//
// immer: immutable data structures for C++
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
//
// This software is distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
//
#include "test/dada.hpp"
#include "test/transient_tester.hpp"
#include "test/util.hpp"
#include <immer/algorithm.hpp>
#include <boost/range/adaptors.hpp>
#include <boost/range/irange.hpp>
#include <catch.hpp>
#include <algorithm>
#include <array>
#include <numeric>
#include <vector>
#ifndef FLEX_VECTOR_T
#error "define the vector template to use in FLEX_VECTOR_T"
#endif
#ifndef VECTOR_T
#error "define the vector template to use in VECTOR_T"
#endif
template <typename V = FLEX_VECTOR_T<unsigned>>
auto make_test_flex_vector(unsigned min, unsigned max)
{
auto v = V{};
for (auto i = min; i < max; ++i)
v = v.push_back({i});
return v;
}
template <typename V = FLEX_VECTOR_T<unsigned>>
auto make_test_flex_vector_front(unsigned min, unsigned max)
{
auto v = V{};
for (auto i = max; i > min;)
v = v.push_front({--i});
return v;
}
template <std::size_t N>
auto make_many_test_flex_vector()
{
using vektor_t = FLEX_VECTOR_T<unsigned>;
auto many = std::array<vektor_t, N>{};
std::generate_n(many.begin(), N, [v = vektor_t{}, i = 0u]() mutable {
auto r = v;
v = v.push_back(i++);
return r;
});
return many;
}
template <std::size_t N>
auto make_many_test_flex_vector_front()
{
using vektor_t = FLEX_VECTOR_T<unsigned>;
auto many = std::array<vektor_t, N>{};
std::generate_n(many.begin(), N, [i = 0u]() mutable {
return make_test_flex_vector_front(0, i++);
});
return many;
}
template <std::size_t N>
auto make_many_test_flex_vector_front_remainder()
{
using vektor_t = FLEX_VECTOR_T<unsigned>;
auto many = std::array<vektor_t, N>{};
std::generate_n(many.begin(), N, [v = vektor_t{}, i = N - 1]() mutable {
auto r = v;
v = v.push_front(--i);
return r;
});
return many;
}
TEST_CASE("set relaxed")
{
auto v = make_test_flex_vector_front(0, 666u);
for (decltype(v.size()) i = 0; i < v.size(); ++i) {
v = v.set(i, i + 1);
CHECK(v[i] == i + 1);
}
}
TEST_CASE("push_front")
{
const auto n = 666u;
auto v = FLEX_VECTOR_T<unsigned>{};
for (auto i = 0u; i < n; ++i) {
v = v.push_front(i);
CHECK(v.size() == i + 1);
for (decltype(v.size()) j = 0; j < v.size(); ++j)
CHECK(v[v.size() - j - 1] == j);
}
}
TEST_CASE("concat")
{
#if IMMER_SLOW_TESTS
constexpr auto n = 666u;
#else
constexpr auto n = 101u;
#endif
auto all_lhs = make_many_test_flex_vector<n>();
auto all_rhs = make_many_test_flex_vector_front_remainder<n>();
SECTION("regular plus regular")
{
for (auto i : test_irange(0u, n)) {
auto c = all_lhs[i] + all_lhs[i];
CHECK_VECTOR_EQUALS(
c, boost::join(boost::irange(0u, i), boost::irange(0u, i)));
}
}
SECTION("regular plus relaxed")
{
for (auto i : test_irange(0u, n)) {
auto c = all_lhs[i] + all_rhs[n - i - 1];
CHECK_VECTOR_EQUALS(c, boost::irange(0u, n - 1));
}
}
}
auto make_flex_vector_concat(std::size_t min, std::size_t max)
{
using vektor_t = FLEX_VECTOR_T<unsigned>;
if (max == min)
return vektor_t{};
else if (max == min + 1)
return vektor_t{}.push_back(min);
else {
auto mid = min + (max - min) / 2;
return make_flex_vector_concat(min, mid) +
make_flex_vector_concat(mid, max);
