);
}
static void printValue(std::ostream& str, std::set<const Value*>& active,
const Value& v) {
checkInterrupt();
if (active.find(&v) != active.end()) {
str << "<CYCLE>";
return;
}
active.insert(&v);
switch (v.type) {
case tInt:
str << v.integer;
break;
case tBool:
str << (v.boolean ? "true" : "false");
break;
case tString:
str << "\"";
for (const char* i = v.string.s; *i != 0; i++) {
if (*i == '\"' || *i == '\\') {
str << "\\" << *i;
} else if (*i == '\n') {
str << "\\n";
} else if (*i == '\r') {
str << "\\r";
} else if (*i == '\t') {
str << "\\t";
} else {
str << *i;
}
}
str << "\"";
break;
case tPath:
str << v.path; // !!! escaping?
break;
case tNull:
str << "null";
break;
case tAttrs: {
str << "{ ";
for (auto& i : v.attrs->SortedByKeys()) {
str << i->name << " = ";
printValue(str, active, *i->value);
str << "; ";
}
str << "}";
break;
}
case tList:
str << "[ ";
for (unsigned int n = 0; n < v.listSize(); ++n) {
printValue(str, active, *(*v.list)[n]);
str << " ";
}
str << "]";
break;
case tThunk:
case tApp:
str << "<CODE>";
break;
case tLambda:
str << "<LAMBDA>";
break;
case tPrimOp:
str << "<PRIMOP>";
break;
case tPrimOpApp:
str << "<PRIMOP-APP>";
break;
case tFloat:
str << v.fpoint;
break;
default:
throw Error(
absl::StrCat("invalid value of type ", static_cast<int>(v.type)));
}
active.erase(&v);
}
std::ostream& operator<<(std::ostream& str, const Value& v) {
std::set<const Value*> active;
printValue(str, active, v);
return str;
}
const Value* getPrimOp(const Value& v) {
const Value* primOp = &v;
while (primOp->type == tPrimOpApp) {
primOp = primOp->primOpApp.left;
}
assert(primOp->type == tPrimOp);
return primOp;
}
std::string showType(const Value& v) {
switch (v.type) {
case tInt:
return "an integer";
case tBool:
return "a boolean";
case tString:
return v.string.context != nullptr ? "a string with context" : "a string";
case tPath:
return "a path";
case tNull:
return "null";
case tAttrs:
return "a set";
case tList:
return "a list";
case tThunk:
return "a thunk";
case tApp:
return "a function application";
case tLambda:
return "a function";
case tBlackhole:
return "a black hole";
case tPrimOp:
return fmt("the built-in function '%s'", std::string(v.primOp->name));
case tPrimOpApp:
return fmt("the partially applied built-in function '%s'",
std::string(getPrimOp(v)->primOp->name));
case _reserved1:
LOG(FATAL) << "attempted to show the type string of the deprecated "
"tExternal value";
break;
case tFloat:
return "a float";
}
LOG(FATAL)
<< "attempted to determine the type string of an unknown type number ("
<< static_cast<int>(v.type) << ")";
abort();
}
static Symbol getName(const AttrName& name, EvalState& state, Env& env) {
return std::visit(
util::overloaded{[&](const Symbol& name) -> Symbol { return name; },
[&](Expr* expr) -> Symbol {
Value nameValue;
expr->eval(state, env, nameValue);
state.forceStringNoCtx(nameValue);
return state.symbols.Create(nameValue.string.s);
}},
name);
}
/* Very hacky way to parse $NIX_PATH, which is colon-separated, but
can contain URLs (e.g. "nixpkgs=https://bla...:foo=https://"). */
static Strings parseNixPath(const std::string& s) {
Strings res;
auto p = s.begin();
while (p != s.end()) {
auto start = p;
auto start2 = p;
while (p != s.end() && *p != ':') {
if (*p == '=') {
start2 = p + 1;
}
++p;
}
if (p == s.end()) {
if (p != start) {
res.push_back(std::string(start, p));
}
break;
}
if (*p == ':') {
if (isUri(std::string(start2, s.end()))) {
++p;
while (p != s.end() && *p != ':') {
++p;
}
}
res.push_back(std::string(start, p));
if (p == s.end()) {
break;
}
}
++p;
}
return res;
}
EvalState::EvalState(const Strings& _searchPath, const ref<Store>& store)
: sWith(symbols.Create("<with>")),
sOutPath(symbols.Create("outPath")),
sDrvPath(symbols.Create("drvPath")),
sType(symbols.Create("type")),
sMeta(symbols.Create("meta")),
sName(symbols.Create("name")),
sValue(symbols.Create("value")),
sSystem(symbols.Create("system")),
sOutputs(symbols.Create("outputs")),
sOutputName(symbols.Create("outputName")),
sIgnoreNulls(symbols.Create("__ignoreNulls")),
sFile(symbols.Create("file")),
sLine(symbols.Create("line")),
sColumn(symbols.Create("column")),
sFunctor(symbols.Create("__functor")),
sToString(symbols.Create("__toString")),
sRight(symbols.Create("right")),
sWrong(symbols.Create("wrong")),
sStructuredAttrs(symbols.Create("__structuredAttrs")),
sBuilder(symbols.Create("builder")),
sArgs(symbols.Create("args")),
sOutputHash(symbols.Create("outputHash")),
sOutputHashAlgo(symbols.Create("outputHashAlgo")),
sOutputHashMode(symbols.Create("outputHashMode")),
sDerivationNix(std::nullopt),
repair(NoRepair),
store(store),
baseEnv(allocEnv(128)),
staticBaseEnv(false, nullptr) {
expr::InitGC();
countCalls = getEnv("NIX_COUNT_CALLS").value_or("0") != "0";
/* Initialise the Nix expression search path. */
if (!evalSettings.pureEval) {
Strings paths = parseNixPath(getEnv("NIX_PATH").value_or(""));
for (auto& i : _searchPath) {
addToSearchPath(i);
}
for (auto& i : paths) {
addToSearchPath(i);
}
}
addToSearchPath("nix=" +
canonPath(settings.nixDataDir + "/nix/corepkgs", true));
if (evalSettings.restrictEval || evalSettings.pureEval) {
allowedPaths = PathSet();
for (auto& i : searchPath) {
auto r = resolveSearchPathElem(i);
if (!r.first) {
continue;
}
auto path = r.second;
if (store->isInStore(r.second)) {
PathSet closure;
store->computeFSClosure(store->toStorePath(r.second), closure);
for (auto& path : closure) {
allowedPaths->insert(path);
}
} else {
allowedPaths->insert(r.second);
}
}
}
createBaseEnv();
}
EvalState::~EvalState() = default;
Path EvalState::checkSourcePath(const Path& path_) {
TraceFileAccess(path_);
if (!allowedPaths) {
return path_;
}
auto i = resolvedPaths.find(path_);
if (i != resolvedPaths.end()) {
return i->second;
}
bool found = false;
/* First canonicalize the path without symlinks, so we make sure an
* attacker can't append ../../... to a path that would be in allowedPaths
* and thus leak symlink targets.
