about summary refs log blame commit diff
path: root/third_party/abseil_cpp/absl/container/btree_test.cc
blob: 9b1b6436c7cab678f1d5bc06a3e8b8193f4ce596 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
















                                                                           
                 









                                           
                             















                                                                            
                    


                              
                                                     



                                                 
                         
                        
                      
                        



































                                                                             

                                                                           
































                                                                                
                                         

                                                                          

                                          


















































                                                                                
                                                                         





                                              


                                                      















































                                                                              



                                                                        







                                             


                                  





































































                                                                              
                                                                    

                                                                        
                                                              

                        
                                                         

                                                                 

                                                               





                                                          
                                                           

                                                                 

                                                        

























                                                                             
                                                                  

                                                                       
                                                            

                        
                                        
                                  

                                                




                                                         
                                                           
                                  

                                                        





































































































































































































































































































































































































































                                                                                
                                                



                                                         
                                                






























                                                                                
                                                          



                                                                   
                                                          
















                                                                     
                                                 







































































































































                                                                               
                                                


                         
                                                                 
 
                                                                        
 
                                                               

































































































































































                                                                                
































































































                                                                              



























































































                                                                               

                                                                    


















































                                                                              
































































































































                                                                                
                                                                         






























































                                                                            


                                             
                                                              
      
























































































































































































































































































                                                                                



























                                                                   
   




































                                                                              
 






                                                                             








































































































































































































                                                                                
























                                                                  






























                                                                          
                                                


                          
                                                        































































































































































                                                                                






                             








































                                                                                


























































                                                                               

























































































































































































































































































































                                                                               

                                  
                  
                    
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/container/btree_test.h"

#include <cstdint>
#include <limits>
#include <map>
#include <memory>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/container/btree_map.h"
#include "absl/container/btree_set.h"
#include "absl/container/internal/counting_allocator.h"
#include "absl/container/internal/test_instance_tracker.h"
#include "absl/flags/flag.h"
#include "absl/hash/hash_testing.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "absl/types/compare.h"

ABSL_FLAG(int, test_values, 10000, "The number of values to use for tests");

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
namespace {

using ::absl::test_internal::CopyableMovableInstance;
using ::absl::test_internal::InstanceTracker;
using ::absl::test_internal::MovableOnlyInstance;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::IsEmpty;
using ::testing::IsNull;
using ::testing::Pair;
using ::testing::SizeIs;

template <typename T, typename U>
void CheckPairEquals(const T &x, const U &y) {
  ABSL_INTERNAL_CHECK(x == y, "Values are unequal.");
}

template <typename T, typename U, typename V, typename W>
void CheckPairEquals(const std::pair<T, U> &x, const std::pair<V, W> &y) {
  CheckPairEquals(x.first, y.first);
  CheckPairEquals(x.second, y.second);
}
}  // namespace

// The base class for a sorted associative container checker. TreeType is the
// container type to check and CheckerType is the container type to check
// against. TreeType is expected to be btree_{set,map,multiset,multimap} and
// CheckerType is expected to be {set,map,multiset,multimap}.
template <typename TreeType, typename CheckerType>
class base_checker {
 public:
  using key_type = typename TreeType::key_type;
  using value_type = typename TreeType::value_type;
  using key_compare = typename TreeType::key_compare;
  using pointer = typename TreeType::pointer;
  using const_pointer = typename TreeType::const_pointer;
  using reference = typename TreeType::reference;
  using const_reference = typename TreeType::const_reference;
  using size_type = typename TreeType::size_type;
  using difference_type = typename TreeType::difference_type;
  using iterator = typename TreeType::iterator;
  using const_iterator = typename TreeType::const_iterator;
  using reverse_iterator = typename TreeType::reverse_iterator;
  using const_reverse_iterator = typename TreeType::const_reverse_iterator;

 public:
  base_checker() : const_tree_(tree_) {}
  base_checker(const base_checker &other)
      : tree_(other.tree_), const_tree_(tree_), checker_(other.checker_) {}
  template <typename InputIterator>
  base_checker(InputIterator b, InputIterator e)
      : tree_(b, e), const_tree_(tree_), checker_(b, e) {}

  iterator begin() { return tree_.begin(); }
  const_iterator begin() const { return tree_.begin(); }
  iterator end() { return tree_.end(); }
  const_iterator end() const { return tree_.end(); }
  reverse_iterator rbegin() { return tree_.rbegin(); }
  const_reverse_iterator rbegin() const { return tree_.rbegin(); }
  reverse_iterator rend() { return tree_.rend(); }
  const_reverse_iterator rend() const { return tree_.rend(); }

  template <typename IterType, typename CheckerIterType>
  IterType iter_check(IterType tree_iter, CheckerIterType checker_iter) const {
    if (tree_iter == tree_.end()) {
      ABSL_INTERNAL_CHECK(checker_iter == checker_.end(),
                          "Checker iterator not at end.");
    } else {
      CheckPairEquals(*tree_iter, *checker_iter);
    }
    return tree_iter;
  }
  template <typename IterType, typename CheckerIterType>
  IterType riter_check(IterType tree_iter, CheckerIterType checker_iter) const {
    if (tree_iter == tree_.rend()) {
      ABSL_INTERNAL_CHECK(checker_iter == checker_.rend(),
                          "Checker iterator not at rend.");
    } else {
      CheckPairEquals(*tree_iter, *checker_iter);
    }
    return tree_iter;
  }
  void value_check(const value_type &v) {
    typename KeyOfValue<typename TreeType::key_type,
                        typename TreeType::value_type>::type key_of_value;
    const key_type &key = key_of_value(v);
    CheckPairEquals(*find(key), v);
    lower_bound(key);
    upper_bound(key);
    equal_range(key);
    contains(key);
    count(key);
  }
  void erase_check(const key_type &key) {
    EXPECT_FALSE(tree_.contains(key));
    EXPECT_EQ(tree_.find(key), const_tree_.end());
    EXPECT_FALSE(const_tree_.contains(key));
    EXPECT_EQ(const_tree_.find(key), tree_.end());
    EXPECT_EQ(tree_.equal_range(key).first,
              const_tree_.equal_range(key).second);
  }

  iterator lower_bound(const key_type &key) {
    return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
  }
  const_iterator lower_bound(const key_type &key) const {
    return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
  }
  iterator upper_bound(const key_type &key) {
    return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
  }
  const_iterator upper_bound(const key_type &key) const {
    return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
  }
  std::pair<iterator, iterator> equal_range(const key_type &key) {
    std::pair<typename CheckerType::iterator, typename CheckerType::iterator>
        checker_res = checker_.equal_range(key);
    std::pair<iterator, iterator> tree_res = tree_.equal_range(key);
    iter_check(tree_res.first, checker_res.first);
    iter_check(tree_res.second, checker_res.second);
    return tree_res;
  }
  std::pair<const_iterator, const_iterator> equal_range(
      const key_type &key) const {
    std::pair<typename CheckerType::const_iterator,
              typename CheckerType::const_iterator>
        checker_res = checker_.equal_range(key);
    std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key);
    iter_check(tree_res.first, checker_res.first);
    iter_check(tree_res.second, checker_res.second);
    return tree_res;
  }
  iterator find(const key_type &key) {
    return iter_check(tree_.find(key), checker_.find(key));
  }
  const_iterator find(const key_type &key) const {
    return iter_check(tree_.find(key), checker_.find(key));
  }
  bool contains(const key_type &key) const { return find(key) != end(); }
  size_type count(const key_type &key) const {
    size_type res = checker_.count(key);
    EXPECT_EQ(res, tree_.count(key));
    return res;
  }

  base_checker &operator=(const base_checker &other) {
    tree_ = other.tree_;
    checker_ = other.checker_;
    return *this;
  }

  int erase(const key_type &key) {
    int size = tree_.size();
    int res = checker_.erase(key);
    EXPECT_EQ(res, tree_.count(key));
    EXPECT_EQ(res, tree_.erase(key));
    EXPECT_EQ(tree_.count(key), 0);
    EXPECT_EQ(tree_.size(), size - res);
    erase_check(key);
    return res;
  }
  iterator erase(iterator iter) {
    key_type key = iter.key();
    int size = tree_.size();
    int count = tree_.count(key);
    auto checker_iter = checker_.lower_bound(key);
    for (iterator tmp(tree_.lower_bound(key)); tmp != iter; ++tmp) {
      ++checker_iter;
    }
    auto checker_next = checker_iter;
    ++checker_next;
    checker_.erase(checker_iter);
    iter = tree_.erase(iter);
    EXPECT_EQ(tree_.size(), checker_.size());
    EXPECT_EQ(tree_.size(), size - 1);
    EXPECT_EQ(tree_.count(key), count - 1);
    if (count == 1) {
      erase_check(key);
    }
    return iter_check(iter, checker_next);
  }

  void erase(iterator begin, iterator end) {
    int size = tree_.size();
    int count = std::distance(begin, end);
    auto checker_begin = checker_.lower_bound(begin.key());
    for (iterator tmp(tree_.lower_bound(begin.key())); tmp != begin; ++tmp) {
      ++checker_begin;
    }
    auto checker_end =
        end == tree_.end() ? checker_.end() : checker_.lower_bound(end.key());
    if (end != tree_.end()) {
      for (iterator tmp(tree_.lower_bound(end.key())); tmp != end; ++tmp) {
        ++checker_end;
      }
    }
    const auto checker_ret = checker_.erase(checker_begin, checker_end);
    const auto tree_ret = tree_.erase(begin, end);
    EXPECT_EQ(std::distance(checker_.begin(), checker_ret),
              std::distance(tree_.begin(), tree_ret));
    EXPECT_EQ(tree_.size(), checker_.size());
    EXPECT_EQ(tree_.size(), size - count);
  }

  void clear() {
    tree_.clear();
    checker_.clear();
  }
  void swap(base_checker &other) {
    tree_.swap(other.tree_);
    checker_.swap(other.checker_);
  }

  void verify() const {
    tree_.verify();
    EXPECT_EQ(tree_.size(), checker_.size());

    // Move through the forward iterators using increment.
    auto checker_iter = checker_.begin();
    const_iterator tree_iter(tree_.begin());
    for (; tree_iter != tree_.end(); ++tree_iter, ++checker_iter) {
      CheckPairEquals(*tree_iter, *checker_iter);
    }

    // Move through the forward iterators using decrement.
    for (int n = tree_.size() - 1; n >= 0; --n) {
      iter_check(tree_iter, checker_iter);
      --tree_iter;
      --checker_iter;
    }
    EXPECT_EQ(tree_iter, tree_.begin());
    EXPECT_EQ(checker_iter, checker_.begin());

    // Move through the reverse iterators using increment.
    auto checker_riter = checker_.rbegin();
    const_reverse_iterator tree_riter(tree_.rbegin());
    for (; tree_riter != tree_.rend(); ++tree_riter, ++checker_riter) {
      CheckPairEquals(*tree_riter, *checker_riter);
    }

    // Move through the reverse iterators using decrement.
    for (int n = tree_.size() - 1; n >= 0; --n) {
      riter_check(tree_riter, checker_riter);
      --tree_riter;
      --checker_riter;
    }
    EXPECT_EQ(tree_riter, tree_.rbegin());
    EXPECT_EQ(checker_riter, checker_.rbegin());
  }

  const TreeType &tree() const { return tree_; }

  size_type size() const {
    EXPECT_EQ(tree_.size(), checker_.size());
    return tree_.size();
  }
  size_type max_size() const { return tree_.max_size(); }
  bool empty() const {
    EXPECT_EQ(tree_.empty(), checker_.empty());
    return tree_.empty();
  }

 protected:
  TreeType tree_;
  const TreeType &const_tree_;
  CheckerType checker_;
};

namespace {
// A checker for unique sorted associative containers. TreeType is expected to
// be btree_{set,map} and CheckerType is expected to be {set,map}.
template <typename TreeType, typename CheckerType>
class unique_checker : public base_checker<TreeType, CheckerType> {
  using super_type = base_checker<TreeType, CheckerType>;

 public:
  using iterator = typename super_type::iterator;
  using value_type = typename super_type::value_type;

 public:
  unique_checker() : super_type() {}
  unique_checker(const unique_checker &other) : super_type(other) {}
  template <class InputIterator>
  unique_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
  unique_checker &operator=(const unique_checker &) = default;

  // Insertion routines.
  std::pair<iterator, bool> insert(const value_type &v) {
    int size = this->tree_.size();
    std::pair<typename CheckerType::iterator, bool> checker_res =
        this->checker_.insert(v);
    std::pair<iterator, bool> tree_res = this->tree_.insert(v);
    CheckPairEquals(*tree_res.first, *checker_res.first);
    EXPECT_EQ(tree_res.second, checker_res.second);
    EXPECT_EQ(this->tree_.size(), this->checker_.size());
    EXPECT_EQ(this->tree_.size(), size + tree_res.second);
    return tree_res;
  }
  iterator insert(iterator position, const value_type &v) {
    int size = this->tree_.size();
    std::pair<typename CheckerType::iterator, bool> checker_res =
        this->checker_.insert(v);
    iterator tree_res = this->tree_.insert(position, v);
    CheckPairEquals(*tree_res, *checker_res.first);
    EXPECT_EQ(this->tree_.size(), this->checker_.size());
    EXPECT_EQ(this->tree_.size(), size + checker_res.second);
    return tree_res;
  }
  template <typename InputIterator>
  void insert(InputIterator b, InputIterator e) {
    for (; b != e; ++b) {
      insert(*b);
    }
  }
};