}
}
TEST_CASE("concat recursive")
{
const auto n = 666u;
auto v = make_flex_vector_concat(0, n);
CHECK_VECTOR_EQUALS(v, boost::irange(0u, n));
}
TEST_CASE("insert")
{
SECTION("normal")
{
const auto n = 666u;
auto v = make_test_flex_vector(0, n);
v = v.insert(42, 100);
CHECK_VECTOR_EQUALS(v,
boost::join(boost::irange(0u, 42u),
boost::join(boost::irange(100u, 101u),
boost::irange(42u, n))));
}
SECTION("move")
{
const auto n = 666u;
auto v = make_test_flex_vector(0, n);
v = std::move(v).insert(42, 100);
CHECK_VECTOR_EQUALS(v,
boost::join(boost::irange(0u, 42u),
boost::join(boost::irange(100u, 101u),
boost::irange(42u, n))));
}
SECTION("vec")
{
const auto n = 666u;
auto v = make_test_flex_vector(0, n);
v = std::move(v).insert(42, {100, 101, 102});
CHECK_VECTOR_EQUALS(v,
boost::join(boost::irange(0u, 42u),
boost::join(boost::irange(100u, 103u),
boost::irange(42u, n))));
}
SECTION("vec move")
{
const auto n = 666u;
auto v = make_test_flex_vector(0, n);
v = std::move(v).insert(42, {100, 101, 102});
CHECK_VECTOR_EQUALS(v,
boost::join(boost::irange(0u, 42u),
boost::join(boost::irange(100u, 103u),
boost::irange(42u, n))));
}
}
TEST_CASE("erase")
{
const auto n = 666u;
auto v = make_test_flex_vector(0, n);
auto vv = v.erase(0);
CHECK_VECTOR_EQUALS(vv, boost::irange(1u, n));
CHECK_VECTOR_EQUALS(v.erase(v.size() - 1), boost::irange(0u, n - 1));
CHECK_VECTOR_EQUALS(v.erase(v.size() - 1), boost::irange(0u, n - 1));
CHECK_VECTOR_EQUALS(
v.erase(42),
boost::join(boost::irange(0u, 42u), boost::irange(43u, n)));
CHECK_VECTOR_EQUALS(v.erase(v.size() - 1, v.size()),
boost::irange(0u, n - 1));
CHECK_VECTOR_EQUALS(v.erase(0, 0), boost::irange(0u, n));
CHECK_VECTOR_EQUALS(
v.erase(42, 50),
boost::join(boost::irange(0u, 42u), boost::irange(50u, n)));
}
TEST_CASE("accumulate relaxed")
{
auto expected_n = [](auto n) { return n * (n - 1) / 2; };
auto expected_i = [&](auto i, auto n) {
return expected_n(n) - expected_n(i);
};
SECTION("sum")
{
const auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
auto sum = immer::accumulate(v, 0u);
auto expected = v.size() * (v.size() - 1) / 2;
CHECK(sum == expected);
}
SECTION("sum complex")
{
const auto n = 20u;
auto v = FLEX_VECTOR_T<unsigned>{};
for (auto i = 0u; i < n; ++i)
v = v.push_front(i) + v;
auto sum = immer::accumulate(v, 0u);
auto expected = (1 << n) - n - 1;
CHECK(sum == expected);
}
SECTION("sum range")
{
using namespace std;
const auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
{
auto sum = immer::accumulate(begin(v) + 100, begin(v) + 300, 0u);
CHECK(sum == expected_i(100, 300));
}
{
auto sum = immer::accumulate(begin(v) + 31, begin(v) + 300, 0u);
CHECK(sum == expected_i(31, 300));
}
{
auto sum = immer::accumulate(begin(v), begin(v) + 33, 0u);
CHECK(sum == expected_i(0, 33));
}
{
auto sum = immer::accumulate(begin(v) + 100, begin(v) + 660, 0u);
CHECK(sum == expected_i(100, 660));
}
{
auto sum = immer::accumulate(begin(v) + 100, begin(v) + 105, 0u);
CHECK(sum == expected_i(100, 105));
}
{
auto sum = immer::accumulate(begin(v) + 660, begin(v) + 664, 0u);
CHECK(sum == expected_i(660, 664));
}
}
}
TEST_CASE("equals")
{
const auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
