about summary refs log blame commit diff
path: root/third_party/abseil_cpp/absl/strings/numbers_test.cc
blob: 4ab67fb669be7c05d08a5d44e4eae7965e3c3c62 (plain) (tree)
1
2
3
4
5
6
7
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331





                                                                   
                                                   






                                                                           
                                                                         



                                 
 
                                        

















                                           

                                      
                                                      
                                                
                                               
                                 


           




                                                     
                                                


                                                     




                                 
                                                                              


                                                                              
                                   























































                                                                               
                                                      



     























                                                                              
                            
                                                         
                                                                    
                                           



                                                                             


                            
                                                             


                   
                                                                        
                                           







                                                                            


                              
                                                         
                                                                    
                                           



                                                                             


                              
                                                             
                                                                        
                                           


                                                                                

                                                              



                                                                            


                             
                        

                                                                                
                                                


                                                                               

 
                               




































                                                                     
                
                                                
                                                        










                                                             


                                                        






























































                                                                       


















                                                                            
























                                                                               











                                                               





                                           


























































































































                                                                      
                            











































































































































                                                                          
                            






















































                                                                              







































                                                                           












































                                                                          

                                      

                                                                    










                                                                     

                                                                    















                                                                              

                                                                    









                                                                            

                                                                    













                                                                                




                                                                               






                                                                                
                               








                                                                          
                                





                                                             
                                                  









































                                                                                
                                                                          












                                                       
                                    












                       



























































                                                                                
                                                              





                                                                       

                                                                           













































































































































































































































































































                                                                                























                                                                         
               
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// This file tests string processing functions related to numeric values.

#include "absl/strings/numbers.h"

#include <sys/types.h>

#include <cfenv>  // NOLINT(build/c++11)
#include <cinttypes>
#include <climits>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <numeric>
#include <random>
#include <set>
#include <string>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/random/distributions.h"
#include "absl/random/random.h"
#include "absl/strings/internal/numbers_test_common.h"
#include "absl/strings/internal/ostringstream.h"
#include "absl/strings/internal/pow10_helper.h"
#include "absl/strings/str_cat.h"

namespace {

using absl::numbers_internal::kSixDigitsToBufferSize;
using absl::numbers_internal::safe_strto32_base;
using absl::numbers_internal::safe_strto64_base;
using absl::numbers_internal::safe_strtou32_base;
using absl::numbers_internal::safe_strtou64_base;
using absl::numbers_internal::SixDigitsToBuffer;
using absl::strings_internal::Itoa;
using absl::strings_internal::strtouint32_test_cases;
using absl::strings_internal::strtouint64_test_cases;
using absl::SimpleAtoi;
using testing::Eq;
using testing::MatchesRegex;

// Number of floats to test with.
// 5,000,000 is a reasonable default for a test that only takes a few seconds.
// 1,000,000,000+ triggers checking for all possible mantissa values for
// double-precision tests. 2,000,000,000+ triggers checking for every possible
// single-precision float.
const int kFloatNumCases = 5000000;

// This is a slow, brute-force routine to compute the exact base-10
// representation of a double-precision floating-point number.  It
// is useful for debugging only.
std::string PerfectDtoa(double d) {
  if (d == 0) return "0";
  if (d < 0) return "-" + PerfectDtoa(-d);

  // Basic theory: decompose d into mantissa and exp, where
  // d = mantissa * 2^exp, and exp is as close to zero as possible.
  int64_t mantissa, exp = 0;
  while (d >= 1ULL << 63) ++exp, d *= 0.5;
  while ((mantissa = d) != d) --exp, d *= 2.0;

  // Then convert mantissa to ASCII, and either double it (if
  // exp > 0) or halve it (if exp < 0) repeatedly.  "halve it"
  // in this case means multiplying it by five and dividing by 10.
  constexpr int maxlen = 1100;  // worst case is actually 1030 or so.
  char buf[maxlen + 5];
  for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) {
    buf[pos] = '0' + (num % 10);
    num /= 10;
  }
  char* begin = &buf[0];
  char* end = buf + maxlen;
  for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) {
    int carry = 0;
    for (char* p = end; --p != begin;) {
      int dig = *p - '0';
      dig = dig * (exp > 0 ? 2 : 5) + carry;
      carry = dig / 10;
      dig %= 10;
      *p = '0' + dig;
    }
  }
  if (exp < 0) {
    // "dividing by 10" above means we have to add the decimal point.
    memmove(end + 1 + exp, end + exp, 1 - exp);
    end[exp] = '.';
    ++end;
  }
  while (*begin == '0' && begin[1] != '.') ++begin;
  return {begin, end};
}