*/
Path abspath = canonPath(path_);
for (auto& i : *allowedPaths) {
if (isDirOrInDir(abspath, i)) {
found = true;
break;
}
}
if (!found) {
throw RestrictedPathError(
"access to path '%1%' is forbidden in restricted mode", abspath);
}
/* Resolve symlinks. */
DLOG(INFO) << "checking access to '" << abspath << "'";
Path path = canonPath(abspath, true);
for (auto& i : *allowedPaths) {
if (isDirOrInDir(path, i)) {
resolvedPaths[path_] = path;
return path;
}
}
throw RestrictedPathError(
"access to path '%1%' is forbidden in restricted mode", path);
}
void EvalState::checkURI(const std::string& uri) {
if (!evalSettings.restrictEval) {
return;
}
/* 'uri' should be equal to a prefix, or in a subdirectory of a
prefix. Thus, the prefix https://github.co does not permit
access to https://github.com. Note: this allows 'http://' and
'https://' as prefixes for any http/https URI. */
for (auto& prefix : evalSettings.allowedUris.get()) {
if (uri == prefix ||
(uri.size() > prefix.size() && !prefix.empty() &&
absl::StartsWith(uri, prefix) &&
(prefix[prefix.size() - 1] == '/' || uri[prefix.size()] == '/'))) {
return;
}
}
/* If the URI is a path, then check it against allowedPaths as
well. */
if (absl::StartsWith(uri, "/")) {
checkSourcePath(uri);
return;
}
if (absl::StartsWith(uri, "file://")) {
checkSourcePath(std::string(uri, 7));
return;
}
throw RestrictedPathError(
"access to URI '%s' is forbidden in restricted mode", uri);
}
Path EvalState::toRealPath(const Path& path, const PathSet& context) {
// FIXME: check whether 'path' is in 'context'.
return !context.empty() && store->isInStore(path) ? store->toRealPath(path)
: path;
};
Value* EvalState::addConstant(const std::string& name, Value& v) {
Value* v2 = allocValue();
*v2 = v;
staticBaseEnv.vars[symbols.Create(name)] = baseEnvDispl;
baseEnv.values[baseEnvDispl++] = v2;
std::string name2 =
std::string(name, 0, 2) == "__" ? std::string(name, 2) : name;
baseEnv.values[0]->attrs->push_back(Attr(symbols.Create(name2), v2));
return v2;
}
Value* EvalState::addPrimOp(const std::string& name, size_t arity,
PrimOpFun primOp) {
if (arity == 0) {
Value v;
primOp(*this, noPos, nullptr, v);
return addConstant(name, v);
}
Value* v = allocValue();
std::string name2 =
std::string(name, 0, 2) == "__" ? std::string(name, 2) : name;
Symbol sym = symbols.Create(name2);
// Even though PrimOp doesn't need tracing, it needs to be collected.
v->type = tPrimOp;
v->primOp = new PrimOp(primOp, arity, sym);
staticBaseEnv.vars[symbols.Create(name)] = baseEnvDispl;
baseEnv.values[baseEnvDispl++] = v;
baseEnv.values[0]->attrs->push_back(Attr(sym, v));
return v;
}
Value& EvalState::getBuiltin(const std::string& name) {
return *baseEnv.values[0]->attrs->find(symbols.Create(name))->second.value;
}
/* Every "format" object (even temporary) takes up a few hundred bytes
of stack space, which is a real killer in the recursive
evaluator. So here are some helper functions for throwing
exceptions. */
LocalNoInlineNoReturn(void throwEvalError(const char* s,
const std::string& s2)) {
throw EvalError(format(s) % s2);
}
LocalNoInlineNoReturn(void throwEvalError(const char* s, const std::string& s2,
const Pos& pos)) {
throw EvalError(format(s) % s2 % pos);
}
LocalNoInlineNoReturn(void throwEvalError(const char* s, const std::string& s2,
const std::string& s3)) {
throw EvalError(format(s) % s2 % s3);
}
LocalNoInlineNoReturn(void throwEvalError(const char* s, const std::string& s2,
const std::string& s3,
const Pos& pos)) {
throw EvalError(format(s) % s2 % s3 % pos);
}
LocalNoInlineNoReturn(void throwEvalError(const char* s, const Symbol& sym,
const Pos& p1, const Pos& p2)) {
throw EvalError(format(s) % sym % p1 % p2);
}
LocalNoInlineNoReturn(void throwTypeError(const char* s, const Pos& pos)) {
throw TypeError(format(s) % pos);
}
LocalNoInlineNoReturn(void throwTypeError(const char* s,
const std::string& s1)) {
throw TypeError(format(s) % s1);
}
LocalNoInlineNoReturn(void throwTypeError(const char* s, const ExprLambda& fun,
const Symbol& s2, const Pos& pos)) {
throw TypeError(format(s) % fun.showNamePos() % s2 % pos);
}
LocalNoInlineNoReturn(void throwAssertionError(const char* s,
const std::string& s1,
const Pos& pos)) {
throw AssertionError(format(s) % s1 % pos);
}
LocalNoInlineNoReturn(void throwUndefinedVarError(const char* s,
const std::string& s1,
const Pos& pos)) {
throw UndefinedVarError(format(s) % s1 % pos);
}
LocalNoInline(void addErrorPrefix(Error& e, const char* s,
const std::string& s2)) {
e.addPrefix(format(s) % s2);
}
LocalNoInline(void addErrorPrefix(Error& e, const char* s,
const ExprLambda& fun, const Pos& pos)) {
e.addPrefix(format(s) % fun.showNamePos() % pos);
}
LocalNoInline(void addErrorPrefix(Error& e, const char* s,
const std::string& s2, const Pos& pos)) {
e.addPrefix(format(s) % s2 % pos);
}
void mkString(Value& v, const char* s) { mkStringNoCopy(v, dupString(s)); }
Value& mkString(Value& v, const std::string& s, const PathSet& context) {
mkString(v, s.c_str());
if (!context.empty()) {
size_t n = 0;
v.string.context = static_cast<const char**>(
allocBytes((context.size() + 1) * sizeof(char*)));
for (auto& i : context) {
v.string.context[n++] = dupString(i.c_str());
}
v.string.context[n] = nullptr;
}
return v;
}
void mkPath(Value& v, const char* s) { mkPathNoCopy(v, dupString(s)); }
inline Value* EvalState::lookupVar(Env* env, const ExprVar& var, bool noEval) {