CHECK(v == v);
CHECK(v == v.set(42, 42));
CHECK(v != v.set(42, 24));
CHECK(v == v.set(42, 24).set(42, 42));
CHECK(v.set(42, 24) == v.set(42, 24));
CHECK(v != v.push_back(7));
CHECK(v.push_back(7) == v.push_back(7));
CHECK(v.push_back(5) != v.push_back(7));
CHECK(v != v.set(v.size() - 2, 24));
CHECK(v == v.set(v.size() - 2, 24).set(v.size() - 2, v[v.size() - 2]));
CHECK(v == v.insert(42, 12).erase(42));
CHECK(v == v.insert(0, 12).erase(0));
}
TEST_CASE("equals bugs")
{
{
const auto n = 666u;
auto v = make_test_flex_vector(0, n);
CHECK(v == v.insert(42, 12).erase(42));
CHECK(v == v.insert(0, 12).erase(0));
}
{
const auto n = 30u;
auto v = make_test_flex_vector(0, n);
CHECK(v == v.insert(10, 12).erase(10));
CHECK(v == v.insert(0, 12).erase(0));
}
{
const auto n = 666u;
auto v = make_test_flex_vector(0, n);
for (auto i : test_irange(0u, n))
CHECK(v == v.insert(i, 42).erase(i));
}
{
const auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
for (auto i : test_irange(0u, n))
CHECK(v == v.insert(i, 42).erase(i));
}
{
const auto n = 666u;
auto v = FLEX_VECTOR_T<unsigned>{};
using size_t = decltype(v.size());
for (auto i : test_irange(0u, n)) {
while (v.size() < i)
v = std::move(v).push_back(i);
auto vv = v;
for (auto j : test_irange(size_t{}, v.size())) {
auto vz = vv.insert(j, 42).erase(j);
CHECK(v == vz);
CHECK(vv == vz);
vv = vz;
}
}
}
}
TEST_CASE("take relaxed")
{
const auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
for (auto i : test_irange(0u, n)) {
auto vv = v.take(i);
CHECK_VECTOR_EQUALS_RANGE(vv, v.begin(), v.begin() + i);
}
}
TEST_CASE("drop")
{
const auto n = 666u;
SECTION("regular")
{
auto v = make_test_flex_vector(0, n);
for (auto i : test_irange(0u, n)) {
auto vv = v.drop(i);
CHECK_VECTOR_EQUALS_RANGE(vv, v.begin() + i, v.end());
}
}
SECTION("relaxed")
{
auto v = make_test_flex_vector_front(0, n);
for (auto i : test_irange(0u, n)) {
auto vv = v.drop(i);
CHECK_VECTOR_EQUALS_RANGE(vv, v.begin() + i, v.end());
}
}
}
#if IMMER_SLOW_TESTS
TEST_CASE("reconcat")
{
constexpr auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
auto all_lhs = make_many_test_flex_vector_front<n + 1>();
auto all_rhs = make_many_test_flex_vector_front_remainder<n + 1>();
for (auto i = 0u; i < n; ++i) {
auto vv = all_lhs[i] + all_rhs[n - i];
CHECK_VECTOR_EQUALS(vv, v);
CHECK_SLOW(vv == v);
}
}
TEST_CASE("reconcat drop")
{
constexpr auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
auto all_lhs = make_many_test_flex_vector_front<n + 1>();
for (auto i = 0u; i < n; ++i) {
auto vv = all_lhs[i] + v.drop(i);
CHECK_VECTOR_EQUALS(vv, v);
CHECK_SLOW(vv == v);
}
}
TEST_CASE("reconcat take")
{
constexpr auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
auto all_rhs = make_many_test_flex_vector_front_remainder<n + 1>();
for (auto i = 0u; i < n; ++i) {
auto vv = v.take(i) + all_rhs[n - i];
CHECK_VECTOR_EQUALS(vv, v);
CHECK_SLOW(vv == v);
}
}
#endif
TEST_CASE("reconcat take drop")
{
const auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
for (auto i : test_irange(0u, n)) {
auto vv = v.take(i) + v.drop(i);
CHECK_VECTOR_EQUALS(vv, v);
CHECK_SLOW(vv == v);
}
}
TEST_CASE("reconcat take drop feedback")