// A checker for multiple sorted associative containers. TreeType is expected
// to be btree_{multiset,multimap} and CheckerType is expected to be
// {multiset,multimap}.
template <typename TreeType, typename CheckerType>
class multi_checker : public base_checker<TreeType, CheckerType> {
  using super_type = base_checker<TreeType, CheckerType>;

 public:
  using iterator = typename super_type::iterator;
  using value_type = typename super_type::value_type;

 public:
  multi_checker() : super_type() {}
  multi_checker(const multi_checker &other) : super_type(other) {}
  template <class InputIterator>
  multi_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
  multi_checker &operator=(const multi_checker &) = default;

  // Insertion routines.
  iterator insert(const value_type &v) {
    int size = this->tree_.size();
    auto checker_res = this->checker_.insert(v);
    iterator tree_res = this->tree_.insert(v);
    CheckPairEquals(*tree_res, *checker_res);
    EXPECT_EQ(this->tree_.size(), this->checker_.size());
    EXPECT_EQ(this->tree_.size(), size + 1);
    return tree_res;
  }
  iterator insert(iterator position, const value_type &v) {
    int size = this->tree_.size();
    auto checker_res = this->checker_.insert(v);
    iterator tree_res = this->tree_.insert(position, v);
    CheckPairEquals(*tree_res, *checker_res);
    EXPECT_EQ(this->tree_.size(), this->checker_.size());
    EXPECT_EQ(this->tree_.size(), size + 1);
    return tree_res;
  }
  template <typename InputIterator>
  void insert(InputIterator b, InputIterator e) {
    for (; b != e; ++b) {
      insert(*b);
    }
  }
};

template <typename T, typename V>
void DoTest(const char *name, T *b, const std::vector<V> &values) {
  typename KeyOfValue<typename T::key_type, V>::type key_of_value;

  T &mutable_b = *b;
  const T &const_b = *b;

  // Test insert.
  for (int i = 0; i < values.size(); ++i) {
    mutable_b.insert(values[i]);
    mutable_b.value_check(values[i]);
  }
  ASSERT_EQ(mutable_b.size(), values.size());

  const_b.verify();

  // Test copy constructor.
  T b_copy(const_b);
  EXPECT_EQ(b_copy.size(), const_b.size());
  for (int i = 0; i < values.size(); ++i) {
    CheckPairEquals(*b_copy.find(key_of_value(values[i])), values[i]);
  }

  // Test range constructor.
  T b_range(const_b.begin(), const_b.end());
  EXPECT_EQ(b_range.size(), const_b.size());
  for (int i = 0; i < values.size(); ++i) {
    CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
  }

  // Test range insertion for values that already exist.
  b_range.insert(b_copy.begin(), b_copy.end());
  b_range.verify();

  // Test range insertion for new values.
  b_range.clear();
  b_range.insert(b_copy.begin(), b_copy.end());
  EXPECT_EQ(b_range.size(), b_copy.size());
  for (int i = 0; i < values.size(); ++i) {
    CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
  }

  // Test assignment to self. Nothing should change.
  b_range.operator=(b_range);
  EXPECT_EQ(b_range.size(), b_copy.size());

  // Test assignment of new values.
  b_range.clear();
  b_range = b_copy;
  EXPECT_EQ(b_range.size(), b_copy.size());

  // Test swap.
  b_range.clear();
  b_range.swap(b_copy);
  EXPECT_EQ(b_copy.size(), 0);
  EXPECT_EQ(b_range.size(), const_b.size());
  for (int i = 0; i < values.size(); ++i) {
    CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
  }
  b_range.swap(b_copy);

  // Test non-member function swap.
  swap(b_range, b_copy);
  EXPECT_EQ(b_copy.size(), 0);
  EXPECT_EQ(b_range.size(), const_b.size());
  for (int i = 0; i < values.size(); ++i) {
    CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
  }
  swap(b_range, b_copy);

  // Test erase via values.
  for (int i = 0; i < values.size(); ++i) {
    mutable_b.erase(key_of_value(values[i]));
    // Erasing a non-existent key should have no effect.
    ASSERT_EQ(mutable_b.erase(key_of_value(values[i])), 0);
  }

  const_b.verify();
  EXPECT_EQ(const_b.size(), 0);

  // Test erase via iterators.
  mutable_b = b_copy;
  for (int i = 0; i < values.size(); ++i) {
    mutable_b.erase(mutable_b.find(key_of_value(values[i])));
  }

  const_b.verify();
  EXPECT_EQ(const_b.size(), 0);

  // Test insert with hint.
  for (int i = 0; i < values.size(); i++) {
    mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]);
  }

  const_b.verify();

  // Test range erase.
  mutable_b.erase(mutable_b.begin(), mutable_b.end());
  EXPECT_EQ(mutable_b.size(), 0);
  const_b.verify();

  // First half.
  mutable_b = b_copy;
  typename T::iterator mutable_iter_end = mutable_b.begin();
  for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end;
  mutable_b.erase(mutable_b.begin(), mutable_iter_end);
  EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2);
  const_b.verify();

  // Second half.
  mutable_b = b_copy;
  typename T::iterator mutable_iter_begin = mutable_b.begin();
  for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin;
  mutable_b.erase(mutable_iter_begin, mutable_b.end());
  EXPECT_EQ(mutable_b.size(), values.size() / 2);
  const_b.verify();

  // Second quarter.
  mutable_b = b_copy;
  mutable_iter_begin = mutable_b.begin();
  for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin;
  mutable_iter_end = mutable_iter_begin;
  for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end;
  mutable_b.erase(mutable_iter_begin, mutable_iter_end);
  EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4);
  const_b.verify();

  mutable_b.clear();
}

template <typename T>
void ConstTest() {
  using value_type = typename T::value_type;
  typename KeyOfValue<typename T::key_type, value_type>::type key_of_value;

  T mutable_b;
  const T &const_b = mutable_b;

  // Insert a single value into the container and test looking it up.
  value_type value = Generator<value_type>(2)(2);
  mutable_b.insert(value);
  EXPECT_TRUE(mutable_b.contains(key_of_value(value)));
  EXPECT_NE(mutable_b.find(key_of_value(value)), const_b.end());
  EXPECT_TRUE(const_b.contains(key_of_value(value)));
  EXPECT_NE(const_b.find(key_of_value(value)), mutable_b.end());
  EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value);
  EXPECT_EQ(const_b.upper_bound(key_of_value(value)), const_b.end());
  EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value);

  // We can only create a non-const iterator from a non-const container.
  typename T::iterator mutable_iter(mutable_b.begin());
  EXPECT_EQ(mutable_iter, const_b.begin());
  EXPECT_NE(mutable_iter, const_b.end());
  EXPECT_EQ(const_b.begin(), mutable_iter);
  EXPECT_NE(const_b.end(), mutable_iter);
  typename T::reverse_iterator mutable_riter(mutable_b.rbegin());
  EXPECT_EQ(mutable_riter, const_b.rbegin());
  EXPECT_NE(mutable_riter, const_b.rend());
  EXPECT_EQ(const_b.rbegin(), mutable_riter);
  EXPECT_NE(const_b.rend(), mutable_riter);

  // We can create a const iterator from a non-const iterator.
  typename T::const_iterator const_iter(mutable_iter);
  EXPECT_EQ(const_iter, mutable_b.begin());
  EXPECT_NE(const_iter, mutable_b.end());
  EXPECT_EQ(mutable_b.begin(), const_iter);
  EXPECT_NE(mutable_b.end(), const_iter);
  typename T::const_reverse_iterator const_riter(mutable_riter);
  EXPECT_EQ(const_riter, mutable_b.rbegin());
  EXPECT_NE(const_riter, mutable_b.rend());
  EXPECT_EQ(mutable_b.rbegin(), const_riter);
  EXPECT_NE(mutable_b.rend(), const_riter);

  // Make sure various methods can be invoked on a const container.
  const_b.verify();
  ASSERT_TRUE(!const_b.empty());
  EXPECT_EQ(const_b.size(), 1);
  EXPECT_GT(const_b.max_size(), 0);
  EXPECT_TRUE(const_b.contains(key_of_value(value)));
  EXPECT_EQ(const_b.count(key_of_value(value)), 1);
}

template <typename T, typename C>
void BtreeTest() {
  ConstTest<T>();

  using V = typename remove_pair_const<typename T::value_type>::type;
  const std::vector<V> random_values = GenerateValuesWithSeed<V>(
      absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values),
      testing::GTEST_FLAG(random_seed));

  unique_checker<T, C> container;

  // Test key insertion/deletion in sorted order.
  std::vector<V> sorted_values(random_values);
  std::sort(sorted_values.begin(), sorted_values.end());
  DoTest("sorted:    ", &container, sorted_values);

  // Test key insertion/deletion in reverse sorted order.
  std::reverse(sorted_values.begin(), sorted_values.end());
  DoTest("rsorted:   ", &container, sorted_values);

  // Test key insertion/deletion in random order.
  DoTest("random:    ", &container, random_values);
}

template <typename T, typename C>
void BtreeMultiTest() {
  ConstTest<T>();

  using V = typename remove_pair_const<typename T::value_type>::type;
  const std::vector<V> random_values = GenerateValuesWithSeed<V>(
      absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values),
      testing::GTEST_FLAG(random_seed));

  multi_checker<T, C> container;

  // Test keys in sorted order.
  std::vector<V> sorted_values(random_values);
  std::sort(sorted_values.begin(), sorted_values.end());
  DoTest("sorted:    ", &container, sorted_values);

  // Test keys in reverse sorted order.
  std::reverse(sorted_values.begin(), sorted_values.end());
  DoTest("rsorted:   ", &container, sorted_values);

  // Test keys in random order.
  DoTest("random:    ", &container, random_values);

  // Test keys in random order w/ duplicates.
  std::vector<V> duplicate_values(random_values);
  duplicate_values.insert(duplicate_values.end(), random_values.begin(),
                          random_values.end());
  DoTest("duplicates:", &container, duplicate_values);

  // Test all identical keys.
  std::vector<V> identical_values(100);
  std::fill(identical_values.begin(), identical_values.end(),
            Generator<V>(2)(2));
  DoTest("identical: ", &container, identical_values);
}

template <typename T>
struct PropagatingCountingAlloc : public CountingAllocator<T> {
  using propagate_on_container_copy_assignment = std::true_type;
  using propagate_on_container_move_assignment = std::true_type;
  using propagate_on_container_swap = std::true_type;

  using Base = CountingAllocator<T>;
  using Base::Base;

  template <typename U>
  explicit PropagatingCountingAlloc(const PropagatingCountingAlloc<U> &other)
      : Base(other.bytes_used_) {}

  template <typename U>
  struct rebind {
    using other = PropagatingCountingAlloc<U>;
  };
};

template <typename T>
void BtreeAllocatorTest() {
  using value_type = typename T::value_type;

  int64_t bytes1 = 0, bytes2 = 0;
  PropagatingCountingAlloc<T> allocator1(&bytes1);
  PropagatingCountingAlloc<T> allocator2(&bytes2);
  Generator<value_type> generator(1000);

  // Test that we allocate properly aligned memory. If we don't, then Layout
  // will assert fail.
  auto unused1 = allocator1.allocate(1);
  auto unused2 = allocator2.allocate(1);

  // Test copy assignment
  {
    T b1(typename T::key_compare(), allocator1);
    T b2(typename T::key_compare(), allocator2);

    int64_t original_bytes1 = bytes1;
    b1.insert(generator(0));
    EXPECT_GT(bytes1, original_bytes1);

    // This should propagate the allocator.
    b1 = b2;
    EXPECT_EQ(b1.size(), 0);
    EXPECT_EQ(b2.size(), 0);
    EXPECT_EQ(bytes1, original_bytes1);

    for (int i = 1; i < 1000; i++) {
      b1.insert(generator(i));
    }

    // We should have allocated out of allocator2.
    EXPECT_GT(bytes2, bytes1);
  }

  // Test move assignment
  {
    T b1(typename T::key_compare(), allocator1);
    T b2(typename T::key_compare(), allocator2);

    int64_t original_bytes1 = bytes1;
    b1.insert(generator(0));
    EXPECT_GT(bytes1, original_bytes1);

    // This should propagate the allocator.
    b1 = std::move(b2);
    EXPECT_EQ(b1.size(), 0);
    EXPECT_EQ(bytes1, original_bytes1);

    for (int i = 1; i < 1000; i++) {
      b1.insert(generator(i));
    }

    // We should have allocated out of allocator2.
    EXPECT_GT(bytes2, bytes1);
  }

  // Test swap
  {
    T b1(typename T::key_compare(), allocator1);
    T b2(typename T::key_compare(), allocator2);

    int64_t original_bytes1 = bytes1;
    b1.insert(generator(0));
    EXPECT_GT(bytes1, original_bytes1);

    // This should swap the allocators.
    swap(b1, b2);
    EXPECT_EQ(b1.size(), 0);
    EXPECT_EQ(b2.size(), 1);
    EXPECT_GT(bytes1, original_bytes1);

    for (int i = 1; i < 1000; i++) {
      b1.insert(generator(i));
    }

    // We should have allocated out of allocator2.
    EXPECT_GT(bytes2, bytes1);
  }

  allocator1.deallocate(unused1, 1);
  allocator2.deallocate(unused2, 1);
}

template <typename T>
void BtreeMapTest() {
  using value_type = typename T::value_type;
  using mapped_type = typename T::mapped_type;

  mapped_type m = Generator<mapped_type>(0)(0);
  (void)m;

