#include "libexpr/attr-set.hh"
#include <new>
#include <absl/container/btree_map.h>
#include <gc/gc_cpp.h>
#include <glog/logging.h>
#include "libexpr/eval-inline.hh"
#include "libutil/visitor.hh"
namespace nix {
constexpr size_t ATTRS_CAPACITY_PIVOT = 32;
BindingsIterator& BindingsIterator::operator++() {
std::visit(util::overloaded{
[](AttributeMap::iterator& iter) { ++iter; },
[](AttributeVector::iterator& iter) { ++iter; },
},
_iterator);
return *this;
}
BindingsIterator BindingsIterator::operator++(int) {
auto old = *this;
std::visit(util::overloaded{
[](AttributeMap::iterator& iter) { iter++; },
[](AttributeVector::iterator& iter) { iter++; },
},
_iterator);
return old;
}
bool BindingsIterator::operator==(const BindingsIterator& other) const {
return _iterator == other._iterator;
}
bool BindingsIterator::operator!=(const BindingsIterator& other) const {
return _iterator != other._iterator;
}
BindingsIterator::reference BindingsIterator::operator*() const {
return std::visit(
util::overloaded{
[](AttributeMap::iterator iter) -> std::pair<const Symbol, Attr>& {
return *iter;
},
[](AttributeVector::iterator iter) -> std::pair<const Symbol, Attr>& {
// this cast is effectively upcasting the left-hand side of the
// pair, which in the vector case *must* be const so that insert and
// friends can shift it around, but in the map case *must not* be
// const so that the key ordering semantics don't change out from
// under the map. So we pick const as the LUB of the two types and
// then upcast here. The static_assert, per the docs for
// reinterpret_cast, is proving that this is safe
static_assert(
std::is_standard_layout<std::pair<const Symbol, Attr>>::value);
return *reinterpret_cast<std::pair<const Symbol, Attr>*>(&*iter);
},
},
_iterator);
}
class BTreeBindings : public Bindings {
public:
size_t size() override;
bool empty() override;
void push_back(const Attr& attr) override;
Bindings::iterator find(const Symbol& name) override;
Bindings::iterator begin() override;
Bindings::iterator end() override;
void merge(Bindings& other) override;
[[deprecated]] virtual std::vector<const Attr*> lexicographicOrder() override;
private:
AttributeMap attributes_;
};
// This function inherits its name from previous implementations, in
// which Bindings was backed by an array of elements which was scanned
// linearly.
//
// In that setup, inserting duplicate elements would always yield the
// first element (until the next sort, which wasn't stable, after
// which things are more or less undefined).
//
// This behaviour is mimicked by using .insert(), which will *not*
// override existing values.
void BTreeBindings::push_back(const Attr& attr) {
auto [_, inserted] = attributes_.insert({attr.name, attr});
if (!inserted) {
DLOG(WARNING) << "attempted to insert duplicate attribute for key '"
<< attr.name << "'";
}
}
size_t BTreeBindings::size() { return attributes_.size(); }
bool BTreeBindings::empty() { return attributes_.empty(); }
std::vector<const Attr*> BTreeBindings::lexicographicOrder() {
std::vector<const Attr*> res;
res.reserve(attributes_.size());
for (const auto& [key, value] : attributes_) {
res.emplace_back(&value);
}
return res;
}
Bindings::iterator BTreeBindings::find(const Symbol& name) {
return BindingsIterator{attributes_.find(name)};
}
Bindings::iterator BTreeBindings::begin() {
return BindingsIterator{attributes_.begin()};
}
Bindings::iterator BTreeBindings::end() {
return BindingsIterator{attributes_.end()};
}
void BTreeBindings::merge(Bindings& other) {
for (auto& [key, value] : other) {
this->attributes_.insert_or_assign(key, value);
}
}
class VectorBindings : public Bindings {
public:
VectorBindings(size_t capacity) : attributes_() {
attributes_.reserve(capacity);
};
size_t size() override;
bool empty() override;
void push_back(const Attr& attr) override;
Bindings::iterator find(const Symbol& name) override;
Bindings::iterator begin() override;
Bindings::iterator end() override;
void merge(Bindings& other) override;
[[deprecated]] virtual std::vector<const Attr*> lexicographicOrder() override;
VectorBindings(VectorBindings&) = delete;
private:
AttributeVector attributes_;
};
size_t VectorBindings::size() { return attributes_.size(); }
bool VectorBindings::empty() { return attributes_.empty(); }
void VectorBindings::merge(Bindings& other) {
AttributeVector new_attributes;
new_attributes.reserve(size() + other.size());
auto m_it = attributes_.begin();
auto other_it = other.begin();
while (other_it != other.end() && m_it != attributes_.end()) {
if (other_it->first < m_it->first) {
new_attributes.push_back(*(m_it++));
} else {
if (m_it->first == other_it->first) {
++m_it;
}
new_attributes.push_back(*(other_it++));
}
}
if (m_it != attributes_.end()) {
std::copy(m_it, attributes_.end(), std::back_inserter(new_attributes));
}
if (other_it != other.end()) {
std::copy(other_it, other.end(), std::back_inserter(new_attributes));
}
new_attributes.shrink_to_fit();
attributes_ = new_attributes;
}
void VectorBindings::push_back(const Attr& attr) {
attributes_.emplace_back(attr.name, attr);
}
std::vector<const Attr*> VectorBindings::lexicographicOrder() {
std::vector<const Attr*> result(attributes_.size());
for (auto& [_, attr] : attributes_) {
result.push_back(&attr);
}
return result;
}
Bindings::iterator VectorBindings::find(const Symbol& name) {
return BindingsIterator{
std::find_if(attributes_.begin(), attributes_.end(),
[&name](const auto& pair) { return pair.first == name; })};
}
Bindings::iterator VectorBindings::begin() {
return BindingsIterator{attributes_.begin()};
}
Bindings::iterator VectorBindings::end() {
return BindingsIterator{attributes_.end()};
}
Bindings* Bindings::NewGC(size_t capacity) {
if (capacity > ATTRS_CAPACITY_PIVOT) {
return new (GC) BTreeBindings;
} else {
return new (GC) VectorBindings(capacity);
}
}
void EvalState::mkAttrs(Value& v, size_t capacity) {
clearValue(v);
v.type = tAttrs;
v.attrs = Bindings::NewGC(capacity);
assert(v.attrs->begin() == v.attrs->begin());
assert(v.attrs->end() == v.attrs->end());
nrAttrsets++;
nrAttrsInAttrsets += capacity;
}
/* Create a new attribute named 'name' on an existing attribute set stored
in 'vAttrs' and return the newly allocated Value which is associated with
this attribute. */
Value* EvalState::allocAttr(Value& vAttrs, const Symbol& name) {
Value* v = allocValue();
vAttrs.attrs->push_back(Attr(name, v));
return v;
}
} // namespace nix