for (size_t l = var.level; l != 0u; --l, env = env->up) {
;
}
if (!var.fromWith) {
return env->values[var.displ];
}
while (true) {
if (env->type == Env::HasWithExpr) {
if (noEval) {
return nullptr;
}
if (!env->withAttrsExpr) {
CHECK(false) << "HasWithExpr evaluated twice";
}
Value* v = allocValue();
evalAttrs(*env->up, env->withAttrsExpr, *v);
env->values[0] = v;
env->withAttrsExpr = nullptr;
env->type = Env::HasWithAttrs;
}
Bindings::iterator j = env->values[0]->attrs->find(var.name);
if (j != env->values[0]->attrs->end()) {
if (countCalls && (j->second.pos != nullptr)) {
attrSelects[*j->second.pos]++;
}
return j->second.value;
}
if (env->prevWith == 0u) {
throwUndefinedVarError("undefined variable '%1%' at %2%", var.name,
var.pos);
}
for (size_t l = env->prevWith; l != 0u; --l, env = env->up) {
}
}
}
Value* EvalState::allocValue() {
nrValues++;
return new Value;
}
Env& EvalState::allocEnv(size_t size) {
if (size > std::numeric_limits<decltype(Env::size)>::max()) {
throw Error("environment size %d is too big", size);
}
nrEnvs++;
nrValuesInEnvs += size;
Env* env = new Env(size);
env->type = Env::Plain;
return *env;
}
void EvalState::mkList(Value& v, NixList* list) {
clearValue(v);
v.type = tList;
v.list = list;
nrListElems += list->size();
}
void EvalState::mkList(Value& v, size_t size) {
EvalState::mkList(v, new NixList(size));
}
unsigned long nrThunks = 0;
static inline void mkThunk(Value& v, Env& env, Expr* expr) {
v.type = tThunk;
v.thunk.env = &env;
v.thunk.expr = expr;
nrThunks++;
}
void EvalState::mkThunk_(Value& v, Expr* expr) { mkThunk(v, baseEnv, expr); }
void EvalState::mkPos(Value& v, Pos* pos) {
if ((pos != nullptr) && pos->file.has_value() && pos->file.value().set()) {
mkAttrs(v, 3);
mkString(*allocAttr(v, sFile), pos->file.value());
mkInt(*allocAttr(v, sLine), pos->line);
mkInt(*allocAttr(v, sColumn), pos->column);
} else {
mkNull(v);
}
}
/* Create a thunk for the delayed computation of the given expression
in the given environment. But if the expression is a variable,
then look it up right away. This significantly reduces the number
of thunks allocated. */
Value* Expr::maybeThunk(EvalState& state, Env& env) {
Value* v = state.allocValue();
mkThunk(*v, env, this);
return v;
}
unsigned long nrAvoided = 0;
Value* ExprVar::maybeThunk(EvalState& state, Env& env) {
Value* v = state.lookupVar(&env, *this, true);
/* The value might not be initialised in the environment yet.
In that case, ignore it. */
if (v != nullptr) {
nrAvoided++;
return v;
}
return Expr::maybeThunk(state, env);
}
Value* ExprString::maybeThunk(EvalState& state, Env& env) {
nrAvoided++;
return &v;
}
Value* ExprInt::maybeThunk(EvalState& state, Env& env) {
nrAvoided++;
return &v;
}
Value* ExprFloat::maybeThunk(EvalState& state, Env& env) {
nrAvoided++;
return &v;
}
Value* ExprPath::maybeThunk(EvalState& state, Env& env) {
nrAvoided++;
return &v;
}
void EvalState::evalFile(const Path& path_, Value& v) {
auto path = checkSourcePath(path_);
FileEvalCache::iterator i;
if ((i = fileEvalCache.find(path)) != fileEvalCache.end()) {
v = i->second;
return;
}
Path path2 = resolveExprPath(path);
if ((i = fileEvalCache.find(path2)) != fileEvalCache.end()) {
v = i->second;
return;
}
DLOG(INFO) << "evaluating file '" << path2 << "'";
Expr* e = nullptr;
auto j = fileParseCache.find(path2);
if (j != fileParseCache.end()) {
e = j->second;
}
if (e == nullptr) {
e = parseExprFromFile(checkSourcePath(path2));
}
fileParseCache[path2] = e;
try {
eval(e, v);
} catch (Error& e) {
addErrorPrefix(e, "while evaluating the file '%1%':\n", path2);
throw;
}
fileEvalCache[path2] = v;
if (path != path2) {
fileEvalCache[path] = v;
}
}
void EvalState::resetFileCache() {
fileEvalCache.clear();
fileParseCache.clear();
}
void EvalState::eval(Expr* e, Value& v) { e->eval(*this, baseEnv, v); }
inline bool EvalState::evalBool(Env& env, Expr* e) {
Value v;
e->eval(*this, env, v);
if (v.type != tBool) {
throwTypeError("value is %1% while a Boolean was expected", v);
}
return v.boolean;
}
inline bool EvalState::evalBool(Env& env, Expr* e, const Pos& pos) {
Value v;
e->eval(*this, env, v);
if (v.type != tBool) {
throwTypeError("value is %1% while a Boolean was expected, at %2%", v, pos);
}
return v.boolean;
}
inline void EvalState::evalAttrs(Env& env, Expr* e, Value& v) {
e->eval(*this, env, v);
if (v.type != tAttrs) {
throwTypeError("value is %1% while a set was expected", v);
}
}
void Expr::eval(EvalState& state, Env& env, Value& v) { abort(); }
void ExprInt::eval(EvalState& state, Env& env, Value& v) { v = this->v; }
void ExprFloat::eval(EvalState& state, Env& env, Value& v) { v = this->v; }
void ExprString::eval(EvalState& state, Env& env, Value& v) { v = this->v; }
void ExprPath::eval(EvalState& state, Env& env, Value& v) { v = this->v; }
void ExprAttrs::eval(EvalState& state, Env& env, Value& value) {
state.mkAttrs(value, attrs.size() + dynamicAttrs.size());
Env* dynamicEnv = &env;
if (recursive) {
/* Create a new environment that contains the attributes in
this `rec'. */
Env& env2(state.allocEnv(attrs.size()));
env2.up = &env;
dynamicEnv = &env2;
/* The recursive attributes are evaluated in the new
environment, while the inherited attributes are evaluated
in the original environment. */
size_t displ = 0;
for (auto& attr : attrs) {
Value* vAttr;
vAttr =
attr.second.e->maybeThunk(state, attr.second.inherited ? env : env2);