TEST(ToString, PerfectDtoa) {
  EXPECT_THAT(PerfectDtoa(1), Eq("1"));
  EXPECT_THAT(PerfectDtoa(0.1),
              Eq("0.1000000000000000055511151231257827021181583404541015625"));
  EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784"));
  EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625"));
  for (int i = 0; i < 100; ++i) {
    for (double multiplier :
         {1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) {
      double d = multiplier * i;
      std::string s = PerfectDtoa(d);
      EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr));
    }
  }
}

template <typename integer>
struct MyInteger {
  integer i;
  explicit constexpr MyInteger(integer i) : i(i) {}
  constexpr operator integer() const { return i; }

  constexpr MyInteger operator+(MyInteger other) const { return i + other.i; }
  constexpr MyInteger operator-(MyInteger other) const { return i - other.i; }
  constexpr MyInteger operator*(MyInteger other) const { return i * other.i; }
  constexpr MyInteger operator/(MyInteger other) const { return i / other.i; }

  constexpr bool operator<(MyInteger other) const { return i < other.i; }
  constexpr bool operator<=(MyInteger other) const { return i <= other.i; }
  constexpr bool operator==(MyInteger other) const { return i == other.i; }
  constexpr bool operator>=(MyInteger other) const { return i >= other.i; }
  constexpr bool operator>(MyInteger other) const { return i > other.i; }
  constexpr bool operator!=(MyInteger other) const { return i != other.i; }

  integer as_integer() const { return i; }
};

typedef MyInteger<int64_t> MyInt64;
typedef MyInteger<uint64_t> MyUInt64;

void CheckInt32(int32_t x) {
  char buffer[absl::numbers_internal::kFastToBufferSize];
  char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
  std::string expected = std::to_string(x);
  EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;

  char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
  EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
}

void CheckInt64(int64_t x) {
  char buffer[absl::numbers_internal::kFastToBufferSize + 3];
  buffer[0] = '*';
  buffer[23] = '*';
  buffer[24] = '*';
  char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
  std::string expected = std::to_string(x);
  EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
  EXPECT_EQ(buffer[0], '*');
  EXPECT_EQ(buffer[23], '*');
  EXPECT_EQ(buffer[24], '*');

  char* my_actual =
      absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]);
  EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
}

void CheckUInt32(uint32_t x) {
  char buffer[absl::numbers_internal::kFastToBufferSize];
  char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
  std::string expected = std::to_string(x);
  EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;

  char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
  EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
}

void CheckUInt64(uint64_t x) {
  char buffer[absl::numbers_internal::kFastToBufferSize + 1];
  char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
  std::string expected = std::to_string(x);
  EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;

  char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
  EXPECT_EQ(expected, std::string(&buffer[1], generic_actual))
      << " Input " << x;

  char* my_actual =
      absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]);
  EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
}

void CheckHex64(uint64_t v) {
  char expected[16 + 1];
  std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16));
  snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v));
  EXPECT_EQ(expected, actual) << " Input " << v;
  actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16));
  snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v));
  EXPECT_EQ(expected, actual) << " Input " << v;
}

TEST(Numbers, TestFastPrints) {
  for (int i = -100; i <= 100; i++) {
    CheckInt32(i);
    CheckInt64(i);
  }
  for (int i = 0; i <= 100; i++) {
    CheckUInt32(i);
    CheckUInt64(i);
  }
  // Test min int to make sure that works
  CheckInt32(INT_MIN);
  CheckInt32(INT_MAX);
  CheckInt64(LONG_MIN);
  CheckInt64(uint64_t{1000000000});
  CheckInt64(uint64_t{9999999999});
  CheckInt64(uint64_t{100000000000000});
  CheckInt64(uint64_t{999999999999999});
  CheckInt64(uint64_t{1000000000000000000});
  CheckInt64(uint64_t{1199999999999999999});
  CheckInt64(int64_t{-700000000000000000});
  CheckInt64(LONG_MAX);
  CheckUInt32(std::numeric_limits<uint32_t>::max());
  CheckUInt64(uint64_t{1000000000});
  CheckUInt64(uint64_t{9999999999});
  CheckUInt64(uint64_t{100000000000000});
  CheckUInt64(uint64_t{999999999999999});
  CheckUInt64(uint64_t{1000000000000000000});
  CheckUInt64(uint64_t{1199999999999999999});
  CheckUInt64(std::numeric_limits<uint64_t>::max());

  for (int i = 0; i < 10000; i++) {
    CheckHex64(i);
  }
  CheckHex64(uint64_t{0x123456789abcdef0});
}

template <typename int_type, typename in_val_type>
void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {
  std::string s;
  // (u)int128 can be streamed but not StrCat'd.
  absl::strings_internal::OStringStream(&s) << in_value;
  int_type x = static_cast<int_type>(~exp_value);
  EXPECT_TRUE(SimpleAtoi(s, &x))
      << "in_value=" << in_value << " s=" << s << " x=" << x;
  EXPECT_EQ(exp_value, x);
  x = static_cast<int_type>(~exp_value);
  EXPECT_TRUE(SimpleAtoi(s.c_str(), &x));
  EXPECT_EQ(exp_value, x);
}

template <typename int_type, typename in_val_type>
void VerifySimpleAtoiBad(in_val_type in_value) {
  std::string s;
  // (u)int128 can be streamed but not StrCat'd.
  absl::strings_internal::OStringStream(&s) << in_value;
  int_type x;
  EXPECT_FALSE(SimpleAtoi(s, &x));
  EXPECT_FALSE(SimpleAtoi(s.c_str(), &x));
}

TEST(NumbersTest, Atoi) {
  // SimpleAtoi(absl::string_view, int32_t)
  VerifySimpleAtoiGood<int32_t>(0, 0);
  VerifySimpleAtoiGood<int32_t>(42, 42);
  VerifySimpleAtoiGood<int32_t>(-42, -42);

  VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),
                                std::numeric_limits<int32_t>::min());
  VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),
                                std::numeric_limits<int32_t>::max());

