//
// immer: immutable data structures for C++
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
//
// This software is distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
//
#include "extra/fuzzer/fuzzer_input.hpp"
#include <array>
#include <catch.hpp>
#include <immer/flex_vector.hpp>
#include <immer/flex_vector_transient.hpp>
#include <immer/heap/gc_heap.hpp>
#include <immer/refcount/no_refcount_policy.hpp>
#include <iostream>
#define IMMER_FUZZED_TRACE_ENABLE 0
#if IMMER_FUZZED_TRACE_ENABLE
#define IMMER_FUZZED_TRACE(...) std::cout << __VA_ARGS__ << std::endl;
#else
#define IMMER_FUZZED_TRACE(...)
#endif
using gc_memory = immer::memory_policy<immer::heap_policy<immer::gc_heap>,
immer::no_refcount_policy,
immer::gc_transience_policy,
false>;
namespace {
template <std::size_t VarCount = 4, unsigned Bits = 2>
int run_input(const std::uint8_t* data, std::size_t size)
{
using vector_t = immer::flex_vector<int, gc_memory, Bits, Bits>;
using transient_t = typename vector_t::transient_type;
using size_t = std::uint8_t;
auto vs = std::array<vector_t, VarCount>{};
auto ts = std::array<transient_t, VarCount>{};
#if IMMER_FUZZED_TRACE_ENABLE
std::cout << "/// new test run" << std::endl;
for (auto i = 0; i < VarCount; ++i)
std::cout << "auto v" << i << " = vector_t{};" << std::endl;
for (auto i = 0; i < VarCount; ++i)
std::cout << "auto t" << i << " = transient_t{};" << std::endl;
#endif
auto is_valid_var = [&](auto idx) { return idx >= 0 && idx < VarCount; };
auto is_valid_var_neq = [](auto other) {
return [=](auto idx) {
return idx >= 0 && idx < VarCount && idx != other;
};
};
auto is_valid_index = [](auto& v) {
return [&](auto idx) { return idx >= 0 && idx < v.size(); };
};
auto is_valid_size = [](auto& v) {
return [&](auto idx) { return idx >= 0 && idx <= v.size(); };
};
auto can_concat = [](auto&& v1, auto&& v2) {
using size_type = decltype(v1.size());
auto max = std::numeric_limits<size_type>::max() >> (Bits * 4);
return v1.size() < max && v2.size() < max;
};
return fuzzer_input{data, size}.run([&](auto& in) {
enum ops
{
op_transient,
op_persistent,
op_push_back,
op_update,
op_take,
op_drop,
op_concat,
op_push_back_mut,
op_update_mut,
op_take_mut,
op_drop_mut,
op_prepend_mut,
op_prepend_mut_move,
op_append_mut,
op_append_mut_move,
};
auto dst = read<std::uint8_t>(in, is_valid_var);
switch (read<char>(in)) {
case op_transient: {
auto src = read<std::uint8_t>(in, is_valid_var);
IMMER_FUZZED_TRACE("t" << +dst << " = v" << +src
<< ".transient();");
ts[dst] = vs[src].transient();
break;
}
case op_persistent: {
auto src = read<std::uint8_t>(in, is_valid_var);
IMMER_FUZZED_TRACE("v" << +dst << " = t" << +src
<< ".persistent();");
vs[dst] = ts[src].persistent();
break;
}
case op_push_back: {
auto src = read<std::uint8_t>(in, is_valid_var);
IMMER_FUZZED_TRACE("v" << +dst << " = v" << +src
<< ".push_back(42);");
vs[dst] = vs[src].push_back(42);
break;
}
case op_update: {
auto src = read<std::uint8_t>(in, is_valid_var);
auto idx = read<size_t>(in, is_valid_index(vs[src]));
IMMER_FUZZED_TRACE("v" << +dst << " = v" << +src << ".update("
<< +idx
<< ", [] (auto x) { return x + 1; });");
vs[dst] = vs[src].update(idx, [](auto x) { return x + 1; });
break;
}
case op_take: {
auto src = read<std::uint8_t>(in, is_valid_var);
auto idx = read<size_t>(in, is_valid_size(vs[src]));