env2.values[displ++] = vAttr;
value.attrs->push_back(Attr(attr.first, vAttr, &attr.second.pos));
}
} else {
// TODO(tazjin): insert range
for (auto& i : attrs) {
value.attrs->push_back(
Attr(i.first, i.second.e->maybeThunk(state, env), &i.second.pos));
}
}
/* Dynamic attrs apply *after* rec. */
for (auto& i : dynamicAttrs) {
Value nameVal;
i.nameExpr->eval(state, *dynamicEnv, nameVal);
state.forceValue(nameVal, i.pos);
if (nameVal.type == tNull) {
continue;
}
state.forceStringNoCtx(nameVal);
Symbol nameSym = state.symbols.Create(nameVal.string.s);
Bindings::iterator j = value.attrs->find(nameSym);
if (j != value.attrs->end()) {
throwEvalError("dynamic attribute '%1%' at %2% already defined at %3%",
nameSym, i.pos, *j->second.pos);
}
value.attrs->push_back(
Attr(nameSym, i.valueExpr->maybeThunk(state, *dynamicEnv), &i.pos));
}
}
void ExprLet::eval(EvalState& state, Env& env, Value& v) {
/* Create a new environment that contains the attributes in this
`let'. */
Env& env2(state.allocEnv(attrs->attrs.size()));
env2.up = &env;
/* The recursive attributes are evaluated in the new environment,
while the inherited attributes are evaluated in the original
environment. */
size_t displ = 0;
for (auto& i : attrs->attrs) {
env2.values[displ++] =
i.second.e->maybeThunk(state, i.second.inherited ? env : env2);
}
body->eval(state, env2, v);
}
void ExprList::eval(EvalState& state, Env& env, Value& v) {
state.mkList(v, elems.size());
for (size_t n = 0; n < elems.size(); ++n) {
(*v.list)[n] = elems[n]->maybeThunk(state, env);
}
}
void ExprVar::eval(EvalState& state, Env& env, Value& v) {
Value* v2 = state.lookupVar(&env, *this, false);
state.forceValue(*v2, pos);
v = *v2;
}
static std::string showAttrPath(EvalState& state, Env& env,
const AttrPath& attrPath) {
std::ostringstream out;
bool first = true;
for (auto& i : attrPath) {
if (!first) {
out << '.';
} else {
first = false;
}
out << getName(i, state, env);
}
return out.str();
}
uint64_t nrLookups = 0;
void ExprSelect::eval(EvalState& state, Env& env, Value& v) {
Value vTmp;
Pos* pos2 = nullptr;
Value* vAttrs = &vTmp;
e->eval(state, env, vTmp);
try {
for (auto& i : attrPath) {
nrLookups++;
Bindings::iterator j;
Symbol name = getName(i, state, env);
if (def != nullptr) {
state.forceValue(*vAttrs, pos);
if (vAttrs->type != tAttrs ||
(j = vAttrs->attrs->find(name)) == vAttrs->attrs->end()) {
def->eval(state, env, v);
return;
}
} else {
state.forceAttrs(*vAttrs, pos);
if ((j = vAttrs->attrs->find(name)) == vAttrs->attrs->end()) {
throwEvalError("attribute '%1%' missing, at %2%", name, pos);
}
}
vAttrs = j->second.value;
pos2 = j->second.pos;
if (state.countCalls && (pos2 != nullptr)) {
state.attrSelects[*pos2]++;
}
}
state.forceValue(*vAttrs, (pos2 != nullptr ? *pos2 : this->pos));
} catch (Error& e) {
// This code relies on 'sDerivationNix' being correcty mutated at
// some prior point (it would previously otherwise have been a
// nullptr).
//
// We haven't seen this fail, so for now the contained value is
// just accessed at the risk of potentially crashing.
if ((pos2 != nullptr) && pos2->file != state.sDerivationNix.value()) {
addErrorPrefix(e, "while evaluating the attribute '%1%' at %2%:\n",
showAttrPath(state, env, attrPath), *pos2);
}
throw;
}
v = *vAttrs;
}
void ExprOpHasAttr::eval(EvalState& state, Env& env, Value& v) {
Value vTmp;
Value* vAttrs = &vTmp;
e->eval(state, env, vTmp);
for (auto& i : attrPath) {
state.forceValue(*vAttrs);
Bindings::iterator j;
Symbol name = getName(i, state, env);
if (vAttrs->type != tAttrs ||
(j = vAttrs->attrs->find(name)) == vAttrs->attrs->end()) {
mkBool(v, false);
return;
}
vAttrs = j->second.value;
}
mkBool(v, true);
}
void ExprLambda::eval(EvalState& state, Env& env, Value& v) {
v.type = tLambda;
v.lambda.env = &env;
v.lambda.fun = this;
}
void ExprApp::eval(EvalState& state, Env& env, Value& v) {
/* FIXME: vFun prevents GCC from doing tail call optimisation. */
Value vFun;
e1->eval(state, env, vFun);
state.callFunction(vFun, *(e2->maybeThunk(state, env)), v, pos);
}
void EvalState::callPrimOp(Value& fun, Value& arg, Value& v, const Pos& pos) {
/* Figure out the number of arguments still needed. */
size_t argsDone = 0;
Value* primOp = &fun;
while (primOp->type == tPrimOpApp) {
argsDone++;
primOp = primOp->primOpApp.left;
}
assert(primOp->type == tPrimOp);
auto arity = primOp->primOp->arity;
auto argsLeft = arity - argsDone;
if (argsLeft == 1) {
/* We have all the arguments, so call the primop. */
/* Put all the arguments in an array. */
Value* vArgs[arity];
auto n = arity - 1;
vArgs[n--] = &arg;
for (Value* arg = &fun; arg->type == tPrimOpApp;
arg = arg->primOpApp.left) {
vArgs[n--] = arg->primOpApp.right;
}
/* And call the primop. */
nrPrimOpCalls++;
if (countCalls) {
primOpCalls[primOp->primOp->name]++;
}
primOp->primOp->fun(*this, pos, vArgs, v);
} else {
Value* fun2 = allocValue();
*fun2 = fun;
v.type = tPrimOpApp;
v.primOpApp.left = fun2;
v.primOpApp.right = &arg;
}
}
void EvalState::callFunction(Value& fun, Value& arg, Value& v, const Pos& pos) {
auto trace = evalSettings.traceFunctionCalls
? std::make_unique<FunctionCallTrace>(pos)
: nullptr;
forceValue(fun, pos);
if (fun.type == tPrimOp || fun.type == tPrimOpApp) {
callPrimOp(fun, arg, v, pos);
return;
}
// If the value to be called is an attribute set, check whether it
// contains an appropriate function in the '__functor' element and
// use that.
