{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE ScopedTypeVariables #-}
import Control.Applicative
import Control.Monad
import Control.Monad.Fix (fix)
import Control.Monad.Primitive
import Control.Monad.ST
import Data.Monoid
import Data.Primitive
import Data.Primitive.Array
import Data.Primitive.ByteArray
import Data.Primitive.Types
import Data.Primitive.SmallArray
import Data.Primitive.PrimArray
import Data.Word
import Data.Proxy (Proxy(..))
import GHC.Int
import GHC.IO
import GHC.Prim
import Data.Function (on)
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup (stimes)
#endif
import Test.Tasty (defaultMain,testGroup,TestTree)
import Test.QuickCheck (Arbitrary,Arbitrary1,Gen,(===),CoArbitrary,Function)
import qualified Test.Tasty.QuickCheck as TQC
import qualified Test.QuickCheck as QC
import qualified Test.QuickCheck.Classes as QCC
import qualified Test.QuickCheck.Classes.IsList as QCCL
import qualified Data.List as L
main :: IO ()
main = do
testArray
testByteArray
defaultMain $ testGroup "properties"
[ testGroup "Array"
[ lawsToTest (QCC.eqLaws (Proxy :: Proxy (Array Int)))
, lawsToTest (QCC.ordLaws (Proxy :: Proxy (Array Int)))
, lawsToTest (QCC.monoidLaws (Proxy :: Proxy (Array Int)))
, lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int)))
#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
, lawsToTest (QCC.functorLaws (Proxy1 :: Proxy1 Array))
, lawsToTest (QCC.applicativeLaws (Proxy1 :: Proxy1 Array))
, lawsToTest (QCC.monadLaws (Proxy1 :: Proxy1 Array))
, lawsToTest (QCC.foldableLaws (Proxy1 :: Proxy1 Array))
, lawsToTest (QCC.traversableLaws (Proxy1 :: Proxy1 Array))
#endif
#if MIN_VERSION_base(4,7,0)
, lawsToTest (QCC.isListLaws (Proxy :: Proxy (Array Int)))
, TQC.testProperty "mapArray'" (QCCL.mapProp int16 int32 mapArray')
#endif
]
, testGroup "SmallArray"
[ lawsToTest (QCC.eqLaws (Proxy :: Proxy (SmallArray Int)))
, lawsToTest (QCC.ordLaws (Proxy :: Proxy (SmallArray Int)))
, lawsToTest (QCC.monoidLaws (Proxy :: Proxy (SmallArray Int)))
, lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int)))
#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
, lawsToTest (QCC.functorLaws (Proxy1 :: Proxy1 SmallArray))
, lawsToTest (QCC.applicativeLaws (Proxy1 :: Proxy1 SmallArray))
, lawsToTest (QCC.monadLaws (Proxy1 :: Proxy1 SmallArray))
, lawsToTest (QCC.foldableLaws (Proxy1 :: Proxy1 SmallArray))
, lawsToTest (QCC.traversableLaws (Proxy1 :: Proxy1 SmallArray))
#endif
#if MIN_VERSION_base(4,7,0)
, lawsToTest (QCC.isListLaws (Proxy :: Proxy (SmallArray Int)))
, TQC.testProperty "mapSmallArray'" (QCCL.mapProp int16 int32 mapSmallArray')
#endif
]
, testGroup "ByteArray"
[ testGroup "Ordering"
[ TQC.testProperty "equality" byteArrayEqProp
, TQC.testProperty "compare" byteArrayCompareProp
]
, testGroup "Resize"
[ TQC.testProperty "shrink" byteArrayShrinkProp
, TQC.testProperty "grow" byteArrayGrowProp
]
, lawsToTest (QCC.eqLaws (Proxy :: Proxy ByteArray))
, lawsToTest (QCC.ordLaws (Proxy :: Proxy ByteArray))
, lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int)))
#if MIN_VERSION_base(4,7,0)
, lawsToTest (QCC.isListLaws (Proxy :: Proxy ByteArray))
#endif
]
, testGroup "PrimArray"
[ lawsToTest (QCC.eqLaws (Proxy :: Proxy (PrimArray Word16)))
, lawsToTest (QCC.ordLaws (Proxy :: Proxy (PrimArray Word16)))
, lawsToTest (QCC.monoidLaws (Proxy :: Proxy (PrimArray Word16)))