  T b;

  // Verify we can insert using operator[].
  for (int i = 0; i < 1000; i++) {
    value_type v = Generator<value_type>(1000)(i);
    b[v.first] = v.second;
  }
  EXPECT_EQ(b.size(), 1000);

  // Test whether we can use the "->" operator on iterators and
  // reverse_iterators. This stresses the btree_map_params::pair_pointer
  // mechanism.
  EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first);
  EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second);
  EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first);
  EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second);
}

template <typename T>
void BtreeMultiMapTest() {
  using mapped_type = typename T::mapped_type;
  mapped_type m = Generator<mapped_type>(0)(0);
  (void)m;
}

template <typename K, int N = 256>
void SetTest() {
  EXPECT_EQ(
      sizeof(absl::btree_set<K>),
      2 * sizeof(void *) + sizeof(typename absl::btree_set<K>::size_type));
  using BtreeSet = absl::btree_set<K>;
  using CountingBtreeSet =
      absl::btree_set<K, std::less<K>, PropagatingCountingAlloc<K>>;
  BtreeTest<BtreeSet, std::set<K>>();
  BtreeAllocatorTest<CountingBtreeSet>();
}

template <typename K, int N = 256>
void MapTest() {
  EXPECT_EQ(
      sizeof(absl::btree_map<K, K>),
      2 * sizeof(void *) + sizeof(typename absl::btree_map<K, K>::size_type));
  using BtreeMap = absl::btree_map<K, K>;
  using CountingBtreeMap =
      absl::btree_map<K, K, std::less<K>,
                      PropagatingCountingAlloc<std::pair<const K, K>>>;
  BtreeTest<BtreeMap, std::map<K, K>>();
  BtreeAllocatorTest<CountingBtreeMap>();
  BtreeMapTest<BtreeMap>();
}

TEST(Btree, set_int32) { SetTest<int32_t>(); }
TEST(Btree, set_int64) { SetTest<int64_t>(); }
TEST(Btree, set_string) { SetTest<std::string>(); }
TEST(Btree, set_cord) { SetTest<absl::Cord>(); }
TEST(Btree, set_pair) { SetTest<std::pair<int, int>>(); }
TEST(Btree, map_int32) { MapTest<int32_t>(); }
TEST(Btree, map_int64) { MapTest<int64_t>(); }
TEST(Btree, map_string) { MapTest<std::string>(); }
TEST(Btree, map_cord) { MapTest<absl::Cord>(); }
TEST(Btree, map_pair) { MapTest<std::pair<int, int>>(); }

template <typename K, int N = 256>
void MultiSetTest() {
  EXPECT_EQ(
      sizeof(absl::btree_multiset<K>),
      2 * sizeof(void *) + sizeof(typename absl::btree_multiset<K>::size_type));
  using BtreeMSet = absl::btree_multiset<K>;
  using CountingBtreeMSet =
      absl::btree_multiset<K, std::less<K>, PropagatingCountingAlloc<K>>;
  BtreeMultiTest<BtreeMSet, std::multiset<K>>();
  BtreeAllocatorTest<CountingBtreeMSet>();
}

template <typename K, int N = 256>
void MultiMapTest() {
  EXPECT_EQ(sizeof(absl::btree_multimap<K, K>),
            2 * sizeof(void *) +
                sizeof(typename absl::btree_multimap<K, K>::size_type));
  using BtreeMMap = absl::btree_multimap<K, K>;
  using CountingBtreeMMap =
      absl::btree_multimap<K, K, std::less<K>,
                           PropagatingCountingAlloc<std::pair<const K, K>>>;
  BtreeMultiTest<BtreeMMap, std::multimap<K, K>>();
  BtreeMultiMapTest<BtreeMMap>();
  BtreeAllocatorTest<CountingBtreeMMap>();
}

TEST(Btree, multiset_int32) { MultiSetTest<int32_t>(); }
TEST(Btree, multiset_int64) { MultiSetTest<int64_t>(); }
TEST(Btree, multiset_string) { MultiSetTest<std::string>(); }
TEST(Btree, multiset_cord) { MultiSetTest<absl::Cord>(); }
TEST(Btree, multiset_pair) { MultiSetTest<std::pair<int, int>>(); }
TEST(Btree, multimap_int32) { MultiMapTest<int32_t>(); }
TEST(Btree, multimap_int64) { MultiMapTest<int64_t>(); }
TEST(Btree, multimap_string) { MultiMapTest<std::string>(); }
TEST(Btree, multimap_cord) { MultiMapTest<absl::Cord>(); }
TEST(Btree, multimap_pair) { MultiMapTest<std::pair<int, int>>(); }

struct CompareIntToString {
  bool operator()(const std::string &a, const std::string &b) const {
    return a < b;
  }
  bool operator()(const std::string &a, int b) const {
    return a < absl::StrCat(b);
  }
  bool operator()(int a, const std::string &b) const {
    return absl::StrCat(a) < b;
  }
  using is_transparent = void;
};

struct NonTransparentCompare {
  template <typename T, typename U>
  bool operator()(const T &t, const U &u) const {
    // Treating all comparators as transparent can cause inefficiencies (see
    // N3657 C++ proposal). Test that for comparators without 'is_transparent'
    // alias (like this one), we do not attempt heterogeneous lookup.
    EXPECT_TRUE((std::is_same<T, U>()));
    return t < u;
  }
};

template <typename T>
bool CanEraseWithEmptyBrace(T t, decltype(t.erase({})) *) {
  return true;
}

template <typename T>
bool CanEraseWithEmptyBrace(T, ...) {
  return false;
}

template <typename T>
void TestHeterogeneous(T table) {
  auto lb = table.lower_bound("3");
  EXPECT_EQ(lb, table.lower_bound(3));
  EXPECT_NE(lb, table.lower_bound(4));
  EXPECT_EQ(lb, table.lower_bound({"3"}));
  EXPECT_NE(lb, table.lower_bound({}));

  auto ub = table.upper_bound("3");
  EXPECT_EQ(ub, table.upper_bound(3));
  EXPECT_NE(ub, table.upper_bound(5));
  EXPECT_EQ(ub, table.upper_bound({"3"}));
  EXPECT_NE(ub, table.upper_bound({}));

  auto er = table.equal_range("3");
  EXPECT_EQ(er, table.equal_range(3));
  EXPECT_NE(er, table.equal_range(4));
  EXPECT_EQ(er, table.equal_range({"3"}));
  EXPECT_NE(er, table.equal_range({}));

  auto it = table.find("3");
  EXPECT_EQ(it, table.find(3));
  EXPECT_NE(it, table.find(4));
  EXPECT_EQ(it, table.find({"3"}));
  EXPECT_NE(it, table.find({}));

  EXPECT_TRUE(table.contains(3));
  EXPECT_FALSE(table.contains(4));
  EXPECT_TRUE(table.count({"3"}));
  EXPECT_FALSE(table.contains({}));

  EXPECT_EQ(1, table.count(3));
  EXPECT_EQ(0, table.count(4));
  EXPECT_EQ(1, table.count({"3"}));
  EXPECT_EQ(0, table.count({}));

  auto copy = table;
  copy.erase(3);
  EXPECT_EQ(table.size() - 1, copy.size());
  copy.erase(4);
  EXPECT_EQ(table.size() - 1, copy.size());
  copy.erase({"5"});
  EXPECT_EQ(table.size() - 2, copy.size());
  EXPECT_FALSE(CanEraseWithEmptyBrace(table, nullptr));

  // Also run it with const T&.
  if (std::is_class<T>()) TestHeterogeneous<const T &>(table);
}

TEST(Btree, HeterogeneousLookup) {
  TestHeterogeneous(btree_set<std::string, CompareIntToString>{"1", "3", "5"});
  TestHeterogeneous(btree_map<std::string, int, CompareIntToString>{
      {"1", 1}, {"3", 3}, {"5", 5}});
  TestHeterogeneous(
      btree_multiset<std::string, CompareIntToString>{"1", "3", "5"});
  TestHeterogeneous(btree_multimap<std::string, int, CompareIntToString>{
      {"1", 1}, {"3", 3}, {"5", 5}});

  // Only maps have .at()
  btree_map<std::string, int, CompareIntToString> map{
      {"", -1}, {"1", 1}, {"3", 3}, {"5", 5}};
  EXPECT_EQ(1, map.at(1));
  EXPECT_EQ(3, map.at({"3"}));
  EXPECT_EQ(-1, map.at({}));
  const auto &cmap = map;
  EXPECT_EQ(1, cmap.at(1));
  EXPECT_EQ(3, cmap.at({"3"}));
  EXPECT_EQ(-1, cmap.at({}));
}

TEST(Btree, NoHeterogeneousLookupWithoutAlias) {
  using StringSet = absl::btree_set<std::string, NonTransparentCompare>;
  StringSet s;
  ASSERT_TRUE(s.insert("hello").second);
  ASSERT_TRUE(s.insert("world").second);
  EXPECT_TRUE(s.end() == s.find("blah"));
  EXPECT_TRUE(s.begin() == s.lower_bound("hello"));
  EXPECT_EQ(1, s.count("world"));
  EXPECT_TRUE(s.contains("hello"));
  EXPECT_TRUE(s.contains("world"));
  EXPECT_FALSE(s.contains("blah"));

  using StringMultiSet =
      absl::btree_multiset<std::string, NonTransparentCompare>;
  StringMultiSet ms;
  ms.insert("hello");
  ms.insert("world");
  ms.insert("world");
  EXPECT_TRUE(ms.end() == ms.find("blah"));
  EXPECT_TRUE(ms.begin() == ms.lower_bound("hello"));
  EXPECT_EQ(2, ms.count("world"));
  EXPECT_TRUE(ms.contains("hello"));
  EXPECT_TRUE(ms.contains("world"));
  EXPECT_FALSE(ms.contains("blah"));
}

TEST(Btree, DefaultTransparent) {
  {
    // `int` does not have a default transparent comparator.
    // The input value is converted to key_type.
    btree_set<int> s = {1};
    double d = 1.1;
    EXPECT_EQ(s.begin(), s.find(d));
    EXPECT_TRUE(s.contains(d));
  }

  {
    // `std::string` has heterogeneous support.
    btree_set<std::string> s = {"A"};
    EXPECT_EQ(s.begin(), s.find(absl::string_view("A")));
    EXPECT_TRUE(s.contains(absl::string_view("A")));
  }
}

class StringLike {
 public:
  StringLike() = default;

  StringLike(const char *s) : s_(s) {  // NOLINT
    ++constructor_calls_;
  }

  bool operator<(const StringLike &a) const { return s_ < a.s_; }

  static void clear_constructor_call_count() { constructor_calls_ = 0; }

  static int constructor_calls() { return constructor_calls_; }

 private:
  static int constructor_calls_;
  std::string s_;
};

int StringLike::constructor_calls_ = 0;

TEST(Btree, HeterogeneousLookupDoesntDegradePerformance) {
  using StringSet = absl::btree_set<StringLike>;
  StringSet s;
  for (int i = 0; i < 100; ++i) {
    ASSERT_TRUE(s.insert(absl::StrCat(i).c_str()).second);
  }
  StringLike::clear_constructor_call_count();
  s.find("50");
  ASSERT_EQ(1, StringLike::constructor_calls());

  StringLike::clear_constructor_call_count();
  s.contains("50");
  ASSERT_EQ(1, StringLike::constructor_calls());

  StringLike::clear_constructor_call_count();
  s.count("50");
  ASSERT_EQ(1, StringLike::constructor_calls());

  StringLike::clear_constructor_call_count();
  s.lower_bound("50");
  ASSERT_EQ(1, StringLike::constructor_calls());

  StringLike::clear_constructor_call_count();
  s.upper_bound("50");
  ASSERT_EQ(1, StringLike::constructor_calls());

  StringLike::clear_constructor_call_count();
  s.equal_range("50");
  ASSERT_EQ(1, StringLike::constructor_calls());

  StringLike::clear_constructor_call_count();
  s.erase("50");
  ASSERT_EQ(1, StringLike::constructor_calls());
}

// Verify that swapping btrees swaps the key comparison functors and that we can
// use non-default constructible comparators.
struct SubstringLess {
  SubstringLess() = delete;
  explicit SubstringLess(int length) : n(length) {}
  bool operator()(const std::string &a, const std::string &b) const {
    return absl::string_view(a).substr(0, n) <
           absl::string_view(b).substr(0, n);
  }
  int n;
};

TEST(Btree, SwapKeyCompare) {
  using SubstringSet = absl::btree_set<std::string, SubstringLess>;
  SubstringSet s1(SubstringLess(1), SubstringSet::allocator_type());
  SubstringSet s2(SubstringLess(2), SubstringSet::allocator_type());

  ASSERT_TRUE(s1.insert("a").second);
  ASSERT_FALSE(s1.insert("aa").second);

  ASSERT_TRUE(s2.insert("a").second);
  ASSERT_TRUE(s2.insert("aa").second);
  ASSERT_FALSE(s2.insert("aaa").second);

  swap(s1, s2);

  ASSERT_TRUE(s1.insert("b").second);
  ASSERT_TRUE(s1.insert("bb").second);
  ASSERT_FALSE(s1.insert("bbb").second);