IMMER_FUZZED_TRACE("v" << +dst << " = v" << +src << ".take(" << +idx
<< ");");
vs[dst] = vs[src].take(idx);
break;
}
case op_drop: {
auto src = read<std::uint8_t>(in, is_valid_var);
auto idx = read<size_t>(in, is_valid_size(vs[src]));
IMMER_FUZZED_TRACE("v" << +dst << " = v" << +src << ".take(" << +idx
<< ");");
vs[dst] = vs[src].drop(idx);
break;
}
case op_concat: {
auto src = read<std::uint8_t>(in, is_valid_var);
auto src2 = read<std::uint8_t>(in, is_valid_var);
if (can_concat(vs[src], vs[src2])) {
IMMER_FUZZED_TRACE("v" << +dst << " = v" << +src << " + v"
<< +src2 << ";");
vs[dst] = vs[src] + vs[src2];
}
break;
}
case op_push_back_mut: {
IMMER_FUZZED_TRACE("t" << +dst << ".push_back(13);");
ts[dst].push_back(13);
break;
}
case op_update_mut: {
auto idx = read<size_t>(in, is_valid_index(ts[dst]));
IMMER_FUZZED_TRACE("t" << +dst << ".update(" << +idx
<< ", [] (auto x) { return x + 1; });");
ts[dst].update(idx, [](auto x) { return x + 1; });
break;
}
case op_take_mut: {
auto idx = read<size_t>(in, is_valid_size(ts[dst]));
IMMER_FUZZED_TRACE("t" << +dst << ").take(" << +idx << ");");
ts[dst].take(idx);
break;
}
case op_prepend_mut: {
auto src = read<std::uint8_t>(in, is_valid_var_neq(dst));
if (can_concat(ts[dst], ts[src])) {
IMMER_FUZZED_TRACE("t" << +dst << ".prepend(t" << +src << ");");
ts[dst].prepend(ts[src]);
}
break;
}
case op_prepend_mut_move: {
auto src = read<std::uint8_t>(in, is_valid_var_neq(dst));
if (can_concat(ts[dst], ts[src])) {
IMMER_FUZZED_TRACE("t" << +dst << ".prepend(std::move(t" << +src
<< "));"
<< " t" << +src << " = {};");
ts[dst].prepend(std::move(ts[src]));
ts[src] = {};
}
break;
}
case op_append_mut: {
auto src = read<std::uint8_t>(in, is_valid_var_neq(dst));
if (can_concat(ts[dst], ts[src])) {
IMMER_FUZZED_TRACE("t" << +dst << ".append(t" << +src << ");");
ts[dst].append(ts[src]);
}
break;
}
case op_append_mut_move: {
auto src = read<std::uint8_t>(in, is_valid_var_neq(dst));
if (can_concat(ts[dst], ts[src])) {
IMMER_FUZZED_TRACE("t" << +dst << ".append(std::move(t" << +src
<< "));"
<< " t" << +src << " = {};");
ts[dst].append(std::move(ts[src]));
ts[src] = {};
}
break;
}
default:
break;
};
return true;
});
}
} // namespace
TEST_CASE("bug: concatenating transients")
{
// When concatenating two transients vectors the nodes from the
// argument become aliased in the result. As such, we need to
// reset the identitiy of the argument.
SECTION("simplified")
{
using vector_t = immer::flex_vector<int, gc_memory, 2, 2>;
auto t0 = vector_t{}.transient();
t0.push_back(42);
t0.push_back(42);
t0.push_back(42);
t0.push_back(42);
t0.push_back(42);
t0.push_back(42);
auto t1 = t0;
t1.append(t0);
t1.append(t0);
t0.append(t1);
t1.append(t0);
}
#if __GNUC__ != 9
SECTION("")
{
constexpr std::uint8_t input[] = {
0x2, 0x2, 0x2, 0x2, 0x29, 0x32, 0x0, 0x0, 0x2, 0x2, 0x2,
0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x6, 0x2,
0x2, 0x2, 0x2, 0x2, 0x6, 0x2, 0x2, 0x2, 0x0, 0x38, 0x2,
0x0, 0x0, 0x2, 0x2, 0xd, 0x0, 0x0, 0x3b, 0xff, 0x3a, 0x2,
0xd, 0xd, 0x2, 0x0, 0x0, 0x10, 0xe, 0x0, 0xd, 0x0, 0x0,
0x2, 0x2, 0xd, 0x0, 0x1, 0x5,
};
CHECK(run_input(input, sizeof(input)) == 0);
}
#endif
}
TEST_CASE("bug: concatenating moved transients")
{
// A moved from concatenated transient is totally smashed, we can
// not do anything with it but reasign...