if (fun.type == tAttrs) {
auto found = fun.attrs->find(sFunctor);
if (found != fun.attrs->end()) {
// fun may be allocated on the stack of the calling function,
// but for functors we may keep a reference, so heap-allocate a
// copy and use that instead
auto& fun2 = *allocValue();
fun2 = fun;
/* !!! Should we use the attr pos here? */
Value v2;
// functors are called with the element itself as the first
// parameter, which is partially applied here
callFunction(*found->second.value, fun2, v2, pos);
return callFunction(v2, arg, v, pos);
}
}
if (fun.type != tLambda) {
throwTypeError(
"attempt to call something which is not a function but %1%, at %2%",
fun, pos);
}
ExprLambda& lambda(*fun.lambda.fun);
auto size = (lambda.arg.empty() ? 0 : 1) +
(lambda.matchAttrs ? lambda.formals->formals.size() : 0);
Env& env2(allocEnv(size));
env2.up = fun.lambda.env;
size_t displ = 0;
if (!lambda.matchAttrs) {
env2.values[displ++] = &arg;
} else {
forceAttrs(arg, pos);
if (!lambda.arg.empty()) {
env2.values[displ++] = &arg;
}
/* For each formal argument, get the actual argument. If
there is no matching actual argument but the formal
argument has a default, use the default. */
size_t attrsUsed = 0;
for (auto& i : lambda.formals->formals) {
Bindings::iterator j = arg.attrs->find(i.name);
if (j == arg.attrs->end()) {
if (i.def == nullptr) {
throwTypeError("%1% called without required argument '%2%', at %3%",
lambda, i.name, pos);
}
env2.values[displ++] = i.def->maybeThunk(*this, env2);
} else {
attrsUsed++;
env2.values[displ++] = j->second.value;
}
}
/* Check that each actual argument is listed as a formal
argument (unless the attribute match specifies a `...'). */
if (!lambda.formals->ellipsis && attrsUsed != arg.attrs->size()) {
/* Nope, so show the first unexpected argument to the
user. */
for (auto& i : *arg.attrs) {
if (lambda.formals->argNames.find(i.second.name) ==
lambda.formals->argNames.end()) {
throwTypeError("%1% called with unexpected argument '%2%', at %3%",
lambda, i.second.name, pos);
}
}
abort(); // shouldn't happen
}
}
nrFunctionCalls++;
if (countCalls) {
incrFunctionCall(&lambda);
}
/* Evaluate the body. This is conditional on showTrace, because
catching exceptions makes this function not tail-recursive. */
if (settings.showTrace) {
try {
lambda.body->eval(*this, env2, v);
} catch (Error& e) {
addErrorPrefix(e, "while evaluating %1%, called from %2%:\n", lambda,
pos);
throw;
}
} else {
fun.lambda.fun->body->eval(*this, env2, v);
}
}
// Lifted out of callFunction() because it creates a temporary that
// prevents tail-call optimisation.
void EvalState::incrFunctionCall(ExprLambda* fun) { functionCalls[fun]++; }
void EvalState::autoCallFunction(Bindings* args, Value& fun, Value& res) {
forceValue(fun);
if (fun.type == tAttrs) {
auto found = fun.attrs->find(sFunctor);
if (found != fun.attrs->end()) {
Value* v = allocValue();
callFunction(*found->second.value, fun, *v, noPos);
forceValue(*v);
return autoCallFunction(args, *v, res);
}
}
if (fun.type != tLambda || !fun.lambda.fun->matchAttrs) {
res = fun;
return;
}
Value* actualArgs = allocValue();
mkAttrs(*actualArgs, fun.lambda.fun->formals->formals.size());
if (fun.lambda.fun->formals->ellipsis) {
// If the formals have an ellipsis (eg the function accepts extra args) pass
// all available automatic arguments (which includes arguments specified on
// the command line via --arg/--argstr)
for (auto& [_, v] : *args) {
actualArgs->attrs->push_back(v);
}
} else {
// Otherwise, only pass the arguments that the function accepts
for (auto& i : fun.lambda.fun->formals->formals) {
Bindings::iterator j = args->find(i.name);
if (j != args->end()) {
actualArgs->attrs->push_back(j->second);
} else if (i.def == nullptr) {
throwTypeError(
"cannot auto-call a function that has an argument without a "
"default "
"value ('%1%')",
i.name);
}
}
}
callFunction(fun, *actualArgs, res, noPos);
}
void ExprWith::eval(EvalState& state, Env& env, Value& v) {
Env& env2(state.allocEnv(1));
env2.up = &env;
env2.prevWith = prevWith;
env2.type = Env::HasWithExpr;
/* placeholder for result of attrs */
env2.values[0] = nullptr;
env2.withAttrsExpr = this->attrs;
body->eval(state, env2, v);
}
void ExprIf::eval(EvalState& state, Env& env, Value& v) {
(state.evalBool(env, cond) ? then : else_)->eval(state, env, v);
}
void ExprAssert::eval(EvalState& state, Env& env, Value& v) {
if (!state.evalBool(env, cond, pos)) {
std::ostringstream out;
cond->show(out);
throwAssertionError("assertion %1% failed at %2%", out.str(), pos);
}
body->eval(state, env, v);
}
void ExprOpNot::eval(EvalState& state, Env& env, Value& v) {
mkBool(v, !state.evalBool(env, e));
}
void ExprOpEq::eval(EvalState& state, Env& env, Value& v) {
Value v1;
e1->eval(state, env, v1);
Value v2;
e2->eval(state, env, v2);
mkBool(v, state.eqValues(v1, v2));
}
void ExprOpNEq::eval(EvalState& state, Env& env, Value& v) {