  ASSERT_TRUE(s2.insert("b").second);
  ASSERT_FALSE(s2.insert("bb").second);
}

TEST(Btree, UpperBoundRegression) {
  // Regress a bug where upper_bound would default-construct a new key_compare
  // instead of copying the existing one.
  using SubstringSet = absl::btree_set<std::string, SubstringLess>;
  SubstringSet my_set(SubstringLess(3));
  my_set.insert("aab");
  my_set.insert("abb");
  // We call upper_bound("aaa").  If this correctly uses the length 3
  // comparator, aaa < aab < abb, so we should get aab as the result.
  // If it instead uses the default-constructed length 2 comparator,
  // aa == aa < ab, so we'll get abb as our result.
  SubstringSet::iterator it = my_set.upper_bound("aaa");
  ASSERT_TRUE(it != my_set.end());
  EXPECT_EQ("aab", *it);
}

TEST(Btree, Comparison) {
  const int kSetSize = 1201;
  absl::btree_set<int64_t> my_set;
  for (int i = 0; i < kSetSize; ++i) {
    my_set.insert(i);
  }
  absl::btree_set<int64_t> my_set_copy(my_set);
  EXPECT_TRUE(my_set_copy == my_set);
  EXPECT_TRUE(my_set == my_set_copy);
  EXPECT_FALSE(my_set_copy != my_set);
  EXPECT_FALSE(my_set != my_set_copy);

  my_set.insert(kSetSize);
  EXPECT_FALSE(my_set_copy == my_set);
  EXPECT_FALSE(my_set == my_set_copy);
  EXPECT_TRUE(my_set_copy != my_set);
  EXPECT_TRUE(my_set != my_set_copy);

  my_set.erase(kSetSize - 1);
  EXPECT_FALSE(my_set_copy == my_set);
  EXPECT_FALSE(my_set == my_set_copy);
  EXPECT_TRUE(my_set_copy != my_set);
  EXPECT_TRUE(my_set != my_set_copy);

  absl::btree_map<std::string, int64_t> my_map;
  for (int i = 0; i < kSetSize; ++i) {
    my_map[std::string(i, 'a')] = i;
  }
  absl::btree_map<std::string, int64_t> my_map_copy(my_map);
  EXPECT_TRUE(my_map_copy == my_map);
  EXPECT_TRUE(my_map == my_map_copy);
  EXPECT_FALSE(my_map_copy != my_map);
  EXPECT_FALSE(my_map != my_map_copy);

  ++my_map_copy[std::string(7, 'a')];
  EXPECT_FALSE(my_map_copy == my_map);
  EXPECT_FALSE(my_map == my_map_copy);
  EXPECT_TRUE(my_map_copy != my_map);
  EXPECT_TRUE(my_map != my_map_copy);

  my_map_copy = my_map;
  my_map["hello"] = kSetSize;
  EXPECT_FALSE(my_map_copy == my_map);
  EXPECT_FALSE(my_map == my_map_copy);
  EXPECT_TRUE(my_map_copy != my_map);
  EXPECT_TRUE(my_map != my_map_copy);

  my_map.erase(std::string(kSetSize - 1, 'a'));
  EXPECT_FALSE(my_map_copy == my_map);
  EXPECT_FALSE(my_map == my_map_copy);
  EXPECT_TRUE(my_map_copy != my_map);
  EXPECT_TRUE(my_map != my_map_copy);
}

TEST(Btree, RangeCtorSanity) {
  std::vector<int> ivec;
  ivec.push_back(1);
  std::map<int, int> imap;
  imap.insert(std::make_pair(1, 2));
  absl::btree_multiset<int> tmset(ivec.begin(), ivec.end());
  absl::btree_multimap<int, int> tmmap(imap.begin(), imap.end());
  absl::btree_set<int> tset(ivec.begin(), ivec.end());
  absl::btree_map<int, int> tmap(imap.begin(), imap.end());
  EXPECT_EQ(1, tmset.size());
  EXPECT_EQ(1, tmmap.size());
  EXPECT_EQ(1, tset.size());
  EXPECT_EQ(1, tmap.size());
}

}  // namespace

class BtreeNodePeer {
 public:
  // Yields the size of a leaf node with a specific number of values.
  template <typename ValueType>
  constexpr static size_t GetTargetNodeSize(size_t target_values_per_node) {
    return btree_node<
        set_params<ValueType, std::less<ValueType>, std::allocator<ValueType>,
                   /*TargetNodeSize=*/256,  // This parameter isn't used here.
                   /*Multi=*/false>>::SizeWithNValues(target_values_per_node);
  }

  // Yields the number of values in a (non-root) leaf node for this btree.
  template <typename Btree>
  constexpr static size_t GetNumValuesPerNode() {
    return btree_node<typename Btree::params_type>::kNodeValues;
  }

  template <typename Btree>
  constexpr static size_t GetMaxFieldType() {
    return std::numeric_limits<
        typename btree_node<typename Btree::params_type>::field_type>::max();
  }

  template <typename Btree>
  constexpr static bool UsesLinearNodeSearch() {
    return btree_node<typename Btree::params_type>::use_linear_search::value;
  }
};

namespace {

class BtreeMapTest : public ::testing::Test {
 public:
  struct Key {};
  struct Cmp {
    template <typename T>
    bool operator()(T, T) const {
      return false;
    }
  };

  struct KeyLin {
    using absl_btree_prefer_linear_node_search = std::true_type;
  };
  struct CmpLin : Cmp {
    using absl_btree_prefer_linear_node_search = std::true_type;
  };

  struct KeyBin {
    using absl_btree_prefer_linear_node_search = std::false_type;
  };
  struct CmpBin : Cmp {
    using absl_btree_prefer_linear_node_search = std::false_type;
  };

  template <typename K, typename C>
  static bool IsLinear() {
    return BtreeNodePeer::UsesLinearNodeSearch<absl::btree_map<K, int, C>>();
  }
};

TEST_F(BtreeMapTest, TestLinearSearchPreferredForKeyLinearViaAlias) {
  // Test requesting linear search by directly exporting an alias.
  EXPECT_FALSE((IsLinear<Key, Cmp>()));
  EXPECT_TRUE((IsLinear<KeyLin, Cmp>()));
  EXPECT_TRUE((IsLinear<Key, CmpLin>()));
  EXPECT_TRUE((IsLinear<KeyLin, CmpLin>()));
}

TEST_F(BtreeMapTest, LinearChoiceTree) {
  // Cmp has precedence, and is forcing binary
  EXPECT_FALSE((IsLinear<Key, CmpBin>()));
  EXPECT_FALSE((IsLinear<KeyLin, CmpBin>()));
  EXPECT_FALSE((IsLinear<KeyBin, CmpBin>()));
  EXPECT_FALSE((IsLinear<int, CmpBin>()));
  EXPECT_FALSE((IsLinear<std::string, CmpBin>()));
  // Cmp has precedence, and is forcing linear
  EXPECT_TRUE((IsLinear<Key, CmpLin>()));
  EXPECT_TRUE((IsLinear<KeyLin, CmpLin>()));
  EXPECT_TRUE((IsLinear<KeyBin, CmpLin>()));
  EXPECT_TRUE((IsLinear<int, CmpLin>()));
  EXPECT_TRUE((IsLinear<std::string, CmpLin>()));
  // Cmp has no preference, Key determines linear vs binary.
  EXPECT_FALSE((IsLinear<Key, Cmp>()));
  EXPECT_TRUE((IsLinear<KeyLin, Cmp>()));
  EXPECT_FALSE((IsLinear<KeyBin, Cmp>()));
  // arithmetic key w/ std::less or std::greater: linear
  EXPECT_TRUE((IsLinear<int, std::less<int>>()));
  EXPECT_TRUE((IsLinear<double, std::greater<double>>()));
  // arithmetic key w/ custom compare: binary
  EXPECT_FALSE((IsLinear<int, Cmp>()));
  // non-arithmetic key: binary
  EXPECT_FALSE((IsLinear<std::string, std::less<std::string>>()));
}

TEST(Btree, BtreeMapCanHoldMoveOnlyTypes) {
  absl::btree_map<std::string, std::unique_ptr<std::string>> m;

  std::unique_ptr<std::string> &v = m["A"];
  EXPECT_TRUE(v == nullptr);
  v.reset(new std::string("X"));

  auto iter = m.find("A");
  EXPECT_EQ("X", *iter->second);
}

TEST(Btree, InitializerListConstructor) {
  absl::btree_set<std::string> set({"a", "b"});
  EXPECT_EQ(set.count("a"), 1);
  EXPECT_EQ(set.count("b"), 1);

  absl::btree_multiset<int> mset({1, 1, 4});
  EXPECT_EQ(mset.count(1), 2);
  EXPECT_EQ(mset.count(4), 1);

  absl::btree_map<int, int> map({{1, 5}, {2, 10}});
  EXPECT_EQ(map[1], 5);
  EXPECT_EQ(map[2], 10);

  absl::btree_multimap<int, int> mmap({{1, 5}, {1, 10}});
  auto range = mmap.equal_range(1);
  auto it = range.first;
  ASSERT_NE(it, range.second);
  EXPECT_EQ(it->second, 5);
  ASSERT_NE(++it, range.second);
  EXPECT_EQ(it->second, 10);
  EXPECT_EQ(++it, range.second);
}

TEST(Btree, InitializerListInsert) {
  absl::btree_set<std::string> set;
  set.insert({"a", "b"});
  EXPECT_EQ(set.count("a"), 1);
  EXPECT_EQ(set.count("b"), 1);

  absl::btree_multiset<int> mset;
  mset.insert({1, 1, 4});
  EXPECT_EQ(mset.count(1), 2);
  EXPECT_EQ(mset.count(4), 1);

  absl::btree_map<int, int> map;
  map.insert({{1, 5}, {2, 10}});
  // Test that inserting one element using an initializer list also works.
  map.insert({3, 15});
  EXPECT_EQ(map[1], 5);
  EXPECT_EQ(map[2], 10);
  EXPECT_EQ(map[3], 15);

  absl::btree_multimap<int, int> mmap;
  mmap.insert({{1, 5}, {1, 10}});
  auto range = mmap.equal_range(1);
  auto it = range.first;
  ASSERT_NE(it, range.second);
  EXPECT_EQ(it->second, 5);
  ASSERT_NE(++it, range.second);
  EXPECT_EQ(it->second, 10);
  EXPECT_EQ(++it, range.second);
}

template <typename Compare, typename K>
void AssertKeyCompareToAdapted() {
  using Adapted = typename key_compare_to_adapter<Compare>::type;
  static_assert(!std::is_same<Adapted, Compare>::value,
                "key_compare_to_adapter should have adapted this comparator.");
  static_assert(
      std::is_same<absl::weak_ordering,
                   absl::result_of_t<Adapted(const K &, const K &)>>::value,
      "Adapted comparator should be a key-compare-to comparator.");
}
template <typename Compare, typename K>
void AssertKeyCompareToNotAdapted() {
  using Unadapted = typename key_compare_to_adapter<Compare>::type;
  static_assert(
      std::is_same<Unadapted, Compare>::value,
      "key_compare_to_adapter shouldn't have adapted this comparator.");
  static_assert(
      std::is_same<bool,
                   absl::result_of_t<Unadapted(const K &, const K &)>>::value,
      "Un-adapted comparator should return bool.");
}

TEST(Btree, KeyCompareToAdapter) {
  AssertKeyCompareToAdapted<std::less<std::string>, std::string>();
  AssertKeyCompareToAdapted<std::greater<std::string>, std::string>();
  AssertKeyCompareToAdapted<std::less<absl::string_view>, absl::string_view>();
  AssertKeyCompareToAdapted<std::greater<absl::string_view>,
                            absl::string_view>();
  AssertKeyCompareToAdapted<std::less<absl::Cord>, absl::Cord>();
  AssertKeyCompareToAdapted<std::greater<absl::Cord>, absl::Cord>();
  AssertKeyCompareToNotAdapted<std::less<int>, int>();
  AssertKeyCompareToNotAdapted<std::greater<int>, int>();
}

TEST(Btree, RValueInsert) {
  InstanceTracker tracker;

  absl::btree_set<MovableOnlyInstance> set;
  set.insert(MovableOnlyInstance(1));
  set.insert(MovableOnlyInstance(3));
  MovableOnlyInstance two(2);
  set.insert(set.find(MovableOnlyInstance(3)), std::move(two));
  auto it = set.find(MovableOnlyInstance(2));
  ASSERT_NE(it, set.end());
  ASSERT_NE(++it, set.end());
  EXPECT_EQ(it->value(), 3);

  absl::btree_multiset<MovableOnlyInstance> mset;
  MovableOnlyInstance zero(0);
  MovableOnlyInstance zero2(0);
  mset.insert(std::move(zero));
  mset.insert(mset.find(MovableOnlyInstance(0)), std::move(zero2));
  EXPECT_EQ(mset.count(MovableOnlyInstance(0)), 2);

  absl::btree_map<int, MovableOnlyInstance> map;
  std::pair<const int, MovableOnlyInstance> p1 = {1, MovableOnlyInstance(5)};
  std::pair<const int, MovableOnlyInstance> p2 = {2, MovableOnlyInstance(10)};
  std::pair<const int, MovableOnlyInstance> p3 = {3, MovableOnlyInstance(15)};
  map.insert(std::move(p1));
  map.insert(std::move(p3));
  map.insert(map.find(3), std::move(p2));
  ASSERT_NE(map.find(2), map.end());
  EXPECT_EQ(map.find(2)->second.value(), 10);

  absl::btree_multimap<int, MovableOnlyInstance> mmap;
  std::pair<const int, MovableOnlyInstance> p4 = {1, MovableOnlyInstance(5)};
  std::pair<const int, MovableOnlyInstance> p5 = {1, MovableOnlyInstance(10)};
  mmap.insert(std::move(p4));
  mmap.insert(mmap.find(1), std::move(p5));
  auto range = mmap.equal_range(1);
  auto it1 = range.first;
  ASSERT_NE(it1, range.second);
  EXPECT_EQ(it1->second.value(), 10);
  ASSERT_NE(++it1, range.second);
  EXPECT_EQ(it1->second.value(), 5);
  EXPECT_EQ(++it1, range.second);