  // SimpleAtoi(absl::string_view, uint32_t)
  VerifySimpleAtoiGood<uint32_t>(0, 0);
  VerifySimpleAtoiGood<uint32_t>(42, 42);
  VerifySimpleAtoiBad<uint32_t>(-42);

  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());
  VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),
                                 std::numeric_limits<int32_t>::max());
  VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),
                                 std::numeric_limits<uint32_t>::max());
  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());
  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());
  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());

  // SimpleAtoi(absl::string_view, int64_t)
  VerifySimpleAtoiGood<int64_t>(0, 0);
  VerifySimpleAtoiGood<int64_t>(42, 42);
  VerifySimpleAtoiGood<int64_t>(-42, -42);

  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),
                                std::numeric_limits<int32_t>::min());
  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),
                                std::numeric_limits<int32_t>::max());
  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),
                                std::numeric_limits<uint32_t>::max());
  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),
                                std::numeric_limits<int64_t>::min());
  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),
                                std::numeric_limits<int64_t>::max());
  VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());

  // SimpleAtoi(absl::string_view, uint64_t)
  VerifySimpleAtoiGood<uint64_t>(0, 0);
  VerifySimpleAtoiGood<uint64_t>(42, 42);
  VerifySimpleAtoiBad<uint64_t>(-42);

  VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());
  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),
                                 std::numeric_limits<int32_t>::max());
  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),
                                 std::numeric_limits<uint32_t>::max());
  VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());
  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),
                                 std::numeric_limits<int64_t>::max());
  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),
                                 std::numeric_limits<uint64_t>::max());

  // SimpleAtoi(absl::string_view, absl::uint128)
  VerifySimpleAtoiGood<absl::uint128>(0, 0);
  VerifySimpleAtoiGood<absl::uint128>(42, 42);
  VerifySimpleAtoiBad<absl::uint128>(-42);

  VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min());
  VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(),
                                      std::numeric_limits<int32_t>::max());
  VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(),
                                      std::numeric_limits<uint32_t>::max());
  VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min());
  VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(),
                                      std::numeric_limits<int64_t>::max());
  VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(),
                                      std::numeric_limits<uint64_t>::max());
  VerifySimpleAtoiGood<absl::uint128>(
      std::numeric_limits<absl::uint128>::max(),
      std::numeric_limits<absl::uint128>::max());

  // SimpleAtoi(absl::string_view, absl::int128)
  VerifySimpleAtoiGood<absl::int128>(0, 0);
  VerifySimpleAtoiGood<absl::int128>(42, 42);
  VerifySimpleAtoiGood<absl::int128>(-42, -42);

  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::min(),
                                      std::numeric_limits<int32_t>::min());
  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::max(),
                                      std::numeric_limits<int32_t>::max());
  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint32_t>::max(),
                                      std::numeric_limits<uint32_t>::max());
  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::min(),
                                      std::numeric_limits<int64_t>::min());
  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::max(),
                                      std::numeric_limits<int64_t>::max());
  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint64_t>::max(),
                                      std::numeric_limits<uint64_t>::max());
  VerifySimpleAtoiGood<absl::int128>(
      std::numeric_limits<absl::int128>::min(),
      std::numeric_limits<absl::int128>::min());
  VerifySimpleAtoiGood<absl::int128>(
      std::numeric_limits<absl::int128>::max(),
      std::numeric_limits<absl::int128>::max());
  VerifySimpleAtoiBad<absl::int128>(std::numeric_limits<absl::uint128>::max());

  // Some other types
  VerifySimpleAtoiGood<int>(-42, -42);
  VerifySimpleAtoiGood<int32_t>(-42, -42);
  VerifySimpleAtoiGood<uint32_t>(42, 42);
  VerifySimpleAtoiGood<unsigned int>(42, 42);
  VerifySimpleAtoiGood<int64_t>(-42, -42);
  VerifySimpleAtoiGood<long>(-42, -42);  // NOLINT(runtime/int)
  VerifySimpleAtoiGood<uint64_t>(42, 42);
  VerifySimpleAtoiGood<size_t>(42, 42);
  VerifySimpleAtoiGood<std::string::size_type>(42, 42);
}

TEST(NumbersTest, Atod) {
  double d;
  EXPECT_TRUE(absl::SimpleAtod("nan", &d));
  EXPECT_TRUE(std::isnan(d));
}

TEST(NumbersTest, Atoenum) {
  enum E01 {
    E01_zero = 0,
    E01_one = 1,
  };

  VerifySimpleAtoiGood<E01>(E01_zero, E01_zero);
  VerifySimpleAtoiGood<E01>(E01_one, E01_one);

  enum E_101 {
    E_101_minusone = -1,
    E_101_zero = 0,
    E_101_one = 1,
  };

  VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone);
  VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero);
  VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one);

  enum E_bigint {
    E_bigint_zero = 0,
    E_bigint_one = 1,
    E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF),
  };

  VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero);
  VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one);
  VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31);

  enum E_fullint {
    E_fullint_zero = 0,
    E_fullint_one = 1,
    E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF),
    E_fullint_min32 = INT32_MIN,
  };

  VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero);
  VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one);
  VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31);
  VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32);

  enum E_biguint {
    E_biguint_zero = 0,
    E_biguint_one = 1,
    E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF),
    E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF),
  };

  VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero);
  VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one);
  VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31);
  VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32);
}

TEST(stringtest, safe_strto32_base) {
  int32_t value;
  EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16));
  EXPECT_EQ(0x34234324, value);

  EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16));
  EXPECT_EQ(0x34234324, value);

  EXPECT_TRUE(safe_strto32_base("34234324", &value, 16));
  EXPECT_EQ(0x34234324, value);

  EXPECT_TRUE(safe_strto32_base("0", &value, 16));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16));
  EXPECT_EQ(-0x34234324, value);

  EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16));
  EXPECT_EQ(-0x34234324, value);

  EXPECT_TRUE(safe_strto32_base("7654321", &value, 8));
  EXPECT_EQ(07654321, value);

  EXPECT_TRUE(safe_strto32_base("-01234", &value, 8));
  EXPECT_EQ(-01234, value);

  EXPECT_FALSE(safe_strto32_base("1834", &value, 8));

  // Autodetect base.
  EXPECT_TRUE(safe_strto32_base("0", &value, 0));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto32_base("077", &value, 0));
  EXPECT_EQ(077, value);  // Octal interpretation

  // Leading zero indicates octal, but then followed by invalid digit.
  EXPECT_FALSE(safe_strto32_base("088", &value, 0));

  // Leading 0x indicated hex, but then followed by invalid digit.
  EXPECT_FALSE(safe_strto32_base("0xG", &value, 0));

  // Base-10 version.
  EXPECT_TRUE(safe_strto32_base("34234324", &value, 10));
  EXPECT_EQ(34234324, value);

  EXPECT_TRUE(safe_strto32_base("0", &value, 10));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10));
  EXPECT_EQ(-34234324, value);

  EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10));
  EXPECT_EQ(34234324, value);

  // Invalid ints.
  EXPECT_FALSE(safe_strto32_base("", &value, 10));
  EXPECT_FALSE(safe_strto32_base("  ", &value, 10));
  EXPECT_FALSE(safe_strto32_base("abc", &value, 10));
  EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10));
  EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10));

  // Out of bounds.
  EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
  EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));

  // String version.
  EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16));
  EXPECT_EQ(0x1234, value);

  // Base-10 string version.
  EXPECT_TRUE(safe_strto32_base("1234", &value, 10));
  EXPECT_EQ(1234, value);
}

TEST(stringtest, safe_strto32_range) {
  // These tests verify underflow/overflow behaviour.
  int32_t value;
  EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
  EXPECT_EQ(std::numeric_limits<int32_t>::max(), value);

  EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10));
  EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);

  EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
  EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
}

TEST(stringtest, safe_strto64_range) {
  // These tests verify underflow/overflow behaviour.
  int64_t value;
  EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
  EXPECT_EQ(std::numeric_limits<int64_t>::max(), value);

  EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10));
  EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);

  EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
  EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
}

TEST(stringtest, safe_strto32_leading_substring) {
  // These tests verify this comment in numbers.h:
  // On error, returns false, and sets *value to: [...]
  //   conversion of leading substring if available ("123@@@" -> 123)
  //   0 if no leading substring available
  int32_t value;
  EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10));
  EXPECT_EQ(4069, value);

  EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8));
  EXPECT_EQ(0406, value);

  EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10));
  EXPECT_EQ(4069, value);

  EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16));
  EXPECT_EQ(0x4069ba, value);

  EXPECT_FALSE(safe_strto32_base("@@@", &value, 10));
  EXPECT_EQ(0, value);  // there was no leading substring
}

TEST(stringtest, safe_strto64_leading_substring) {
  // These tests verify this comment in numbers.h:
  // On error, returns false, and sets *value to: [...]
  //   conversion of leading substring if available ("123@@@" -> 123)
  //   0 if no leading substring available
  int64_t value;
  EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10));
  EXPECT_EQ(4069, value);

  EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8));
  EXPECT_EQ(0406, value);

  EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10));
  EXPECT_EQ(4069, value);

  EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16));
  EXPECT_EQ(0x4069ba, value);

  EXPECT_FALSE(safe_strto64_base("@@@", &value, 10));
  EXPECT_EQ(0, value);  // there was no leading substring
}

TEST(stringtest, safe_strto64_base) {
  int64_t value;
  EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16));
  EXPECT_EQ(int64_t{0x3423432448783446}, value);

  EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16));
  EXPECT_EQ(int64_t{0x3423432448783446}, value);

  EXPECT_TRUE(safe_strto64_base("0", &value, 16));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16));
  EXPECT_EQ(int64_t{-0x3423432448783446}, value);

  EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16));
  EXPECT_EQ(int64_t{-0x3423432448783446}, value);

  EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8));
  EXPECT_EQ(int64_t{0123456701234567012}, value);

  EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8));
  EXPECT_EQ(int64_t{-017777777777777}, value);

  EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8));

  // Autodetect base.
  EXPECT_TRUE(safe_strto64_base("0", &value, 0));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto64_base("077", &value, 0));
  EXPECT_EQ(077, value);  // Octal interpretation

  // Leading zero indicates octal, but then followed by invalid digit.
  EXPECT_FALSE(safe_strto64_base("088", &value, 0));

  // Leading 0x indicated hex, but then followed by invalid digit.
  EXPECT_FALSE(safe_strto64_base("0xG", &value, 0));