Value v1;
e1->eval(state, env, v1);
Value v2;
e2->eval(state, env, v2);
mkBool(v, !state.eqValues(v1, v2));
}
void ExprOpAnd::eval(EvalState& state, Env& env, Value& v) {
mkBool(v, state.evalBool(env, e1, pos) && state.evalBool(env, e2, pos));
}
void ExprOpOr::eval(EvalState& state, Env& env, Value& v) {
mkBool(v, state.evalBool(env, e1, pos) || state.evalBool(env, e2, pos));
}
void ExprOpImpl::eval(EvalState& state, Env& env, Value& v) {
mkBool(v, !state.evalBool(env, e1, pos) || state.evalBool(env, e2, pos));
}
void ExprOpUpdate::eval(EvalState& state, Env& env, Value& dest) {
Value v1;
Value v2;
state.evalAttrs(env, e1, v1);
state.evalAttrs(env, e2, v2);
state.nrOpUpdates++;
clearValue(dest);
dest.type = tAttrs;
dest.attrs = Bindings::Merge(*v1.attrs, *v2.attrs);
}
void ExprOpConcatLists::eval(EvalState& state, Env& env, Value& v) {
Value v1;
e1->eval(state, env, v1);
Value v2;
e2->eval(state, env, v2);
state.concatLists(v, {&v1, &v2}, pos);
}
void EvalState::concatLists(Value& v, const NixList& lists, const Pos& pos) {
nrListConcats++;
auto outlist = new NixList();
for (Value* list : lists) {
forceList(*list, pos);
outlist->insert(outlist->end(), list->list->begin(), list->list->end());
}
mkList(v, outlist);
}
void ExprConcatStrings::eval(EvalState& state, Env& env, Value& v) {
PathSet context;
std::ostringstream s;
NixInt n = 0;
NixFloat nf = 0;
bool first = !forceString;
ValueType firstType = tString;
for (auto& i : *es) {
Value vTmp;
i->eval(state, env, vTmp);
/* If the first element is a path, then the result will also
be a path, we don't copy anything (yet - that's done later,
since paths are copied when they are used in a derivation),
and none of the strings are allowed to have contexts. */
if (first) {
firstType = vTmp.type;
first = false;
}
if (firstType == tInt) {
if (vTmp.type == tInt) {
n += vTmp.integer;
} else if (vTmp.type == tFloat) {
// Upgrade the type from int to float;
firstType = tFloat;
nf = n;
nf += vTmp.fpoint;
} else {
throwEvalError("cannot add %1% to an integer, at %2%", showType(vTmp),
pos);
}
} else if (firstType == tFloat) {
if (vTmp.type == tInt) {
nf += vTmp.integer;
} else if (vTmp.type == tFloat) {
nf += vTmp.fpoint;
} else {
throwEvalError("cannot add %1% to a float, at %2%", showType(vTmp),
pos);
}
} else {
s << state.coerceToString(pos, vTmp, context, false,
firstType == tString);
}
}
if (firstType == tInt) {
mkInt(v, n);
} else if (firstType == tFloat) {
mkFloat(v, nf);
} else if (firstType == tPath) {
if (!context.empty()) {
throwEvalError(
"a string that refers to a store path cannot be appended to a path, "
"at %1%",
pos);
}
auto path = canonPath(s.str());
mkPath(v, path.c_str());
} else {
mkString(v, s.str(), context);
}
}
void ExprPos::eval(EvalState& state, Env& env, Value& v) {
state.mkPos(v, &pos);
}
template <typename T>
using traceable_flat_hash_set = absl::flat_hash_set<T>;
void EvalState::forceValueDeep(Value& v) {
traceable_flat_hash_set<const Value*> seen;
std::function<void(Value & v)> recurse;
recurse = [&](Value& v) {
if (seen.find(&v) != seen.end()) {
return;
}
seen.insert(&v);
forceValue(v);
if (v.type == tAttrs) {
for (auto& i : *v.attrs) {
try {
recurse(*i.second.value);
} catch (Error& e) {
addErrorPrefix(e, "while evaluating the attribute '%1%' at %2%:\n",
i.second.name, *i.second.pos);
throw;
}
}
} else if (v.isList()) {
for (size_t n = 0; n < v.listSize(); ++n) {
recurse(*(*v.list)[n]);
}
}
};
recurse(v);
}
NixInt EvalState::forceInt(Value& v, const Pos& pos) {
forceValue(v, pos);
if (v.type != tInt) {
throwTypeError("value is %1% while an integer was expected, at %2%", v,
pos);
}
return v.integer;
}
NixFloat EvalState::forceFloat(Value& v, const Pos& pos) {
forceValue(v, pos);
if (v.type == tInt) {
return static_cast<NixFloat>(v.integer);
}
if (v.type != tFloat) {
throwTypeError("value is %1% while a float was expected, at %2%", v, pos);
}
return v.fpoint;
}
bool EvalState::forceBool(Value& v, const Pos& pos) {
forceValue(v);
if (v.type != tBool) {
throwTypeError("value is %1% while a Boolean was expected, at %2%", v, pos);
}
return v.boolean;
}
bool EvalState::isFunctor(Value& fun) {
return fun.type == tAttrs && fun.attrs->find(sFunctor) != fun.attrs->end();
}
void EvalState::forceFunction(Value& v, const Pos& pos) {
forceValue(v);
if (v.type != tLambda && v.type != tPrimOp && v.type != tPrimOpApp &&
!isFunctor(v)) {
throwTypeError("value is %1% while a function was expected, at %2%", v,
pos);
}
}
std::string EvalState::forceString(Value& v, const Pos& pos) {
forceValue(v, pos);
if (v.type != tString) {
if (pos) {
throwTypeError("value is %1% while a string was expected, at %2%", v,
pos);
} else {
throwTypeError("value is %1% while a string was expected", v);
}
}
return std::string(v.string.s);
}
void copyContext(const Value& v, PathSet& context) {
if (v.string.context != nullptr) {