  EXPECT_EQ(tracker.copies(), 0);
  EXPECT_EQ(tracker.swaps(), 0);
}

// A btree set with a specific number of values per node.
template <typename Key, int TargetValuesPerNode, typename Cmp = std::less<Key>>
class SizedBtreeSet
    : public btree_set_container<btree<
          set_params<Key, Cmp, std::allocator<Key>,
                     BtreeNodePeer::GetTargetNodeSize<Key>(TargetValuesPerNode),
                     /*Multi=*/false>>> {
  using Base = typename SizedBtreeSet::btree_set_container;

 public:
  SizedBtreeSet() {}
  using Base::Base;
};

template <typename Set>
void ExpectOperationCounts(const int expected_moves,
                           const int expected_comparisons,
                           const std::vector<int> &values,
                           InstanceTracker *tracker, Set *set) {
  for (const int v : values) set->insert(MovableOnlyInstance(v));
  set->clear();
  EXPECT_EQ(tracker->moves(), expected_moves);
  EXPECT_EQ(tracker->comparisons(), expected_comparisons);
  EXPECT_EQ(tracker->copies(), 0);
  EXPECT_EQ(tracker->swaps(), 0);
  tracker->ResetCopiesMovesSwaps();
}

// Note: when the values in this test change, it is expected to have an impact
// on performance.
TEST(Btree, MovesComparisonsCopiesSwapsTracking) {
  InstanceTracker tracker;
  // Note: this is minimum number of values per node.
  SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3> set3;
  // Note: this is the default number of values per node for a set of int32s
  // (with 64-bit pointers).
  SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61> set61;
  SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100> set100;

  // Don't depend on flags for random values because then the expectations will
  // fail if the flags change.
  std::vector<int> values =
      GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23);

  EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3);
  EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61);
  EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100);
  if (sizeof(void *) == 8) {
    EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<absl::btree_set<int32_t>>(),
              BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>());
  }

  // Test key insertion/deletion in random order.
  ExpectOperationCounts(45281, 132551, values, &tracker, &set3);
  ExpectOperationCounts(386718, 129807, values, &tracker, &set61);
  ExpectOperationCounts(586761, 130310, values, &tracker, &set100);

  // Test key insertion/deletion in sorted order.
  std::sort(values.begin(), values.end());
  ExpectOperationCounts(26638, 92134, values, &tracker, &set3);
  ExpectOperationCounts(20208, 87757, values, &tracker, &set61);
  ExpectOperationCounts(20124, 96583, values, &tracker, &set100);

  // Test key insertion/deletion in reverse sorted order.
  std::reverse(values.begin(), values.end());
  ExpectOperationCounts(49951, 119325, values, &tracker, &set3);
  ExpectOperationCounts(338813, 118266, values, &tracker, &set61);
  ExpectOperationCounts(534529, 125279, values, &tracker, &set100);
}

struct MovableOnlyInstanceThreeWayCompare {
  absl::weak_ordering operator()(const MovableOnlyInstance &a,
                                 const MovableOnlyInstance &b) const {
    return a.compare(b);
  }
};

// Note: when the values in this test change, it is expected to have an impact
// on performance.
TEST(Btree, MovesComparisonsCopiesSwapsTrackingThreeWayCompare) {
  InstanceTracker tracker;
  // Note: this is minimum number of values per node.
  SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3,
                MovableOnlyInstanceThreeWayCompare>
      set3;
  // Note: this is the default number of values per node for a set of int32s
  // (with 64-bit pointers).
  SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61,
                MovableOnlyInstanceThreeWayCompare>
      set61;
  SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100,
                MovableOnlyInstanceThreeWayCompare>
      set100;

  // Don't depend on flags for random values because then the expectations will
  // fail if the flags change.
  std::vector<int> values =
      GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23);

  EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3);
  EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61);
  EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100);
  if (sizeof(void *) == 8) {
    EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<absl::btree_set<int32_t>>(),
              BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>());
  }

  // Test key insertion/deletion in random order.
  ExpectOperationCounts(45281, 122560, values, &tracker, &set3);
  ExpectOperationCounts(386718, 119816, values, &tracker, &set61);
  ExpectOperationCounts(586761, 120319, values, &tracker, &set100);

  // Test key insertion/deletion in sorted order.
  std::sort(values.begin(), values.end());
  ExpectOperationCounts(26638, 92134, values, &tracker, &set3);
  ExpectOperationCounts(20208, 87757, values, &tracker, &set61);
  ExpectOperationCounts(20124, 96583, values, &tracker, &set100);

  // Test key insertion/deletion in reverse sorted order.
  std::reverse(values.begin(), values.end());
  ExpectOperationCounts(49951, 109326, values, &tracker, &set3);
  ExpectOperationCounts(338813, 108267, values, &tracker, &set61);
  ExpectOperationCounts(534529, 115280, values, &tracker, &set100);
}

struct NoDefaultCtor {
  int num;
  explicit NoDefaultCtor(int i) : num(i) {}

  friend bool operator<(const NoDefaultCtor &a, const NoDefaultCtor &b) {
    return a.num < b.num;
  }
};

TEST(Btree, BtreeMapCanHoldNoDefaultCtorTypes) {
  absl::btree_map<NoDefaultCtor, NoDefaultCtor> m;

  for (int i = 1; i <= 99; ++i) {
    SCOPED_TRACE(i);
    EXPECT_TRUE(m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)).second);
  }
  EXPECT_FALSE(m.emplace(NoDefaultCtor(78), NoDefaultCtor(0)).second);

  auto iter99 = m.find(NoDefaultCtor(99));
  ASSERT_NE(iter99, m.end());
  EXPECT_EQ(iter99->second.num, 1);

  auto iter1 = m.find(NoDefaultCtor(1));
  ASSERT_NE(iter1, m.end());
  EXPECT_EQ(iter1->second.num, 99);

  auto iter50 = m.find(NoDefaultCtor(50));
  ASSERT_NE(iter50, m.end());
  EXPECT_EQ(iter50->second.num, 50);

  auto iter25 = m.find(NoDefaultCtor(25));
  ASSERT_NE(iter25, m.end());
  EXPECT_EQ(iter25->second.num, 75);
}

TEST(Btree, BtreeMultimapCanHoldNoDefaultCtorTypes) {
  absl::btree_multimap<NoDefaultCtor, NoDefaultCtor> m;

  for (int i = 1; i <= 99; ++i) {
    SCOPED_TRACE(i);
    m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i));
  }

  auto iter99 = m.find(NoDefaultCtor(99));
  ASSERT_NE(iter99, m.end());
  EXPECT_EQ(iter99->second.num, 1);

  auto iter1 = m.find(NoDefaultCtor(1));
  ASSERT_NE(iter1, m.end());
  EXPECT_EQ(iter1->second.num, 99);

  auto iter50 = m.find(NoDefaultCtor(50));
  ASSERT_NE(iter50, m.end());
  EXPECT_EQ(iter50->second.num, 50);

  auto iter25 = m.find(NoDefaultCtor(25));
  ASSERT_NE(iter25, m.end());
  EXPECT_EQ(iter25->second.num, 75);
}

TEST(Btree, MapAt) {
  absl::btree_map<int, int> map = {{1, 2}, {2, 4}};
  EXPECT_EQ(map.at(1), 2);
  EXPECT_EQ(map.at(2), 4);
  map.at(2) = 8;
  const absl::btree_map<int, int> &const_map = map;
  EXPECT_EQ(const_map.at(1), 2);
  EXPECT_EQ(const_map.at(2), 8);
#ifdef ABSL_HAVE_EXCEPTIONS
  EXPECT_THROW(map.at(3), std::out_of_range);
#else
  EXPECT_DEATH_IF_SUPPORTED(map.at(3), "absl::btree_map::at");
#endif
}

TEST(Btree, BtreeMultisetEmplace) {
  const int value_to_insert = 123456;
  absl::btree_multiset<int> s;
  auto iter = s.emplace(value_to_insert);
  ASSERT_NE(iter, s.end());
  EXPECT_EQ(*iter, value_to_insert);
  auto iter2 = s.emplace(value_to_insert);
  EXPECT_NE(iter2, iter);
  ASSERT_NE(iter2, s.end());
  EXPECT_EQ(*iter2, value_to_insert);
  auto result = s.equal_range(value_to_insert);
  EXPECT_EQ(std::distance(result.first, result.second), 2);
}

TEST(Btree, BtreeMultisetEmplaceHint) {
  const int value_to_insert = 123456;
  absl::btree_multiset<int> s;
  auto iter = s.emplace(value_to_insert);
  ASSERT_NE(iter, s.end());
  EXPECT_EQ(*iter, value_to_insert);
  auto emplace_iter = s.emplace_hint(iter, value_to_insert);
  EXPECT_NE(emplace_iter, iter);
  ASSERT_NE(emplace_iter, s.end());
  EXPECT_EQ(*emplace_iter, value_to_insert);
}

TEST(Btree, BtreeMultimapEmplace) {
  const int key_to_insert = 123456;
  const char value0[] = "a";
  absl::btree_multimap<int, std::string> s;
  auto iter = s.emplace(key_to_insert, value0);
  ASSERT_NE(iter, s.end());
  EXPECT_EQ(iter->first, key_to_insert);
  EXPECT_EQ(iter->second, value0);
  const char value1[] = "b";
  auto iter2 = s.emplace(key_to_insert, value1);
  EXPECT_NE(iter2, iter);
  ASSERT_NE(iter2, s.end());
  EXPECT_EQ(iter2->first, key_to_insert);
  EXPECT_EQ(iter2->second, value1);
  auto result = s.equal_range(key_to_insert);
  EXPECT_EQ(std::distance(result.first, result.second), 2);
}

TEST(Btree, BtreeMultimapEmplaceHint) {
  const int key_to_insert = 123456;
  const char value0[] = "a";
  absl::btree_multimap<int, std::string> s;
  auto iter = s.emplace(key_to_insert, value0);
  ASSERT_NE(iter, s.end());
  EXPECT_EQ(iter->first, key_to_insert);
  EXPECT_EQ(iter->second, value0);
  const char value1[] = "b";
  auto emplace_iter = s.emplace_hint(iter, key_to_insert, value1);
  EXPECT_NE(emplace_iter, iter);
  ASSERT_NE(emplace_iter, s.end());
  EXPECT_EQ(emplace_iter->first, key_to_insert);
  EXPECT_EQ(emplace_iter->second, value1);
}

TEST(Btree, ConstIteratorAccessors) {
  absl::btree_set<int> set;
  for (int i = 0; i < 100; ++i) {
    set.insert(i);
  }

  auto it = set.cbegin();
  auto r_it = set.crbegin();
  for (int i = 0; i < 100; ++i, ++it, ++r_it) {
    ASSERT_EQ(*it, i);
    ASSERT_EQ(*r_it, 99 - i);
  }
  EXPECT_EQ(it, set.cend());
  EXPECT_EQ(r_it, set.crend());
}

TEST(Btree, StrSplitCompatible) {
  const absl::btree_set<std::string> split_set = absl::StrSplit("a,b,c", ',');
  const absl::btree_set<std::string> expected_set = {"a", "b", "c"};

  EXPECT_EQ(split_set, expected_set);
}

// We can't use EXPECT_EQ/etc. to compare absl::weak_ordering because they
// convert literal 0 to int and absl::weak_ordering can only be compared with
// literal 0. Defining this function allows for avoiding ClangTidy warnings.
bool Identity(const bool b) { return b; }

TEST(Btree, ValueComp) {
  absl::btree_set<int> s;
  EXPECT_TRUE(s.value_comp()(1, 2));
  EXPECT_FALSE(s.value_comp()(2, 2));
  EXPECT_FALSE(s.value_comp()(2, 1));

  absl::btree_map<int, int> m1;
  EXPECT_TRUE(m1.value_comp()(std::make_pair(1, 0), std::make_pair(2, 0)));
  EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(2, 0)));
  EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(1, 0)));

  absl::btree_map<std::string, int> m2;
  EXPECT_TRUE(Identity(
      m2.value_comp()(std::make_pair("a", 0), std::make_pair("b", 0)) < 0));
  EXPECT_TRUE(Identity(
      m2.value_comp()(std::make_pair("b", 0), std::make_pair("b", 0)) == 0));
  EXPECT_TRUE(Identity(
      m2.value_comp()(std::make_pair("b", 0), std::make_pair("a", 0)) > 0));
}

TEST(Btree, DefaultConstruction) {
  absl::btree_set<int> s;
  absl::btree_map<int, int> m;
  absl::btree_multiset<int> ms;
  absl::btree_multimap<int, int> mm;

  EXPECT_TRUE(s.empty());
  EXPECT_TRUE(m.empty());
  EXPECT_TRUE(ms.empty());
  EXPECT_TRUE(mm.empty());
}