  // Base-10 version.
  EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10));
  EXPECT_EQ(int64_t{34234324487834466}, value);

  EXPECT_TRUE(safe_strto64_base("0", &value, 10));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10));
  EXPECT_EQ(int64_t{-34234324487834466}, value);

  EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10));
  EXPECT_EQ(int64_t{34234324487834466}, value);

  // Invalid ints.
  EXPECT_FALSE(safe_strto64_base("", &value, 10));
  EXPECT_FALSE(safe_strto64_base("  ", &value, 10));
  EXPECT_FALSE(safe_strto64_base("abc", &value, 10));
  EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10));
  EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10));

  // Out of bounds.
  EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
  EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));

  // String version.
  EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16));
  EXPECT_EQ(0x1234, value);

  // Base-10 string version.
  EXPECT_TRUE(safe_strto64_base("1234", &value, 10));
  EXPECT_EQ(1234, value);
}

const size_t kNumRandomTests = 10000;

template <typename IntType>
void test_random_integer_parse_base(bool (*parse_func)(absl::string_view,
                                                       IntType* value,
                                                       int base)) {
  using RandomEngine = std::minstd_rand0;
  std::random_device rd;
  RandomEngine rng(rd());
  std::uniform_int_distribution<IntType> random_int(
      std::numeric_limits<IntType>::min());
  std::uniform_int_distribution<int> random_base(2, 35);
  for (size_t i = 0; i < kNumRandomTests; i++) {
    IntType value = random_int(rng);
    int base = random_base(rng);
    std::string str_value;
    EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
    IntType parsed_value;

    // Test successful parse
    EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
    EXPECT_EQ(parsed_value, value);

    // Test overflow
    EXPECT_FALSE(
        parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value),
                   &parsed_value, base));

    // Test underflow
    if (std::numeric_limits<IntType>::min() < 0) {
      EXPECT_FALSE(
          parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value),
                     &parsed_value, base));
    } else {
      EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base));
    }
  }
}

TEST(stringtest, safe_strto32_random) {
  test_random_integer_parse_base<int32_t>(&safe_strto32_base);
}
TEST(stringtest, safe_strto64_random) {
  test_random_integer_parse_base<int64_t>(&safe_strto64_base);
}
TEST(stringtest, safe_strtou32_random) {
  test_random_integer_parse_base<uint32_t>(&safe_strtou32_base);
}
TEST(stringtest, safe_strtou64_random) {
  test_random_integer_parse_base<uint64_t>(&safe_strtou64_base);
}
TEST(stringtest, safe_strtou128_random) {
  // random number generators don't work for uint128, and
  // uint128 can be streamed but not StrCat'd, so this code must be custom
  // implemented for uint128, but is generally the same as what's above.
  // test_random_integer_parse_base<absl::uint128>(
  //     &absl::numbers_internal::safe_strtou128_base);
  using RandomEngine = std::minstd_rand0;
  using IntType = absl::uint128;
  constexpr auto parse_func = &absl::numbers_internal::safe_strtou128_base;

  std::random_device rd;
  RandomEngine rng(rd());
  std::uniform_int_distribution<uint64_t> random_uint64(
      std::numeric_limits<uint64_t>::min());
  std::uniform_int_distribution<int> random_base(2, 35);

  for (size_t i = 0; i < kNumRandomTests; i++) {
    IntType value = random_uint64(rng);
    value = (value << 64) + random_uint64(rng);
    int base = random_base(rng);
    std::string str_value;
    EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
    IntType parsed_value;

    // Test successful parse
    EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
    EXPECT_EQ(parsed_value, value);

    // Test overflow
    std::string s;
    absl::strings_internal::OStringStream(&s)
        << std::numeric_limits<IntType>::max() << value;
    EXPECT_FALSE(parse_func(s, &parsed_value, base));

    // Test underflow
    s.clear();
    absl::strings_internal::OStringStream(&s) << "-" << value;
    EXPECT_FALSE(parse_func(s, &parsed_value, base));
  }
}
TEST(stringtest, safe_strto128_random) {
  // random number generators don't work for int128, and
  // int128 can be streamed but not StrCat'd, so this code must be custom
  // implemented for int128, but is generally the same as what's above.
  // test_random_integer_parse_base<absl::int128>(
  //     &absl::numbers_internal::safe_strto128_base);
  using RandomEngine = std::minstd_rand0;
  using IntType = absl::int128;
  constexpr auto parse_func = &absl::numbers_internal::safe_strto128_base;

  std::random_device rd;
  RandomEngine rng(rd());
  std::uniform_int_distribution<int64_t> random_int64(
      std::numeric_limits<int64_t>::min());
  std::uniform_int_distribution<uint64_t> random_uint64(
      std::numeric_limits<uint64_t>::min());
  std::uniform_int_distribution<int> random_base(2, 35);

  for (size_t i = 0; i < kNumRandomTests; ++i) {
    int64_t high = random_int64(rng);
    uint64_t low = random_uint64(rng);
    IntType value = absl::MakeInt128(high, low);

    int base = random_base(rng);
    std::string str_value;
    EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
    IntType parsed_value;

    // Test successful parse
    EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
    EXPECT_EQ(parsed_value, value);

    // Test overflow
    std::string s;
    absl::strings_internal::OStringStream(&s)
        << std::numeric_limits<IntType>::max() << value;
    EXPECT_FALSE(parse_func(s, &parsed_value, base));