#if MIN_VERSION_base(4,7,0)
, lawsToTest (QCC.isListLaws (Proxy :: Proxy (PrimArray Word16)))
, TQC.testProperty "foldrPrimArray" (QCCL.foldrProp int16 foldrPrimArray)
, TQC.testProperty "foldrPrimArray'" (QCCL.foldrProp int16 foldrPrimArray')
, TQC.testProperty "foldlPrimArray" (QCCL.foldlProp int16 foldlPrimArray)
, TQC.testProperty "foldlPrimArray'" (QCCL.foldlProp int16 foldlPrimArray')
, TQC.testProperty "foldlPrimArrayM'" (QCCL.foldlMProp int16 foldlPrimArrayM')
, TQC.testProperty "mapPrimArray" (QCCL.mapProp int16 int32 mapPrimArray)
, TQC.testProperty "traversePrimArray" (QCCL.traverseProp int16 int32 traversePrimArray)
, TQC.testProperty "traversePrimArrayP" (QCCL.traverseProp int16 int32 traversePrimArrayP)
, TQC.testProperty "imapPrimArray" (QCCL.imapProp int16 int32 imapPrimArray)
, TQC.testProperty "itraversePrimArray" (QCCL.imapMProp int16 int32 itraversePrimArray)
, TQC.testProperty "itraversePrimArrayP" (QCCL.imapMProp int16 int32 itraversePrimArrayP)
, TQC.testProperty "generatePrimArray" (QCCL.generateProp int16 generatePrimArray)
, TQC.testProperty "generatePrimArrayA" (QCCL.generateMProp int16 generatePrimArrayA)
, TQC.testProperty "generatePrimArrayP" (QCCL.generateMProp int16 generatePrimArrayP)
, TQC.testProperty "replicatePrimArray" (QCCL.replicateProp int16 replicatePrimArray)
, TQC.testProperty "replicatePrimArrayA" (QCCL.replicateMProp int16 replicatePrimArrayA)
, TQC.testProperty "replicatePrimArrayP" (QCCL.replicateMProp int16 replicatePrimArrayP)
, TQC.testProperty "filterPrimArray" (QCCL.filterProp int16 filterPrimArray)
, TQC.testProperty "filterPrimArrayA" (QCCL.filterMProp int16 filterPrimArrayA)
, TQC.testProperty "filterPrimArrayP" (QCCL.filterMProp int16 filterPrimArrayP)
, TQC.testProperty "mapMaybePrimArray" (QCCL.mapMaybeProp int16 int32 mapMaybePrimArray)
, TQC.testProperty "mapMaybePrimArrayA" (QCCL.mapMaybeMProp int16 int32 mapMaybePrimArrayA)
, TQC.testProperty "mapMaybePrimArrayP" (QCCL.mapMaybeMProp int16 int32 mapMaybePrimArrayP)
#endif
]
, testGroup "UnliftedArray"
[ lawsToTest (QCC.eqLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16))))
, lawsToTest (QCC.ordLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16))))
, lawsToTest (QCC.monoidLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16))))
#if MIN_VERSION_base(4,7,0)
, lawsToTest (QCC.isListLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16))))
, TQC.testProperty "mapUnliftedArray" (QCCL.mapProp arrInt16 arrInt32 mapUnliftedArray)
, TQC.testProperty "foldrUnliftedArray" (QCCL.foldrProp arrInt16 foldrUnliftedArray)
, TQC.testProperty "foldrUnliftedArray'" (QCCL.foldrProp arrInt16 foldrUnliftedArray')
, TQC.testProperty "foldlUnliftedArray" (QCCL.foldlProp arrInt16 foldlUnliftedArray)
, TQC.testProperty "foldlUnliftedArray'" (QCCL.foldlProp arrInt16 foldlUnliftedArray')
#endif
]
, testGroup "DefaultSetMethod"
[ lawsToTest (QCC.primLaws (Proxy :: Proxy DefaultSetMethod))
]
-- , testGroup "PrimStorable"
-- [ lawsToTest (QCC.storableLaws (Proxy :: Proxy Derived))
-- ]
]
int16 :: Proxy Int16
int16 = Proxy
int32 :: Proxy Int32
int32 = Proxy
arrInt16 :: Proxy (PrimArray Int16)
arrInt16 = Proxy
arrInt32 :: Proxy (PrimArray Int16)
arrInt32 = Proxy
-- Tests that using resizeByteArray to shrink a byte array produces
-- the same results as calling Data.List.take on the list that the
-- byte array corresponds to.