TEST(Btree, SwissTableHashable) {
  static constexpr int kValues = 10000;
  std::vector<int> values(kValues);
  std::iota(values.begin(), values.end(), 0);
  std::vector<std::pair<int, int>> map_values;
  for (int v : values) map_values.emplace_back(v, -v);

  using set = absl::btree_set<int>;
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
      set{},
      set{1},
      set{2},
      set{1, 2},
      set{2, 1},
      set(values.begin(), values.end()),
      set(values.rbegin(), values.rend()),
  }));

  using mset = absl::btree_multiset<int>;
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
      mset{},
      mset{1},
      mset{1, 1},
      mset{2},
      mset{2, 2},
      mset{1, 2},
      mset{1, 1, 2},
      mset{1, 2, 2},
      mset{1, 1, 2, 2},
      mset(values.begin(), values.end()),
      mset(values.rbegin(), values.rend()),
  }));

  using map = absl::btree_map<int, int>;
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
      map{},
      map{{1, 0}},
      map{{1, 1}},
      map{{2, 0}},
      map{{2, 2}},
      map{{1, 0}, {2, 1}},
      map(map_values.begin(), map_values.end()),
      map(map_values.rbegin(), map_values.rend()),
  }));

  using mmap = absl::btree_multimap<int, int>;
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
      mmap{},
      mmap{{1, 0}},
      mmap{{1, 1}},
      mmap{{1, 0}, {1, 1}},
      mmap{{1, 1}, {1, 0}},
      mmap{{2, 0}},
      mmap{{2, 2}},
      mmap{{1, 0}, {2, 1}},
      mmap(map_values.begin(), map_values.end()),
      mmap(map_values.rbegin(), map_values.rend()),
  }));
}

TEST(Btree, ComparableSet) {
  absl::btree_set<int> s1 = {1, 2};
  absl::btree_set<int> s2 = {2, 3};
  EXPECT_LT(s1, s2);
  EXPECT_LE(s1, s2);
  EXPECT_LE(s1, s1);
  EXPECT_GT(s2, s1);
  EXPECT_GE(s2, s1);
  EXPECT_GE(s1, s1);
}

TEST(Btree, ComparableSetsDifferentLength) {
  absl::btree_set<int> s1 = {1, 2};
  absl::btree_set<int> s2 = {1, 2, 3};
  EXPECT_LT(s1, s2);
  EXPECT_LE(s1, s2);
  EXPECT_GT(s2, s1);
  EXPECT_GE(s2, s1);
}

TEST(Btree, ComparableMultiset) {
  absl::btree_multiset<int> s1 = {1, 2};
  absl::btree_multiset<int> s2 = {2, 3};
  EXPECT_LT(s1, s2);
  EXPECT_LE(s1, s2);
  EXPECT_LE(s1, s1);
  EXPECT_GT(s2, s1);
  EXPECT_GE(s2, s1);
  EXPECT_GE(s1, s1);
}

TEST(Btree, ComparableMap) {
  absl::btree_map<int, int> s1 = {{1, 2}};
  absl::btree_map<int, int> s2 = {{2, 3}};
  EXPECT_LT(s1, s2);
  EXPECT_LE(s1, s2);
  EXPECT_LE(s1, s1);
  EXPECT_GT(s2, s1);
  EXPECT_GE(s2, s1);
  EXPECT_GE(s1, s1);
}

TEST(Btree, ComparableMultimap) {
  absl::btree_multimap<int, int> s1 = {{1, 2}};
  absl::btree_multimap<int, int> s2 = {{2, 3}};
  EXPECT_LT(s1, s2);
  EXPECT_LE(s1, s2);
  EXPECT_LE(s1, s1);
  EXPECT_GT(s2, s1);
  EXPECT_GE(s2, s1);
  EXPECT_GE(s1, s1);
}

TEST(Btree, ComparableSetWithCustomComparator) {
  // As specified by
  // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf section
  // [container.requirements.general].12, ordering associative containers always
  // uses default '<' operator
  // - even if otherwise the container uses custom functor.
  absl::btree_set<int, std::greater<int>> s1 = {1, 2};
  absl::btree_set<int, std::greater<int>> s2 = {2, 3};
  EXPECT_LT(s1, s2);
  EXPECT_LE(s1, s2);
  EXPECT_LE(s1, s1);
  EXPECT_GT(s2, s1);
  EXPECT_GE(s2, s1);
  EXPECT_GE(s1, s1);
}

TEST(Btree, EraseReturnsIterator) {
  absl::btree_set<int> set = {1, 2, 3, 4, 5};
  auto result_it = set.erase(set.begin(), set.find(3));
  EXPECT_EQ(result_it, set.find(3));
  result_it = set.erase(set.find(5));
  EXPECT_EQ(result_it, set.end());
}

TEST(Btree, ExtractAndInsertNodeHandleSet) {
  absl::btree_set<int> src1 = {1, 2, 3, 4, 5};
  auto nh = src1.extract(src1.find(3));
  EXPECT_THAT(src1, ElementsAre(1, 2, 4, 5));
  absl::btree_set<int> other;
  absl::btree_set<int>::insert_return_type res = other.insert(std::move(nh));
  EXPECT_THAT(other, ElementsAre(3));
  EXPECT_EQ(res.position, other.find(3));
  EXPECT_TRUE(res.inserted);
  EXPECT_TRUE(res.node.empty());

  absl::btree_set<int> src2 = {3, 4};
  nh = src2.extract(src2.find(3));
  EXPECT_THAT(src2, ElementsAre(4));
  res = other.insert(std::move(nh));
  EXPECT_THAT(other, ElementsAre(3));
  EXPECT_EQ(res.position, other.find(3));
  EXPECT_FALSE(res.inserted);
  ASSERT_FALSE(res.node.empty());
  EXPECT_EQ(res.node.value(), 3);
}

template <typename Set>
void TestExtractWithTrackingForSet() {
  InstanceTracker tracker;
  {
    Set s;
    // Add enough elements to make sure we test internal nodes too.
    const size_t kSize = 1000;
    while (s.size() < kSize) {
      s.insert(MovableOnlyInstance(s.size()));
    }
    for (int i = 0; i < kSize; ++i) {
      // Extract with key
      auto nh = s.extract(MovableOnlyInstance(i));
      EXPECT_EQ(s.size(), kSize - 1);
      EXPECT_EQ(nh.value().value(), i);
      // Insert with node
      s.insert(std::move(nh));
      EXPECT_EQ(s.size(), kSize);

      // Extract with iterator
      auto it = s.find(MovableOnlyInstance(i));
      nh = s.extract(it);
      EXPECT_EQ(s.size(), kSize - 1);
      EXPECT_EQ(nh.value().value(), i);
      // Insert with node and hint
      s.insert(s.begin(), std::move(nh));
      EXPECT_EQ(s.size(), kSize);
    }
  }
  EXPECT_EQ(0, tracker.instances());
}

template <typename Map>
void TestExtractWithTrackingForMap() {
  InstanceTracker tracker;
  {
    Map m;
    // Add enough elements to make sure we test internal nodes too.
    const size_t kSize = 1000;
    while (m.size() < kSize) {
      m.insert(
          {CopyableMovableInstance(m.size()), MovableOnlyInstance(m.size())});
    }
    for (int i = 0; i < kSize; ++i) {
      // Extract with key
      auto nh = m.extract(CopyableMovableInstance(i));
      EXPECT_EQ(m.size(), kSize - 1);
      EXPECT_EQ(nh.key().value(), i);
      EXPECT_EQ(nh.mapped().value(), i);
      // Insert with node
      m.insert(std::move(nh));
      EXPECT_EQ(m.size(), kSize);

      // Extract with iterator
      auto it = m.find(CopyableMovableInstance(i));
      nh = m.extract(it);
      EXPECT_EQ(m.size(), kSize - 1);
      EXPECT_EQ(nh.key().value(), i);
      EXPECT_EQ(nh.mapped().value(), i);
      // Insert with node and hint
      m.insert(m.begin(), std::move(nh));
      EXPECT_EQ(m.size(), kSize);
    }
  }
  EXPECT_EQ(0, tracker.instances());
}

TEST(Btree, ExtractTracking) {
  TestExtractWithTrackingForSet<absl::btree_set<MovableOnlyInstance>>();
  TestExtractWithTrackingForSet<absl::btree_multiset<MovableOnlyInstance>>();
  TestExtractWithTrackingForMap<
      absl::btree_map<CopyableMovableInstance, MovableOnlyInstance>>();
  TestExtractWithTrackingForMap<
      absl::btree_multimap<CopyableMovableInstance, MovableOnlyInstance>>();
}

TEST(Btree, ExtractAndInsertNodeHandleMultiSet) {
  absl::btree_multiset<int> src1 = {1, 2, 3, 3, 4, 5};
  auto nh = src1.extract(src1.find(3));
  EXPECT_THAT(src1, ElementsAre(1, 2, 3, 4, 5));
  absl::btree_multiset<int> other;
  auto res = other.insert(std::move(nh));
  EXPECT_THAT(other, ElementsAre(3));
  EXPECT_EQ(res, other.find(3));

  absl::btree_multiset<int> src2 = {3, 4};
  nh = src2.extract(src2.find(3));
  EXPECT_THAT(src2, ElementsAre(4));
  res = other.insert(std::move(nh));
  EXPECT_THAT(other, ElementsAre(3, 3));
  EXPECT_EQ(res, ++other.find(3));
}

TEST(Btree, ExtractAndInsertNodeHandleMap) {
  absl::btree_map<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}};
  auto nh = src1.extract(src1.find(3));
  EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6)));
  absl::btree_map<int, int> other;
  absl::btree_map<int, int>::insert_return_type res =
      other.insert(std::move(nh));
  EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
  EXPECT_EQ(res.position, other.find(3));
  EXPECT_TRUE(res.inserted);
  EXPECT_TRUE(res.node.empty());

  absl::btree_map<int, int> src2 = {{3, 6}};
  nh = src2.extract(src2.find(3));
  EXPECT_TRUE(src2.empty());
  res = other.insert(std::move(nh));
  EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
  EXPECT_EQ(res.position, other.find(3));
  EXPECT_FALSE(res.inserted);
  ASSERT_FALSE(res.node.empty());
  EXPECT_EQ(res.node.key(), 3);
  EXPECT_EQ(res.node.mapped(), 6);
}

TEST(Btree, ExtractAndInsertNodeHandleMultiMap) {
  absl::btree_multimap<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}};
  auto nh = src1.extract(src1.find(3));
  EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6)));
  absl::btree_multimap<int, int> other;
  auto res = other.insert(std::move(nh));
  EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
  EXPECT_EQ(res, other.find(3));

  absl::btree_multimap<int, int> src2 = {{3, 6}};
  nh = src2.extract(src2.find(3));
  EXPECT_TRUE(src2.empty());
  res = other.insert(std::move(nh));
  EXPECT_THAT(other, ElementsAre(Pair(3, 4), Pair(3, 6)));
  EXPECT_EQ(res, ++other.begin());
}

// For multisets, insert with hint also affects correctness because we need to
// insert immediately before the hint if possible.
struct InsertMultiHintData {
  int key;
  int not_key;
  bool operator==(const InsertMultiHintData other) const {
    return key == other.key && not_key == other.not_key;
  }
};

struct InsertMultiHintDataKeyCompare {
  using is_transparent = void;
  bool operator()(const InsertMultiHintData a,
                  const InsertMultiHintData b) const {
    return a.key < b.key;
  }
  bool operator()(const int a, const InsertMultiHintData b) const {
    return a < b.key;
  }
  bool operator()(const InsertMultiHintData a, const int b) const {
    return a.key < b;
  }
};

TEST(Btree, InsertHintNodeHandle) {
  // For unique sets, insert with hint is just a performance optimization.
  // Test that insert works correctly when the hint is right or wrong.
  {
    absl::btree_set<int> src = {1, 2, 3, 4, 5};
    auto nh = src.extract(src.find(3));
    EXPECT_THAT(src, ElementsAre(1, 2, 4, 5));
    absl::btree_set<int> other = {0, 100};
    // Test a correct hint.
    auto it = other.insert(other.lower_bound(3), std::move(nh));
    EXPECT_THAT(other, ElementsAre(0, 3, 100));
    EXPECT_EQ(it, other.find(3));

    nh = src.extract(src.find(5));
    // Test an incorrect hint.
    it = other.insert(other.end(), std::move(nh));
    EXPECT_THAT(other, ElementsAre(0, 3, 5, 100));
    EXPECT_EQ(it, other.find(5));
  }

  absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> src =
      {{1, 2}, {3, 4}, {3, 5}};
  auto nh = src.extract(src.lower_bound(3));
  EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 4}));
  absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare>
      other = {{3, 1}, {3, 2}, {3, 3}};
  auto it = other.insert(--other.end(), std::move(nh));
  EXPECT_THAT(
      other, ElementsAre(InsertMultiHintData{3, 1}, InsertMultiHintData{3, 2},
                         InsertMultiHintData{3, 4}, InsertMultiHintData{3, 3}));
  EXPECT_EQ(it, --(--other.end()));

  nh = src.extract(src.find(3));
  EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 5}));
  it = other.insert(other.begin(), std::move(nh));
  EXPECT_THAT(other,
              ElementsAre(InsertMultiHintData{3, 5}, InsertMultiHintData{3, 1},
                          InsertMultiHintData{3, 2}, InsertMultiHintData{3, 4},
                          InsertMultiHintData{3, 3}));
  EXPECT_EQ(it, other.begin());
}

struct IntCompareToCmp {
  absl::weak_ordering operator()(int a, int b) const {
    if (a < b) return absl::weak_ordering::less;
    if (a > b) return absl::weak_ordering::greater;
    return absl::weak_ordering::equivalent;
  }
};