    // Test underflow
    s.clear();
    absl::strings_internal::OStringStream(&s)
        << std::numeric_limits<IntType>::min() << value;
    EXPECT_FALSE(parse_func(s, &parsed_value, base));
  }
}

TEST(stringtest, safe_strtou32_base) {
  for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
    const auto& e = strtouint32_test_cases()[i];
    uint32_t value;
    EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base))
        << "str=\"" << e.str << "\" base=" << e.base;
    if (e.expect_ok) {
      EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str
                                   << "\" base=" << e.base;
    }
  }
}

TEST(stringtest, safe_strtou32_base_length_delimited) {
  for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
    const auto& e = strtouint32_test_cases()[i];
    std::string tmp(e.str);
    tmp.append("12");  // Adds garbage at the end.

    uint32_t value;
    EXPECT_EQ(e.expect_ok,
              safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)),
                                 &value, e.base))
        << "str=\"" << e.str << "\" base=" << e.base;
    if (e.expect_ok) {
      EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str
                                   << " base=" << e.base;
    }
  }
}

TEST(stringtest, safe_strtou64_base) {
  for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
    const auto& e = strtouint64_test_cases()[i];
    uint64_t value;
    EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base))
        << "str=\"" << e.str << "\" base=" << e.base;
    if (e.expect_ok) {
      EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base;
    }
  }
}

TEST(stringtest, safe_strtou64_base_length_delimited) {
  for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
    const auto& e = strtouint64_test_cases()[i];
    std::string tmp(e.str);
    tmp.append("12");  // Adds garbage at the end.

    uint64_t value;
    EXPECT_EQ(e.expect_ok,
              safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)),
                                 &value, e.base))
        << "str=\"" << e.str << "\" base=" << e.base;
    if (e.expect_ok) {
      EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base;
    }
  }
}

// feenableexcept() and fedisableexcept() are extensions supported by some libc
// implementations.
#if defined(__GLIBC__) || defined(__BIONIC__)
#define ABSL_HAVE_FEENABLEEXCEPT 1
#define ABSL_HAVE_FEDISABLEEXCEPT 1
#endif

class SimpleDtoaTest : public testing::Test {
 protected:
  void SetUp() override {
    // Store the current floating point env & clear away any pending exceptions.
    feholdexcept(&fp_env_);
#ifdef ABSL_HAVE_FEENABLEEXCEPT
    // Turn on floating point exceptions.
    feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
  }

  void TearDown() override {
    // Restore the floating point environment to the original state.
    // In theory fedisableexcept is unnecessary; fesetenv will also do it.
    // In practice, our toolchains have subtle bugs.
#ifdef ABSL_HAVE_FEDISABLEEXCEPT
    fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
    fesetenv(&fp_env_);
  }

  std::string ToNineDigits(double value) {
    char buffer[16];  // more than enough for %.9g
    snprintf(buffer, sizeof(buffer), "%.9g", value);
    return buffer;
  }

  fenv_t fp_env_;
};

// Run the given runnable functor for "cases" test cases, chosen over the
// available range of float.  pi and e and 1/e are seeded, and then all
// available integer powers of 2 and 10 are multiplied against them.  In
// addition to trying all those values, we try the next higher and next lower
// float, and then we add additional test cases evenly distributed between them.
// Each test case is passed to runnable as both a positive and negative value.
template <typename R>
void ExhaustiveFloat(uint32_t cases, R&& runnable) {
  runnable(0.0f);
  runnable(-0.0f);
  if (cases >= 2e9) {  // more than 2 billion?  Might as well run them all.
    for (float f = 0; f < std::numeric_limits<float>::max(); ) {
      f = nextafterf(f, std::numeric_limits<float>::max());
      runnable(-f);
      runnable(f);
    }
    return;
  }
  std::set<float> floats = {3.4028234e38f};
  for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) {
    for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf);
    for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf);
    for (float testf = f; testf < 3e38f / 2; testf *= 2.0f)
      floats.insert(testf);
    for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf);
  }

  float last = *floats.begin();

  runnable(last);
  runnable(-last);
  int iters_per_float = cases / floats.size();
  if (iters_per_float == 0) iters_per_float = 1;
  for (float f : floats) {
    if (f == last) continue;
    float testf = std::nextafter(last, std::numeric_limits<float>::max());
    runnable(testf);
    runnable(-testf);
    last = testf;
    if (f == last) continue;
    double step = (double{f} - last) / iters_per_float;
    for (double d = last + step; d < f; d += step) {
      testf = d;
      if (testf != last) {
        runnable(testf);
        runnable(-testf);
        last = testf;
      }
    }
    testf = std::nextafter(f, 0.0f);
    if (testf > last) {
      runnable(testf);
      runnable(-testf);
      last = testf;
    }
    if (f != last) {
      runnable(f);
      runnable(-f);
      last = f;
    }
  }
}

TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) {
  uint64_t test_count = 0;
  std::vector<double> mismatches;
  auto checker = [&](double d) {
    if (d != d) return;  // rule out NaNs
    ++test_count;
    char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
    SixDigitsToBuffer(d, sixdigitsbuf);
    char snprintfbuf[kSixDigitsToBufferSize] = {0};
    snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
    if (strcmp(sixdigitsbuf, snprintfbuf) != 0) {
      mismatches.push_back(d);
      if (mismatches.size() < 10) {
        ABSL_RAW_LOG(ERROR, "%s",
                     absl::StrCat("Six-digit failure with double.  ", "d=", d,
                                  "=", d, " sixdigits=", sixdigitsbuf,
                                  " printf(%g)=", snprintfbuf)
                         .c_str());
      }
    }
  };
  // Some quick sanity checks...
  checker(5e-324);
  checker(1e-308);
  checker(1.0);
  checker(1.000005);
  checker(1.7976931348623157e308);
  checker(0.00390625);
#ifndef _MSC_VER
  // on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it
  // to 0.00195312 (round half to even).
  checker(0.001953125);
#endif
  checker(0.005859375);
  // Some cases where the rounding is very very close
  checker(1.089095e-15);
  checker(3.274195e-55);
  checker(6.534355e-146);
  checker(2.920845e+234);

  if (mismatches.empty()) {
    test_count = 0;
    ExhaustiveFloat(kFloatNumCases, checker);

    test_count = 0;
    std::vector<int> digit_testcases{
        100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100,  // misc
        195312, 195313,  // 1.953125 is a case where we round down, just barely.
        200000, 500000, 800000,  // misc mid-range cases
        585937, 585938,  // 5.859375 is a case where we round up, just barely.
        900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999};
    if (kFloatNumCases >= 1e9) {
      // If at least 1 billion test cases were requested, user wants an
      // exhaustive test. So let's test all mantissas, too.
      constexpr int min_mantissa = 100000, max_mantissa = 999999;
      digit_testcases.resize(max_mantissa - min_mantissa + 1);
      std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa);
    }

    for (int exponent = -324; exponent <= 308; ++exponent) {
      double powten = absl::strings_internal::Pow10(exponent);
      if (powten == 0) powten = 5e-324;
      if (kFloatNumCases >= 1e9) {
        // The exhaustive test takes a very long time, so log progress.
        char buf[kSixDigitsToBufferSize];
        ABSL_RAW_LOG(
            INFO, "%s",
            absl::StrCat("Exp ", exponent, " powten=", powten, "(", powten,
                         ") (",
                         std::string(buf, SixDigitsToBuffer(powten, buf)), ")")
                .c_str());
      }
      for (int digits : digit_testcases) {
        if (exponent == 308 && digits >= 179769) break;  // don't overflow!
        double digiform = (digits + 0.5) * 0.00001;
        double testval = digiform * powten;
        double pretestval = nextafter(testval, 0);
        double posttestval = nextafter(testval, 1.7976931348623157e308);
        checker(testval);
        checker(pretestval);
        checker(posttestval);
      }
    }
  } else {
    EXPECT_EQ(mismatches.size(), 0);
    for (size_t i = 0; i < mismatches.size(); ++i) {
      if (i > 100) i = mismatches.size() - 1;
      double d = mismatches[i];
      char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
      SixDigitsToBuffer(d, sixdigitsbuf);
      char snprintfbuf[kSixDigitsToBufferSize] = {0};
      snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
      double before = nextafter(d, 0.0);
      double after = nextafter(d, 1.7976931348623157e308);
      char b1[32], b2[kSixDigitsToBufferSize];
      ABSL_RAW_LOG(
          ERROR, "%s",
          absl::StrCat(
              "Mismatch #", i, "  d=", d, " (", ToNineDigits(d), ")",
              " sixdigits='", sixdigitsbuf, "'", " snprintf='", snprintfbuf,
              "'", " Before.=", PerfectDtoa(before), " ",
              (SixDigitsToBuffer(before, b2), b2),
              " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", before), b1),
              " Perfect=", PerfectDtoa(d), " ", (SixDigitsToBuffer(d, b2), b2),
              " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", d), b1),
              " After.=.", PerfectDtoa(after), " ",
              (SixDigitsToBuffer(after, b2), b2),
              " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", after), b1))
              .c_str());
    }
  }
}

TEST(StrToInt32, Partial) {
  struct Int32TestLine {
    std::string input;
    bool status;
    int32_t value;
  };
  const int32_t int32_min = std::numeric_limits<int32_t>::min();
  const int32_t int32_max = std::numeric_limits<int32_t>::max();
  Int32TestLine int32_test_line[] = {
      {"", false, 0},
      {" ", false, 0},
      {"-", false, 0},
      {"123@@@", false, 123},
      {absl::StrCat(int32_min, int32_max), false, int32_min},
      {absl::StrCat(int32_max, int32_max), false, int32_max},
  };

  for (const Int32TestLine& test_line : int32_test_line) {
    int32_t value = -2;
    bool status = safe_strto32_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = -2;
    status = safe_strto32_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = -2;
    status = safe_strto32_base(absl::string_view(test_line.input), &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
  }
}

TEST(StrToUint32, Partial) {
  struct Uint32TestLine {
    std::string input;
    bool status;
    uint32_t value;
  };
  const uint32_t uint32_max = std::numeric_limits<uint32_t>::max();
  Uint32TestLine uint32_test_line[] = {
      {"", false, 0},
      {" ", false, 0},
      {"-", false, 0},
      {"123@@@", false, 123},
      {absl::StrCat(uint32_max, uint32_max), false, uint32_max},
  };

  for (const Uint32TestLine& test_line : uint32_test_line) {
    uint32_t value = 2;
    bool status = safe_strtou32_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = 2;
    status = safe_strtou32_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = 2;
    status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
  }
}