for (const char** p = v.string.context; *p != nullptr; ++p) {
context.insert(*p);
}
}
}
std::string EvalState::forceString(Value& v, PathSet& context, const Pos& pos) {
std::string s = forceString(v, pos);
copyContext(v, context);
return s;
}
std::string EvalState::forceStringNoCtx(Value& v, const Pos& pos) {
std::string s = forceString(v, pos);
if (v.string.context != nullptr) {
if (pos) {
throwEvalError(
"the string '%1%' is not allowed to refer to a store path (such as "
"'%2%'), at %3%",
v.string.s, v.string.context[0], pos);
} else {
throwEvalError(
"the string '%1%' is not allowed to refer to a store path (such as "
"'%2%')",
v.string.s, v.string.context[0]);
}
}
return s;
}
bool EvalState::isDerivation(Value& v) {
if (v.type != tAttrs) {
return false;
}
Bindings::iterator i = v.attrs->find(sType);
if (i == v.attrs->end()) {
return false;
}
forceValue(*i->second.value);
if (i->second.value->type != tString) {
return false;
}
return strcmp(i->second.value->string.s, "derivation") == 0;
}
std::optional<std::string> EvalState::tryAttrsToString(const Pos& pos, Value& v,
PathSet& context,
bool coerceMore,
bool copyToStore) {
auto i = v.attrs->find(sToString);
if (i != v.attrs->end()) {
Value v1;
callFunction(*i->second.value, v, v1, pos);
return coerceToString(pos, v1, context, coerceMore, copyToStore);
}
return {};
}
std::string EvalState::coerceToString(const Pos& pos, Value& v,
PathSet& context, bool coerceMore,
bool copyToStore) {
forceValue(v);
std::string s;
if (v.type == tString) {
copyContext(v, context);
return v.string.s;
}
if (v.type == tPath) {
Path path(canonPath(v.path));
return copyToStore ? copyPathToStore(context, path) : path;
}
if (v.type == tAttrs) {
auto maybeString =
tryAttrsToString(pos, v, context, coerceMore, copyToStore);
if (maybeString) {
return *maybeString;
}
auto i = v.attrs->find(sOutPath);
if (i == v.attrs->end()) {
throwTypeError("cannot coerce a set to a string, at %1%", pos);
}
return coerceToString(pos, *i->second.value, context, coerceMore,
copyToStore);
}
if (coerceMore) {
/* Note that `false' is represented as an empty string for
shell scripting convenience, just like `null'. */
if (v.type == tBool && v.boolean) {
return "1";
}
if (v.type == tBool && !v.boolean) {
return "";
}
if (v.type == tInt) {
return std::to_string(v.integer);
}
if (v.type == tFloat) {
return std::to_string(v.fpoint);
}
if (v.type == tNull) {
return "";
}
if (v.isList()) {
std::string result;
for (size_t n = 0; n < v.listSize(); ++n) {
result += coerceToString(pos, *(*v.list)[n], context, coerceMore,
copyToStore);
if (n < v.listSize() - 1
/* !!! not quite correct */
&& (!(*v.list)[n]->isList() || (*v.list)[n]->listSize() != 0)) {
result += " ";
}
}
return result;
}
}
throwTypeError("cannot coerce %1% to a string, at %2%", v, pos);
}
std::string EvalState::copyPathToStore(PathSet& context, const Path& path) {
if (nix::isDerivation(path)) {
throwEvalError("file names are not allowed to end in '%1%'", drvExtension);
}
Path dstPath;
if (!srcToStore[path].empty()) {
dstPath = srcToStore[path];
} else {
dstPath =
settings.readOnlyMode
? store
->computeStorePathForPath(baseNameOf(path),
checkSourcePath(path))
.first
: store->addToStore(baseNameOf(path), checkSourcePath(path), true,
htSHA256, defaultPathFilter, repair);
srcToStore[path] = dstPath;
DLOG(INFO) << "copied source '" << path << "' -> '" << dstPath << "'";
}
context.insert(dstPath);
return dstPath;
}
Path EvalState::coerceToPath(const Pos& pos, Value& v, PathSet& context) {
std::string path = coerceToString(pos, v, context, false, false);
if (path.empty() || path[0] != '/') {
throwEvalError("string '%1%' doesn't represent an absolute path, at %2%",
path, pos);
}
return path;
}
bool EvalState::eqValues(Value& v1, Value& v2) {
forceValue(v1);
forceValue(v2);
/* !!! Hack to support some old broken code that relies on pointer
equality tests between sets. (Specifically, builderDefs calls
uniqList on a list of sets.) Will remove this eventually. */
if (&v1 == &v2) {
return true;
}
// Special case type-compatibility between float and int
if (v1.type == tInt && v2.type == tFloat) {
return v1.integer == v2.fpoint;
}
if (v1.type == tFloat && v2.type == tInt) {
return v1.fpoint == v2.integer;
}
// All other types are not compatible with each other.
if (v1.type != v2.type) {
return false;
}
switch (v1.type) {
case tInt:
return v1.integer == v2.integer;
case tBool:
return v1.boolean == v2.boolean;
case tString:
return strcmp(v1.string.s, v2.string.s) == 0;
case tPath:
return strcmp(v1.path, v2.path) == 0;
case tNull:
return true;
case tList:
if (v1.listSize() != v2.listSize()) {
return false;
}
for (size_t n = 0; n < v1.listSize(); ++n) {
if (!eqValues(*(*v1.list)[n], *(*v2.list)[n])) {
return false;
}
}
return true;
case tAttrs: {
// As an optimisation if both values are pointing towards the
// same attribute set, we can skip all this extra work.