{
const auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
auto vv = v;
for (auto i : test_irange(0u, n)) {
vv = vv.take(i) + vv.drop(i);
CHECK_VECTOR_EQUALS(vv, v);
CHECK_SLOW(vv == v);
}
}
TEST_CASE("iterator relaxed")
{
const auto n = 666u;
auto v = make_test_flex_vector_front(0, n);
SECTION("works with range loop")
{
auto i = 0u;
for (const auto& x : v)
CHECK(x == i++);
CHECK(i == v.size());
}
SECTION("works with standard algorithms")
{
auto s = std::vector<unsigned>(n);
std::iota(s.begin(), s.end(), 0u);
std::equal(v.begin(), v.end(), s.begin(), s.end());
}
SECTION("can go back from end")
{
auto expected = n - 1;
CHECK(expected == *--v.end());
}
SECTION("works with reversed range adaptor")
{
auto r = v | boost::adaptors::reversed;
auto i = n;
for (const auto& x : r)
CHECK(x == --i);
}
SECTION("works with strided range adaptor")
{
auto r = v | boost::adaptors::strided(5);
auto i = 0u;
for (const auto& x : r)
CHECK(x == 5 * i++);
}
SECTION("works reversed")
{
auto i = n;
for (auto iter = v.rbegin(), last = v.rend(); iter != last; ++iter)
CHECK(*iter == --i);
}
SECTION("advance and distance")
{
auto i1 = v.begin();
auto i2 = i1 + 100;
CHECK(100u == *i2);
CHECK(100 == i2 - i1);
CHECK(50u == *(i2 - 50));
CHECK(-30 == (i2 - 30) - i2);
}
}
TEST_CASE("adopt regular vector contents")
{
const auto n = 666u;
auto v = VECTOR_T<unsigned>{};
for (auto i = 0u; i < n; ++i) {
v = v.push_back(i);
auto fv = FLEX_VECTOR_T<unsigned>{v};
CHECK_VECTOR_EQUALS_AUX(v, fv, [](auto&& v) { return &v; });
}
}
TEST_CASE("exception safety relaxed")
{
using dadaist_vector_t =
typename dadaist_wrapper<FLEX_VECTOR_T<unsigned>>::type;
constexpr auto n = 666u;
SECTION("push back")
{
auto half = n / 2;
auto v = make_test_flex_vector_front<dadaist_vector_t>(0, half);
auto d = dadaism{};
for (auto i = half; v.size() < static_cast<decltype(v.size())>(n);) {
auto s = d.next();
try {
v = v.push_back({i});
++i;
} catch (dada_error) {}
CHECK_VECTOR_EQUALS(v, boost::irange(0u, i));
}
CHECK(d.happenings > 0);
IMMER_TRACE_E(d.happenings);
}
SECTION("update")
{
auto v = make_test_flex_vector_front<dadaist_vector_t>(0, n);
auto d = dadaism{};
for (auto i = 0u; i < n;) {
auto s = d.next();
try {
v = v.update(i, [](auto x) { return dada(), x + 1; });
++i;
} catch (dada_error) {}
CHECK_VECTOR_EQUALS(
v, boost::join(boost::irange(1u, 1u + i), boost::irange(i, n)));
}
CHECK(d.happenings > 0);
IMMER_TRACE_E(d.happenings);
}
SECTION("take")
{
auto v = make_test_flex_vector_front<dadaist_vector_t>(0, n);
auto d = dadaism{};
for (auto i = 0u; i < n;) {
auto s = d.next();
auto r = dadaist_vector_t{};
try {
r = v.take(i);
CHECK_VECTOR_EQUALS(r, boost::irange(0u, i++));
} catch (dada_error) {
CHECK_VECTOR_EQUALS(r, boost::irange(0u, 0u));
}
}
CHECK(d.happenings > 0);
IMMER_TRACE_E(d.happenings);
}
SECTION("concat")
{
auto v = make_test_flex_vector<dadaist_vector_t>(0, n);
auto d = dadaism{};
for (auto i = 0u; i < n;) {
auto lhs = v.take(i);
auto rhs = v.drop(i);
auto s = d.next();
try {
v = lhs + rhs;
++i;
} catch (dada_error) {}
CHECK_VECTOR_EQUALS(v, boost::irange(0u, n));
}
CHECK(d.happenings > 0);
IMMER_TRACE_E(d.happenings);
}
}