TEST(StrToInt64, Partial) {
  struct Int64TestLine {
    std::string input;
    bool status;
    int64_t value;
  };
  const int64_t int64_min = std::numeric_limits<int64_t>::min();
  const int64_t int64_max = std::numeric_limits<int64_t>::max();
  Int64TestLine int64_test_line[] = {
      {"", false, 0},
      {" ", false, 0},
      {"-", false, 0},
      {"123@@@", false, 123},
      {absl::StrCat(int64_min, int64_max), false, int64_min},
      {absl::StrCat(int64_max, int64_max), false, int64_max},
  };

  for (const Int64TestLine& test_line : int64_test_line) {
    int64_t value = -2;
    bool status = safe_strto64_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = -2;
    status = safe_strto64_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = -2;
    status = safe_strto64_base(absl::string_view(test_line.input), &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
  }
}

TEST(StrToUint64, Partial) {
  struct Uint64TestLine {
    std::string input;
    bool status;
    uint64_t value;
  };
  const uint64_t uint64_max = std::numeric_limits<uint64_t>::max();
  Uint64TestLine uint64_test_line[] = {
      {"", false, 0},
      {" ", false, 0},
      {"-", false, 0},
      {"123@@@", false, 123},
      {absl::StrCat(uint64_max, uint64_max), false, uint64_max},
  };

  for (const Uint64TestLine& test_line : uint64_test_line) {
    uint64_t value = 2;
    bool status = safe_strtou64_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = 2;
    status = safe_strtou64_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = 2;
    status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
  }
}

TEST(StrToInt32Base, PrefixOnly) {
  struct Int32TestLine {
    std::string input;
    bool status;
    int32_t value;
  };
  Int32TestLine int32_test_line[] = {
    { "", false, 0 },
    { "-", false, 0 },
    { "-0", true, 0 },
    { "0", true, 0 },
    { "0x", false, 0 },
    { "-0x", false, 0 },
  };
  const int base_array[] = { 0, 2, 8, 10, 16 };

  for (const Int32TestLine& line : int32_test_line) {
    for (const int base : base_array) {
      int32_t value = 2;
      bool status = safe_strto32_base(line.input.c_str(), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strto32_base(line.input, &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strto32_base(absl::string_view(line.input), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
    }
  }
}

TEST(StrToUint32Base, PrefixOnly) {
  struct Uint32TestLine {
    std::string input;
    bool status;
    uint32_t value;
  };
  Uint32TestLine uint32_test_line[] = {
    { "", false, 0 },
    { "0", true, 0 },
    { "0x", false, 0 },
  };
  const int base_array[] = { 0, 2, 8, 10, 16 };

  for (const Uint32TestLine& line : uint32_test_line) {
    for (const int base : base_array) {
      uint32_t value = 2;
      bool status = safe_strtou32_base(line.input.c_str(), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strtou32_base(line.input, &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strtou32_base(absl::string_view(line.input), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
    }
  }
}

TEST(StrToInt64Base, PrefixOnly) {
  struct Int64TestLine {
    std::string input;
    bool status;
    int64_t value;
  };
  Int64TestLine int64_test_line[] = {
    { "", false, 0 },
    { "-", false, 0 },
    { "-0", true, 0 },
    { "0", true, 0 },
    { "0x", false, 0 },
    { "-0x", false, 0 },
  };
  const int base_array[] = { 0, 2, 8, 10, 16 };

  for (const Int64TestLine& line : int64_test_line) {
    for (const int base : base_array) {
      int64_t value = 2;
      bool status = safe_strto64_base(line.input.c_str(), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strto64_base(line.input, &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strto64_base(absl::string_view(line.input), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
    }
  }
}

TEST(StrToUint64Base, PrefixOnly) {
  struct Uint64TestLine {
    std::string input;
    bool status;
    uint64_t value;
  };
  Uint64TestLine uint64_test_line[] = {
    { "", false, 0 },
    { "0", true, 0 },
    { "0x", false, 0 },
  };
  const int base_array[] = { 0, 2, 8, 10, 16 };

  for (const Uint64TestLine& line : uint64_test_line) {
    for (const int base : base_array) {
      uint64_t value = 2;
      bool status = safe_strtou64_base(line.input.c_str(), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strtou64_base(line.input, &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strtou64_base(absl::string_view(line.input), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
    }
  }
}

void TestFastHexToBufferZeroPad16(uint64_t v) {
  char buf[16];
  auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(v, buf);
  absl::string_view res(buf, 16);
  char buf2[17];
  snprintf(buf2, sizeof(buf2), "%016" PRIx64, v);
  EXPECT_EQ(res, buf2) << v;
  size_t expected_digits = snprintf(buf2, sizeof(buf2), "%" PRIx64, v);
  EXPECT_EQ(digits, expected_digits) << v;
}

TEST(FastHexToBufferZeroPad16, Smoke) {
  TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::min());
  TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::max());
  TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::min());
  TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::max());
  absl::BitGen rng;
  for (int i = 0; i < 100000; ++i) {
    TestFastHexToBufferZeroPad16(
        absl::LogUniform(rng, std::numeric_limits<uint64_t>::min(),
                         std::numeric_limits<uint64_t>::max()));
  }
}

}  // namespace