TEST(Btree, MergeIntoUniqueContainers) {
  absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
  absl::btree_multiset<int> src2 = {3, 4, 4, 5};
  absl::btree_set<int> dst;

  dst.merge(src1);
  EXPECT_TRUE(src1.empty());
  EXPECT_THAT(dst, ElementsAre(1, 2, 3));
  dst.merge(src2);
  EXPECT_THAT(src2, ElementsAre(3, 4));
  EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5));
}

TEST(Btree, MergeIntoUniqueContainersWithCompareTo) {
  absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
  absl::btree_multiset<int> src2 = {3, 4, 4, 5};
  absl::btree_set<int, IntCompareToCmp> dst;

  dst.merge(src1);
  EXPECT_TRUE(src1.empty());
  EXPECT_THAT(dst, ElementsAre(1, 2, 3));
  dst.merge(src2);
  EXPECT_THAT(src2, ElementsAre(3, 4));
  EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5));
}

TEST(Btree, MergeIntoMultiContainers) {
  absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
  absl::btree_multiset<int> src2 = {3, 4, 4, 5};
  absl::btree_multiset<int> dst;

  dst.merge(src1);
  EXPECT_TRUE(src1.empty());
  EXPECT_THAT(dst, ElementsAre(1, 2, 3));
  dst.merge(src2);
  EXPECT_TRUE(src2.empty());
  EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5));
}

TEST(Btree, MergeIntoMultiContainersWithCompareTo) {
  absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
  absl::btree_multiset<int> src2 = {3, 4, 4, 5};
  absl::btree_multiset<int, IntCompareToCmp> dst;

  dst.merge(src1);
  EXPECT_TRUE(src1.empty());
  EXPECT_THAT(dst, ElementsAre(1, 2, 3));
  dst.merge(src2);
  EXPECT_TRUE(src2.empty());
  EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5));
}

TEST(Btree, MergeIntoMultiMapsWithDifferentComparators) {
  absl::btree_map<int, int, IntCompareToCmp> src1 = {{1, 1}, {2, 2}, {3, 3}};
  absl::btree_multimap<int, int, std::greater<int>> src2 = {
      {5, 5}, {4, 1}, {4, 4}, {3, 2}};
  absl::btree_multimap<int, int> dst;

  dst.merge(src1);
  EXPECT_TRUE(src1.empty());
  EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3)));
  dst.merge(src2);
  EXPECT_TRUE(src2.empty());
  EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(3, 2),
                               Pair(4, 1), Pair(4, 4), Pair(5, 5)));
}

TEST(Btree, MergeIntoSetMovableOnly) {
  absl::btree_set<MovableOnlyInstance> src;
  src.insert(MovableOnlyInstance(1));
  absl::btree_multiset<MovableOnlyInstance> dst1;
  dst1.insert(MovableOnlyInstance(2));
  absl::btree_set<MovableOnlyInstance> dst2;

  // Test merge into multiset.
  dst1.merge(src);

  EXPECT_TRUE(src.empty());
  // ElementsAre/ElementsAreArray don't work with move-only types.
  ASSERT_THAT(dst1, SizeIs(2));
  EXPECT_EQ(*dst1.begin(), MovableOnlyInstance(1));
  EXPECT_EQ(*std::next(dst1.begin()), MovableOnlyInstance(2));

  // Test merge into set.
  dst2.merge(dst1);

  EXPECT_TRUE(dst1.empty());
  ASSERT_THAT(dst2, SizeIs(2));
  EXPECT_EQ(*dst2.begin(), MovableOnlyInstance(1));
  EXPECT_EQ(*std::next(dst2.begin()), MovableOnlyInstance(2));
}

struct KeyCompareToWeakOrdering {
  template <typename T>
  absl::weak_ordering operator()(const T &a, const T &b) const {
    return a < b ? absl::weak_ordering::less
                 : a == b ? absl::weak_ordering::equivalent
                          : absl::weak_ordering::greater;
  }
};

struct KeyCompareToStrongOrdering {
  template <typename T>
  absl::strong_ordering operator()(const T &a, const T &b) const {
    return a < b ? absl::strong_ordering::less
                 : a == b ? absl::strong_ordering::equal
                          : absl::strong_ordering::greater;
  }
};

TEST(Btree, UserProvidedKeyCompareToComparators) {
  absl::btree_set<int, KeyCompareToWeakOrdering> weak_set = {1, 2, 3};
  EXPECT_TRUE(weak_set.contains(2));
  EXPECT_FALSE(weak_set.contains(4));

  absl::btree_set<int, KeyCompareToStrongOrdering> strong_set = {1, 2, 3};
  EXPECT_TRUE(strong_set.contains(2));
  EXPECT_FALSE(strong_set.contains(4));
}

TEST(Btree, TryEmplaceBasicTest) {
  absl::btree_map<int, std::string> m;

  // Should construct a string from the literal.
  m.try_emplace(1, "one");
  EXPECT_EQ(1, m.size());

  // Try other string constructors and const lvalue key.
  const int key(42);
  m.try_emplace(key, 3, 'a');
  m.try_emplace(2, std::string("two"));

  EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
  EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, std::string>>{
                     {1, "one"}, {2, "two"}, {42, "aaa"}}));
}

TEST(Btree, TryEmplaceWithHintWorks) {
  // Use a counting comparator here to verify that hint is used.
  int calls = 0;
  auto cmp = [&calls](int x, int y) {
    ++calls;
    return x < y;
  };
  using Cmp = decltype(cmp);

  absl::btree_map<int, int, Cmp> m(cmp);
  for (int i = 0; i < 128; ++i) {
    m.emplace(i, i);
  }

  // Sanity check for the comparator
  calls = 0;
  m.emplace(127, 127);
  EXPECT_GE(calls, 4);

  // Try with begin hint:
  calls = 0;
  auto it = m.try_emplace(m.begin(), -1, -1);
  EXPECT_EQ(129, m.size());
  EXPECT_EQ(it, m.begin());
  EXPECT_LE(calls, 2);

  // Try with end hint:
  calls = 0;
  std::pair<int, int> pair1024 = {1024, 1024};
  it = m.try_emplace(m.end(), pair1024.first, pair1024.second);
  EXPECT_EQ(130, m.size());
  EXPECT_EQ(it, --m.end());
  EXPECT_LE(calls, 2);

  // Try value already present, bad hint; ensure no duplicate added:
  calls = 0;
  it = m.try_emplace(m.end(), 16, 17);
  EXPECT_EQ(130, m.size());
  EXPECT_GE(calls, 4);
  EXPECT_EQ(it, m.find(16));

  // Try value already present, hint points directly to it:
  calls = 0;
  it = m.try_emplace(it, 16, 17);
  EXPECT_EQ(130, m.size());
  EXPECT_LE(calls, 2);
  EXPECT_EQ(it, m.find(16));

  m.erase(2);
  EXPECT_EQ(129, m.size());
  auto hint = m.find(3);
  // Try emplace in the middle of two other elements.
  calls = 0;
  m.try_emplace(hint, 2, 2);
  EXPECT_EQ(130, m.size());
  EXPECT_LE(calls, 2);

  EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
}

TEST(Btree, TryEmplaceWithBadHint) {
  absl::btree_map<int, int> m = {{1, 1}, {9, 9}};

  // Bad hint (too small), should still emplace:
  auto it = m.try_emplace(m.begin(), 2, 2);
  EXPECT_EQ(it, ++m.begin());
  EXPECT_THAT(m, ElementsAreArray(
                     std::vector<std::pair<int, int>>{{1, 1}, {2, 2}, {9, 9}}));

  // Bad hint, too large this time:
  it = m.try_emplace(++(++m.begin()), 0, 0);
  EXPECT_EQ(it, m.begin());
  EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, int>>{
                     {0, 0}, {1, 1}, {2, 2}, {9, 9}}));
}

TEST(Btree, TryEmplaceMaintainsSortedOrder) {
  absl::btree_map<int, std::string> m;
  std::pair<int, std::string> pair5 = {5, "five"};

  // Test both lvalue & rvalue emplace.
  m.try_emplace(10, "ten");
  m.try_emplace(pair5.first, pair5.second);
  EXPECT_EQ(2, m.size());
  EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));

  int int100{100};
  m.try_emplace(int100, "hundred");
  m.try_emplace(1, "one");
  EXPECT_EQ(4, m.size());
  EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
}

TEST(Btree, TryEmplaceWithHintAndNoValueArgsWorks) {
  absl::btree_map<int, int> m;
  m.try_emplace(m.end(), 1);
  EXPECT_EQ(0, m[1]);
}

TEST(Btree, TryEmplaceWithHintAndMultipleValueArgsWorks) {
  absl::btree_map<int, std::string> m;
  m.try_emplace(m.end(), 1, 10, 'a');
  EXPECT_EQ(std::string(10, 'a'), m[1]);
}

TEST(Btree, MoveAssignmentAllocatorPropagation) {
  InstanceTracker tracker;

  int64_t bytes1 = 0, bytes2 = 0;
  PropagatingCountingAlloc<MovableOnlyInstance> allocator1(&bytes1);
  PropagatingCountingAlloc<MovableOnlyInstance> allocator2(&bytes2);
  std::less<MovableOnlyInstance> cmp;

  // Test propagating allocator_type.
  {
    absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
                    PropagatingCountingAlloc<MovableOnlyInstance>>
        set1(cmp, allocator1), set2(cmp, allocator2);

    for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));

    tracker.ResetCopiesMovesSwaps();
    set2 = std::move(set1);
    EXPECT_EQ(tracker.moves(), 0);
  }
  // Test non-propagating allocator_type with equal allocators.
  {
    absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
                    CountingAllocator<MovableOnlyInstance>>
        set1(cmp, allocator1), set2(cmp, allocator1);

    for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));

    tracker.ResetCopiesMovesSwaps();
    set2 = std::move(set1);
    EXPECT_EQ(tracker.moves(), 0);
  }
  // Test non-propagating allocator_type with different allocators.
  {
    absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
                    CountingAllocator<MovableOnlyInstance>>
        set1(cmp, allocator1), set2(cmp, allocator2);

    for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));

    tracker.ResetCopiesMovesSwaps();
    set2 = std::move(set1);
    EXPECT_GE(tracker.moves(), 100);
  }
}

TEST(Btree, EmptyTree) {
  absl::btree_set<int> s;
  EXPECT_TRUE(s.empty());
  EXPECT_EQ(s.size(), 0);
  EXPECT_GT(s.max_size(), 0);
}

bool IsEven(int k) { return k % 2 == 0; }

TEST(Btree, EraseIf) {
  // Test that erase_if works with all the container types and supports lambdas.
  {
    absl::btree_set<int> s = {1, 3, 5, 6, 100};
    erase_if(s, [](int k) { return k > 3; });
    EXPECT_THAT(s, ElementsAre(1, 3));
  }
  {
    absl::btree_multiset<int> s = {1, 3, 3, 5, 6, 6, 100};
    erase_if(s, [](int k) { return k <= 3; });
    EXPECT_THAT(s, ElementsAre(5, 6, 6, 100));
  }
  {
    absl::btree_map<int, int> m = {{1, 1}, {3, 3}, {6, 6}, {100, 100}};
    erase_if(m, [](std::pair<const int, int> kv) { return kv.first > 3; });
    EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3)));
  }
  {
    absl::btree_multimap<int, int> m = {{1, 1}, {3, 3}, {3, 6},
                                        {6, 6}, {6, 7}, {100, 6}};
    erase_if(m, [](std::pair<const int, int> kv) { return kv.second == 6; });
    EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3), Pair(6, 7)));
  }
  // Test that erasing all elements from a large set works and test support for
  // function pointers.
  {
    absl::btree_set<int> s;
    for (int i = 0; i < 1000; ++i) s.insert(2 * i);
    erase_if(s, IsEven);
    EXPECT_THAT(s, IsEmpty());
  }
  // Test that erase_if supports other format of function pointers.
  {
    absl::btree_set<int> s = {1, 3, 5, 6, 100};
    erase_if(s, &IsEven);
    EXPECT_THAT(s, ElementsAre(1, 3, 5));
  }
}

TEST(Btree, InsertOrAssign) {
  absl::btree_map<int, int> m = {{1, 1}, {3, 3}};
  using value_type = typename decltype(m)::value_type;

  auto ret = m.insert_or_assign(4, 4);
  EXPECT_EQ(*ret.first, value_type(4, 4));
  EXPECT_TRUE(ret.second);
  ret = m.insert_or_assign(3, 100);
  EXPECT_EQ(*ret.first, value_type(3, 100));
  EXPECT_FALSE(ret.second);

  auto hint_ret = m.insert_or_assign(ret.first, 3, 200);
  EXPECT_EQ(*hint_ret, value_type(3, 200));
  hint_ret = m.insert_or_assign(m.find(1), 0, 1);
  EXPECT_EQ(*hint_ret, value_type(0, 1));
  // Test with bad hint.
  hint_ret = m.insert_or_assign(m.end(), -1, 1);
  EXPECT_EQ(*hint_ret, value_type(-1, 1));