byteArrayShrinkProp :: QC.Property
byteArrayShrinkProp = QC.property $ \(QC.NonNegative (n :: Int)) (QC.NonNegative (m :: Int)) ->
let large = max n m
small = min n m
xs = intsLessThan large
ys = byteArrayFromList xs
largeBytes = large * sizeOf (undefined :: Int)
smallBytes = small * sizeOf (undefined :: Int)
expected = byteArrayFromList (L.take small xs)
actual = runST $ do
mzs0 <- newByteArray largeBytes
copyByteArray mzs0 0 ys 0 largeBytes
mzs1 <- resizeMutableByteArray mzs0 smallBytes
unsafeFreezeByteArray mzs1
in expected === actual
-- Tests that using resizeByteArray with copyByteArray (to fill in the
-- new empty space) to grow a byte array produces the same results as
-- calling Data.List.++ on the lists corresponding to the original
-- byte array and the appended byte array.
byteArrayGrowProp :: QC.Property
byteArrayGrowProp = QC.property $ \(QC.NonNegative (n :: Int)) (QC.NonNegative (m :: Int)) ->
let large = max n m
small = min n m
xs1 = intsLessThan small
xs2 = intsLessThan (large - small)
ys1 = byteArrayFromList xs1
ys2 = byteArrayFromList xs2
largeBytes = large * sizeOf (undefined :: Int)
smallBytes = small * sizeOf (undefined :: Int)
expected = byteArrayFromList (xs1 ++ xs2)
actual = runST $ do
mzs0 <- newByteArray smallBytes
copyByteArray mzs0 0 ys1 0 smallBytes
mzs1 <- resizeMutableByteArray mzs0 largeBytes
copyByteArray mzs1 smallBytes ys2 0 ((large - small) * sizeOf (undefined :: Int))
unsafeFreezeByteArray mzs1
in expected === actual
-- Provide the non-negative integers up to the bound. For example:
--
-- >>> intsLessThan 5
-- [0,1,2,3,4]
intsLessThan :: Int -> [Int]
intsLessThan i = if i < 1
then []
else (i - 1) : intsLessThan (i - 1)
byteArrayCompareProp :: QC.Property
byteArrayCompareProp = QC.property $ \(xs :: [Word8]) (ys :: [Word8]) ->
compareLengthFirst xs ys === compare (byteArrayFromList xs) (byteArrayFromList ys)
byteArrayEqProp :: QC.Property
byteArrayEqProp = QC.property $ \(xs :: [Word8]) (ys :: [Word8]) ->
(compareLengthFirst xs ys == EQ) === (byteArrayFromList xs == byteArrayFromList ys)
compareLengthFirst :: [Word8] -> [Word8] -> Ordering
compareLengthFirst xs ys = (compare `on` length) xs ys <> compare xs ys
-- on GHC 7.4, Proxy is not polykinded, so we need this instead.