if (v1.attrs == v2.attrs) {
return true;
}
/* If both sets denote a derivation (type = "derivation"),
then compare their outPaths. */
if (isDerivation(v1) && isDerivation(v2)) {
Bindings::iterator i = v1.attrs->find(sOutPath);
Bindings::iterator j = v2.attrs->find(sOutPath);
if (i != v1.attrs->end() && j != v2.attrs->end()) {
return eqValues(*i->second.value, *j->second.value);
}
}
return v1.attrs->Equal(v2.attrs.get(), *this);
}
/* Functions are incomparable. */
case tLambda:
case tPrimOp:
case tPrimOpApp:
return false;
case tFloat:
return v1.fpoint == v2.fpoint;
default:
throwEvalError("cannot compare %1% with %2%", showType(v1), showType(v2));
}
}
void EvalState::printStats() {
bool showStats = getEnv("NIX_SHOW_STATS").value_or("0") != "0";
struct rusage buf;
getrusage(RUSAGE_SELF, &buf);
float cpuTime = buf.ru_utime.tv_sec +
(static_cast<float>(buf.ru_utime.tv_usec) / 1000000);
uint64_t bEnvs = nrEnvs * sizeof(Env) + nrValuesInEnvs * sizeof(Value*);
uint64_t bLists = nrListElems * sizeof(Value*);
uint64_t bValues = nrValues * sizeof(Value);
uint64_t bAttrsets =
nrAttrsets * sizeof(Bindings) + nrAttrsInAttrsets * sizeof(Attr);
if (showStats) {
auto outPath = getEnv("NIX_SHOW_STATS_PATH").value_or("-");
std::fstream fs;
if (outPath != "-") {
fs.open(outPath, std::fstream::out);
}
JSONObject topObj(outPath == "-" ? std::cerr : fs, true);
topObj.attr("cpuTime", cpuTime);
{
auto envs = topObj.object("envs");
envs.attr("number", nrEnvs);
envs.attr("elements", nrValuesInEnvs);
envs.attr("bytes", bEnvs);
}
{
auto lists = topObj.object("list");
lists.attr("elements", nrListElems);
lists.attr("bytes", bLists);
lists.attr("concats", nrListConcats);
}
{
auto values = topObj.object("values");
values.attr("number", nrValues);
values.attr("bytes", bValues);
}
{
auto syms = topObj.object("symbols");
syms.attr("number", symbols.Size());
syms.attr("bytes", symbols.TotalSize());
}
{
auto sets = topObj.object("sets");
sets.attr("number", nrAttrsets);
sets.attr("bytes", bAttrsets);
sets.attr("elements", nrAttrsInAttrsets);
}
{
auto sizes = topObj.object("sizes");
sizes.attr("Env", sizeof(Env));
sizes.attr("Value", sizeof(Value));
sizes.attr("Bindings", sizeof(Bindings));
sizes.attr("Attr", sizeof(Attr));
}
topObj.attr("nrOpUpdates", nrOpUpdates);
topObj.attr("nrOpUpdateValuesCopied", nrOpUpdateValuesCopied);
topObj.attr("nrThunks", nrThunks);
topObj.attr("nrAvoided", nrAvoided);
topObj.attr("nrLookups", nrLookups);
topObj.attr("nrPrimOpCalls", nrPrimOpCalls);
topObj.attr("nrFunctionCalls", nrFunctionCalls);
if (countCalls) {
{
auto obj = topObj.object("primops");
for (auto& i : primOpCalls) {
obj.attr(i.first, i.second);
}
}
{
auto list = topObj.list("functions");
for (auto& i : functionCalls) {
auto obj = list.object();
if (i.first->name.has_value()) {
obj.attr("name", (const std::string&)i.first->name.value());
} else {
obj.attr("name", nullptr);
}
if (i.first->pos) {
obj.attr("file", (const std::string&)i.first->pos.file);
obj.attr("line", i.first->pos.line);
obj.attr("column", i.first->pos.column);
}
obj.attr("count", i.second);
}
}
{
auto list = topObj.list("attributes");
for (auto& i : attrSelects) {
auto obj = list.object();
if (i.first) {
obj.attr("file", (const std::string&)i.first.file);
obj.attr("line", i.first.line);
obj.attr("column", i.first.column);
}
obj.attr("count", i.second);
}
}
}
// TODO(tazjin): what is this? commented out because .dump() is gone.
// if (getEnv("NIX_SHOW_SYMBOLS", "0") != "0") {
// auto list = topObj.list("symbols");
// symbols.dump([&](const std::string& s) { list.elem(s); });
// }
}
}
void EvalState::TraceFileAccess(const Path& realPath) {
if (file_access_trace_fn) {
if (last_traced_file != realPath) {
file_access_trace_fn(realPath);
// Basic deduplication.
last_traced_file = std::string(realPath);
}
}
}
void EvalState::EnableFileAccessTracing(std::function<void(const Path&)> fn) {
file_access_trace_fn = fn;
}
size_t valueSize(const Value& v) {
traceable_flat_hash_set<const Bindings*> seenBindings;
traceable_flat_hash_set<const Env*> seenEnvs;
traceable_flat_hash_set<const NixList*> seenLists;
traceable_flat_hash_set<const char*> seenStrings;
traceable_flat_hash_set<const Value*> seenValues;
auto doString = [&](const char* s) -> size_t {
if (seenStrings.find(s) != seenStrings.end()) {
return 0;
}
seenStrings.insert(s);
return strlen(s) + 1;
};
std::function<size_t(const Value& v)> doValue;
std::function<size_t(const Env& v)> doEnv;
doValue = [&](const Value& v) -> size_t {
if (seenValues.find(&v) != seenValues.end()) {
return 0;
}
seenValues.insert(&v);
size_t sz = sizeof(Value);
switch (v.type) {
case tString:
sz += doString(v.string.s);
if (v.string.context != nullptr) {
for (const char** p = v.string.context; *p != nullptr; ++p) {
sz += doString(*p);
}
}
break;
case tPath:
sz += doString(v.path);
break;
case tAttrs:
if (seenBindings.find(v.attrs.get()) == seenBindings.end()) {
seenBindings.insert(v.attrs.get());
sz += sizeof(Bindings);
for (const auto& i : *v.attrs) {
sz += doValue(*i.second.value);
}
}
break;
case tList:
if (seenLists.find(v.list) == seenLists.end()) {
seenLists.insert(v.list);
sz += v.listSize() * sizeof(Value*);
for (const Value* v : *v.list) {
sz += doValue(*v);
}
}
break;
case tThunk:
sz += doEnv(*v.thunk.env);
break;
case tApp:
sz += doValue(*v.app.left);
sz += doValue(*v.app.right);
break;
case tLambda:
sz += doEnv(*v.lambda.env);
break;
case tPrimOpApp:
sz += doValue(*v.primOpApp.left);
sz += doValue(*v.primOpApp.right);
break;
default:;
}
return sz;
};
doEnv = [&](const Env& env) -> size_t {
if (seenEnvs.find(&env) != seenEnvs.end()) {
return 0;
}
seenEnvs.insert(&env);
size_t sz = sizeof(Env) + sizeof(Value*) * env.size;
if (env.type != Env::HasWithExpr) {
for (const Value* v : env.values) {
if (v != nullptr) {
sz += doValue(*v);
}
}
} else {
// TODO(kanepyork): trace ExprWith? how important is this accounting?
}
if (env.up != nullptr) {
sz += doEnv(*env.up);
}
return sz;
};
return doValue(v);
}
EvalSettings evalSettings;
static GlobalConfig::Register r1(&evalSettings);
} // namespace nix