  EXPECT_THAT(m, ElementsAre(Pair(-1, 1), Pair(0, 1), Pair(1, 1), Pair(3, 200),
                             Pair(4, 4)));
}

TEST(Btree, InsertOrAssignMovableOnly) {
  absl::btree_map<int, MovableOnlyInstance> m;
  using value_type = typename decltype(m)::value_type;

  auto ret = m.insert_or_assign(4, MovableOnlyInstance(4));
  EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(4)));
  EXPECT_TRUE(ret.second);
  ret = m.insert_or_assign(4, MovableOnlyInstance(100));
  EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(100)));
  EXPECT_FALSE(ret.second);

  auto hint_ret = m.insert_or_assign(ret.first, 3, MovableOnlyInstance(200));
  EXPECT_EQ(*hint_ret, value_type(3, MovableOnlyInstance(200)));

  EXPECT_EQ(m.size(), 2);
}

TEST(Btree, BitfieldArgument) {
  union {
    int n : 1;
  };
  n = 0;
  absl::btree_map<int, int> m;
  m.erase(n);
  m.count(n);
  m.find(n);
  m.contains(n);
  m.equal_range(n);
  m.insert_or_assign(n, n);
  m.insert_or_assign(m.end(), n, n);
  m.try_emplace(n);
  m.try_emplace(m.end(), n);
  m.at(n);
  m[n];
}

TEST(Btree, SetRangeConstructorAndInsertSupportExplicitConversionComparable) {
  const absl::string_view names[] = {"n1", "n2"};

  absl::btree_set<std::string> name_set1{std::begin(names), std::end(names)};
  EXPECT_THAT(name_set1, ElementsAreArray(names));

  absl::btree_set<std::string> name_set2;
  name_set2.insert(std::begin(names), std::end(names));
  EXPECT_THAT(name_set2, ElementsAreArray(names));
}

// A type that is explicitly convertible from int and counts constructor calls.
struct ConstructorCounted {
  explicit ConstructorCounted(int i) : i(i) { ++constructor_calls; }
  bool operator==(int other) const { return i == other; }

  int i;
  static int constructor_calls;
};
int ConstructorCounted::constructor_calls = 0;

struct ConstructorCountedCompare {
  bool operator()(int a, const ConstructorCounted &b) const { return a < b.i; }
  bool operator()(const ConstructorCounted &a, int b) const { return a.i < b; }
  bool operator()(const ConstructorCounted &a,
                  const ConstructorCounted &b) const {
    return a.i < b.i;
  }
  using is_transparent = void;
};

TEST(Btree,
     SetRangeConstructorAndInsertExplicitConvComparableLimitConstruction) {
  const int i[] = {0, 1, 1};
  ConstructorCounted::constructor_calls = 0;

  absl::btree_set<ConstructorCounted, ConstructorCountedCompare> set{
      std::begin(i), std::end(i)};
  EXPECT_THAT(set, ElementsAre(0, 1));
  EXPECT_EQ(ConstructorCounted::constructor_calls, 2);

  set.insert(std::begin(i), std::end(i));
  EXPECT_THAT(set, ElementsAre(0, 1));
  EXPECT_EQ(ConstructorCounted::constructor_calls, 2);
}

TEST(Btree,
     SetRangeConstructorAndInsertSupportExplicitConversionNonComparable) {
  const int i[] = {0, 1};

  absl::btree_set<std::vector<void *>> s1{std::begin(i), std::end(i)};
  EXPECT_THAT(s1, ElementsAre(IsEmpty(), ElementsAre(IsNull())));

  absl::btree_set<std::vector<void *>> s2;
  s2.insert(std::begin(i), std::end(i));
  EXPECT_THAT(s2, ElementsAre(IsEmpty(), ElementsAre(IsNull())));
}

// libstdc++ included with GCC 4.9 has a bug in the std::pair constructors that
// prevents explicit conversions between pair types.
// We only run this test for the libstdc++ from GCC 7 or newer because we can't
// reliably check the libstdc++ version prior to that release.
#if !defined(__GLIBCXX__) || \
    (defined(_GLIBCXX_RELEASE) && _GLIBCXX_RELEASE >= 7)
TEST(Btree, MapRangeConstructorAndInsertSupportExplicitConversionComparable) {
  const std::pair<absl::string_view, int> names[] = {{"n1", 1}, {"n2", 2}};

  absl::btree_map<std::string, int> name_map1{std::begin(names),
                                              std::end(names)};
  EXPECT_THAT(name_map1, ElementsAre(Pair("n1", 1), Pair("n2", 2)));

  absl::btree_map<std::string, int> name_map2;
  name_map2.insert(std::begin(names), std::end(names));
  EXPECT_THAT(name_map2, ElementsAre(Pair("n1", 1), Pair("n2", 2)));
}

TEST(Btree,
     MapRangeConstructorAndInsertExplicitConvComparableLimitConstruction) {
  const std::pair<int, int> i[] = {{0, 1}, {1, 2}, {1, 3}};
  ConstructorCounted::constructor_calls = 0;

  absl::btree_map<ConstructorCounted, int, ConstructorCountedCompare> map{
      std::begin(i), std::end(i)};
  EXPECT_THAT(map, ElementsAre(Pair(0, 1), Pair(1, 2)));
  EXPECT_EQ(ConstructorCounted::constructor_calls, 2);

  map.insert(std::begin(i), std::end(i));
  EXPECT_THAT(map, ElementsAre(Pair(0, 1), Pair(1, 2)));
  EXPECT_EQ(ConstructorCounted::constructor_calls, 2);
}

TEST(Btree,
     MapRangeConstructorAndInsertSupportExplicitConversionNonComparable) {
  const std::pair<int, int> i[] = {{0, 1}, {1, 2}};

  absl::btree_map<std::vector<void *>, int> m1{std::begin(i), std::end(i)};
  EXPECT_THAT(m1,
              ElementsAre(Pair(IsEmpty(), 1), Pair(ElementsAre(IsNull()), 2)));

  absl::btree_map<std::vector<void *>, int> m2;
  m2.insert(std::begin(i), std::end(i));
  EXPECT_THAT(m2,
              ElementsAre(Pair(IsEmpty(), 1), Pair(ElementsAre(IsNull()), 2)));
}

TEST(Btree, HeterogeneousTryEmplace) {
  absl::btree_map<std::string, int> m;
  std::string s = "key";
  absl::string_view sv = s;
  m.try_emplace(sv, 1);
  EXPECT_EQ(m[s], 1);

  m.try_emplace(m.end(), sv, 2);
  EXPECT_EQ(m[s], 1);
}

TEST(Btree, HeterogeneousOperatorMapped) {
  absl::btree_map<std::string, int> m;
  std::string s = "key";
  absl::string_view sv = s;
  m[sv] = 1;
  EXPECT_EQ(m[s], 1);

  m[sv] = 2;
  EXPECT_EQ(m[s], 2);
}

TEST(Btree, HeterogeneousInsertOrAssign) {
  absl::btree_map<std::string, int> m;
  std::string s = "key";
  absl::string_view sv = s;
  m.insert_or_assign(sv, 1);
  EXPECT_EQ(m[s], 1);

  m.insert_or_assign(m.end(), sv, 2);
  EXPECT_EQ(m[s], 2);
}
#endif

// This test requires std::launder for mutable key access in node handles.
#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606
TEST(Btree, NodeHandleMutableKeyAccess) {
  {
    absl::btree_map<std::string, std::string> map;

    map["key1"] = "mapped";

    auto nh = map.extract(map.begin());
    nh.key().resize(3);
    map.insert(std::move(nh));

    EXPECT_THAT(map, ElementsAre(Pair("key", "mapped")));
  }
  // Also for multimap.
  {
    absl::btree_multimap<std::string, std::string> map;

    map.emplace("key1", "mapped");

    auto nh = map.extract(map.begin());
    nh.key().resize(3);
    map.insert(std::move(nh));

    EXPECT_THAT(map, ElementsAre(Pair("key", "mapped")));
  }
}
#endif

struct MultiKey {
  int i1;
  int i2;
};

bool operator==(const MultiKey a, const MultiKey b) {
  return a.i1 == b.i1 && a.i2 == b.i2;
}

// A heterogeneous comparator that has different equivalence classes for
// different lookup types.
struct MultiKeyComp {
  using is_transparent = void;
  bool operator()(const MultiKey a, const MultiKey b) const {
    if (a.i1 != b.i1) return a.i1 < b.i1;
    return a.i2 < b.i2;
  }
  bool operator()(const int a, const MultiKey b) const { return a < b.i1; }
  bool operator()(const MultiKey a, const int b) const { return a.i1 < b; }
};

TEST(Btree, MultiKeyEqualRange) {
  absl::btree_set<MultiKey, MultiKeyComp> set;

  for (int i = 0; i < 100; ++i) {
    for (int j = 0; j < 100; ++j) {
      set.insert({i, j});
    }
  }

  for (int i = 0; i < 100; ++i) {
    auto equal_range = set.equal_range(i);
    EXPECT_EQ(equal_range.first->i1, i);
    EXPECT_EQ(equal_range.first->i2, 0);
    EXPECT_EQ(std::distance(equal_range.first, equal_range.second), 100) << i;
  }
}

TEST(Btree, MultiKeyErase) {
  absl::btree_set<MultiKey, MultiKeyComp> set = {
      {1, 1}, {2, 1}, {2, 2}, {3, 1}};
  EXPECT_EQ(set.erase(2), 2);
  EXPECT_THAT(set, ElementsAre(MultiKey{1, 1}, MultiKey{3, 1}));
}

TEST(Btree, MultiKeyCount) {
  const absl::btree_set<MultiKey, MultiKeyComp> set = {
      {1, 1}, {2, 1}, {2, 2}, {3, 1}};
  EXPECT_EQ(set.count(2), 2);
}

TEST(Btree, AllocConstructor) {
  using Alloc = CountingAllocator<int>;
  using Set = absl::btree_set<int, std::less<int>, Alloc>;
  int64_t bytes_used = 0;
  Alloc alloc(&bytes_used);
  Set set(alloc);

  set.insert({1, 2, 3});

  EXPECT_THAT(set, ElementsAre(1, 2, 3));
  EXPECT_GT(bytes_used, set.size() * sizeof(int));
}

TEST(Btree, AllocInitializerListConstructor) {
  using Alloc = CountingAllocator<int>;
  using Set = absl::btree_set<int, std::less<int>, Alloc>;
  int64_t bytes_used = 0;
  Alloc alloc(&bytes_used);
  Set set({1, 2, 3}, alloc);

  EXPECT_THAT(set, ElementsAre(1, 2, 3));
  EXPECT_GT(bytes_used, set.size() * sizeof(int));
}

TEST(Btree, AllocRangeConstructor) {
  using Alloc = CountingAllocator<int>;
  using Set = absl::btree_set<int, std::less<int>, Alloc>;
  int64_t bytes_used = 0;
  Alloc alloc(&bytes_used);
  std::vector<int> v = {1, 2, 3};
  Set set(v.begin(), v.end(), alloc);

  EXPECT_THAT(set, ElementsAre(1, 2, 3));
  EXPECT_GT(bytes_used, set.size() * sizeof(int));
}

TEST(Btree, AllocCopyConstructor) {
  using Alloc = CountingAllocator<int>;
  using Set = absl::btree_set<int, std::less<int>, Alloc>;
  int64_t bytes_used1 = 0;
  Alloc alloc1(&bytes_used1);
  Set set1(alloc1);

  set1.insert({1, 2, 3});

  int64_t bytes_used2 = 0;
  Alloc alloc2(&bytes_used2);
  Set set2(set1, alloc2);

  EXPECT_THAT(set1, ElementsAre(1, 2, 3));
  EXPECT_THAT(set2, ElementsAre(1, 2, 3));
  EXPECT_GT(bytes_used1, set1.size() * sizeof(int));
  EXPECT_EQ(bytes_used1, bytes_used2);
}

TEST(Btree, AllocMoveConstructor_SameAlloc) {
  using Alloc = CountingAllocator<int>;
  using Set = absl::btree_set<int, std::less<int>, Alloc>;
  int64_t bytes_used = 0;
  Alloc alloc(&bytes_used);
  Set set1(alloc);

  set1.insert({1, 2, 3});

  const int64_t original_bytes_used = bytes_used;
  EXPECT_GT(original_bytes_used, set1.size() * sizeof(int));

  Set set2(std::move(set1), alloc);

  EXPECT_THAT(set2, ElementsAre(1, 2, 3));
  EXPECT_EQ(bytes_used, original_bytes_used);
}

TEST(Btree, AllocMoveConstructor_DifferentAlloc) {
  using Alloc = CountingAllocator<int>;
  using Set = absl::btree_set<int, std::less<int>, Alloc>;
  int64_t bytes_used1 = 0;
  Alloc alloc1(&bytes_used1);
  Set set1(alloc1);

  set1.insert({1, 2, 3});

  const int64_t original_bytes_used = bytes_used1;
  EXPECT_GT(original_bytes_used, set1.size() * sizeof(int));

  int64_t bytes_used2 = 0;
  Alloc alloc2(&bytes_used2);
  Set set2(std::move(set1), alloc2);

  EXPECT_THAT(set2, ElementsAre(1, 2, 3));
  // We didn't free these bytes allocated by `set1` yet.
  EXPECT_EQ(bytes_used1, original_bytes_used);
  EXPECT_EQ(bytes_used2, original_bytes_used);
}

}  // namespace
}  // namespace container_internal
ABSL_NAMESPACE_END
}  // namespace absl