data Proxy1 (f :: * -> *) = Proxy1
lawsToTest :: QCC.Laws -> TestTree
lawsToTest (QCC.Laws name pairs) = testGroup name (map (uncurry TQC.testProperty) pairs)
testArray :: IO ()
testArray = do
arr <- newArray 1 'A'
let unit =
case writeArray arr 0 'B' of
IO f ->
case f realWorld# of
(# _, _ #) -> ()
c1 <- readArray arr 0
return $! unit
c2 <- readArray arr 0
if c1 == 'A' && c2 == 'B'
then return ()
else error $ "Expected AB, got: " ++ show (c1, c2)
testByteArray :: IO ()
testByteArray = do
let arr1 = mkByteArray ([0xde, 0xad, 0xbe, 0xef] :: [Word8])
arr2 = mkByteArray ([0xde, 0xad, 0xbe, 0xef] :: [Word8])
arr3 = mkByteArray ([0xde, 0xad, 0xbe, 0xee] :: [Word8])
arr4 = mkByteArray ([0xde, 0xad, 0xbe, 0xdd] :: [Word8])
arr5 = mkByteArray ([0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xdd] :: [Word8])
when (show arr1 /= "[0xde, 0xad, 0xbe, 0xef]") $
fail $ "ByteArray Show incorrect: "++show arr1
unless (arr1 > arr3) $
fail $ "ByteArray Ord incorrect"
unless (arr1 == arr2) $
fail $ "ByteArray Eq incorrect"
unless (mappend arr1 arr4 == arr5) $
fail $ "ByteArray Monoid mappend incorrect"
unless (mappend arr1 (mappend arr3 arr4) == mappend (mappend arr1 arr3) arr4) $
fail $ "ByteArray Monoid mappend not associative"
unless (mconcat [arr1,arr2,arr3,arr4,arr5] == (arr1 <> arr2 <> arr3 <> arr4 <> arr5)) $
fail $ "ByteArray Monoid mconcat incorrect"
#if MIN_VERSION_base(4,9,0)
unless (stimes (3 :: Int) arr4 == (arr4 <> arr4 <> arr4)) $
fail $ "ByteArray Semigroup stimes incorrect"
#endif
mkByteArray :: Prim a => [a] -> ByteArray
mkByteArray xs = runST $ do
marr <- newByteArray (length xs * sizeOf (head xs))
sequence $ zipWith (writeByteArray marr) [0..] xs
unsafeFreezeByteArray marr
instance Arbitrary1 Array where
liftArbitrary elemGen = fmap fromList (QC.liftArbitrary elemGen)
instance Arbitrary a => Arbitrary (Array a) where
arbitrary = fmap fromList QC.arbitrary
instance Arbitrary1 SmallArray where
liftArbitrary elemGen = fmap smallArrayFromList (QC.liftArbitrary elemGen)
instance Arbitrary a => Arbitrary (SmallArray a) where
arbitrary = fmap smallArrayFromList QC.arbitrary
instance Arbitrary ByteArray where
arbitrary = do
xs <- QC.arbitrary :: Gen [Word8]
return $ runST $ do
a <- newByteArray (L.length xs)
iforM_ xs $ \ix x -> do
writeByteArray a ix x
unsafeFreezeByteArray a
instance (Arbitrary a, Prim a) => Arbitrary (PrimArray a) where
arbitrary = do
xs <- QC.arbitrary :: Gen [a]
return $ runST $ do
a <- newPrimArray (L.length xs)
iforM_ xs $ \ix x -> do
writePrimArray a ix x
unsafeFreezePrimArray a
instance (Arbitrary a, PrimUnlifted a) => Arbitrary (UnliftedArray a) where
arbitrary = do
xs <- QC.vector =<< QC.choose (0,3)
return (unliftedArrayFromList xs)
instance (Prim a, CoArbitrary a) => CoArbitrary (PrimArray a) where
coarbitrary x = QC.coarbitrary (primArrayToList x)
instance (Prim a, Function a) => Function (PrimArray a) where
function = QC.functionMap primArrayToList primArrayFromList
iforM_ :: Monad m => [a] -> (Int -> a -> m b) -> m ()
iforM_ xs0 f = go 0 xs0 where
go !_ [] = return ()
go !ix (x : xs) = f ix x >> go (ix + 1) xs
newtype DefaultSetMethod = DefaultSetMethod Int16
deriving (Eq,Show,Arbitrary)
instance Prim DefaultSetMethod where
sizeOf# _ = sizeOf# (undefined :: Int16)
alignment# _ = alignment# (undefined :: Int16)
indexByteArray# arr ix = DefaultSetMethod (indexByteArray# arr ix)
readByteArray# arr ix s0 = case readByteArray# arr ix s0 of
(# s1, n #) -> (# s1, DefaultSetMethod n #)
writeByteArray# arr ix (DefaultSetMethod n) s0 = writeByteArray# arr ix n s0
setByteArray# = defaultSetByteArray#
indexOffAddr# addr off = DefaultSetMethod (indexOffAddr# addr off)
readOffAddr# addr off s0 = case readOffAddr# addr off s0 of
(# s1, n #) -> (# s1, DefaultSetMethod n #)
writeOffAddr# addr off (DefaultSetMethod n) s0 = writeOffAddr# addr off n s0
setOffAddr# = defaultSetOffAddr#
-- TODO: Uncomment this out when GHC 8.6 is release. Also, uncomment
-- the corresponding PrimStorable test group above.
--
-- newtype Derived = Derived Int16
-- deriving newtype (Prim)
-- deriving Storable via (PrimStorable Derived)