SECTION("simplified")
{
using vector_t = immer::flex_vector<int, gc_memory, 2, 2>;
using transient_t = typename vector_t::transient_type;
auto v0 = vector_t{};
auto t0 = transient_t{};
auto t2 = transient_t{};
v0 = v0.push_back(42);
t2 = v0.transient();
v0 = v0 + v0;
v0 = v0 + v0;
v0 = v0 + v0;
v0 = v0 + v0;
t0 = v0.transient();
t0 = v0.transient();
t0.append(std::move(t2));
t2 = {};
t2.append(std::move(t0));
}
#if __GNUC__ != 9
SECTION("")
{
constexpr std::uint8_t input[] = {
0x0, 0x2, 0x0, 0x2, 0x0, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0,
0x6, 0x0, 0x0, 0x0, 0x9d, 0x0, 0x6, 0x0, 0x0, 0x0, 0x6,
0x0, 0x0, 0x0, 0x9d, 0x28, 0x0, 0x0, 0x0, 0x0, 0x0, 0xf7,
0xc5, 0x0, 0xa, 0xa, 0x0, 0xfa, 0xe7, 0xff, 0xe7, 0xff, 0x0,
0xe, 0x2, 0x9, 0x0, 0x28, 0x2, 0xe, 0x0, 0x0, 0x2, 0xd,
0x0, 0x0, 0x28, 0x0, 0xd, 0x2, 0x5, 0x0, 0x2,
};
CHECK(run_input(input, sizeof(input)) == 0);
}
#endif
SECTION("simplified")
{
using vector_t = immer::flex_vector<int, gc_memory, 2, 2>;
using transient_t = typename vector_t::transient_type;
auto v0 = vector_t{};
auto t0 = transient_t{};
auto t2 = transient_t{};
v0 = v0.push_back(42);
v0 = v0.push_back(42);
v0 = v0 + v0;
t0 = v0.transient();
t2.prepend(std::move(t0));
t0 = {};
t0 = v0.transient();
t0.push_back(13);
t2.append(std::move(t0));
t0 = {};
t0 = v0.transient();
t0.push_back(13);
t2.prepend(std::move(t0));
t0 = {};
}
#if __GNUC__ != 9
SECTION("")
{
return;
constexpr std::uint8_t input[] = {
0x0, 0x2, 0x0, 0x0, 0x2, 0xb7, 0x1, 0x36, 0x40, 0x0, 0x0,
0x0, 0x0, 0xb6, 0x0, 0x2, 0x0, 0x0, 0x6, 0xe, 0x0, 0x0,
0xfe, 0x0, 0x0, 0xff, 0x0, 0x2, 0xc, 0xff, 0xfc, 0x29, 0x0,
0x0, 0x0, 0x0, 0x0, 0x7, 0x2, 0xe, 0xff, 0xfc, 0x29, 0x0,
0x0, 0x0, 0x0, 0x0, 0x7, 0x3, 0x0, 0x0, 0x2, 0xc, 0x2,
0xc, 0x0, 0xd, 0x0, 0x0, 0x0, 0x0, 0x25, 0x6,
};
CHECK(run_input(input, sizeof(input)) == 0);
}
#endif
}
TEST_CASE("bug: aegsdas")
{
SECTION("simplified")
{
using vector_t = immer::flex_vector<int, gc_memory, 2, 2>;
using transient_t = typename vector_t::transient_type;
auto v2 = vector_t{};
auto t0 = transient_t{};
auto t1 = transient_t{};
v2 = v2.push_back(42);
v2 = v2.push_back(42);
v2 = v2.push_back(42);
v2 = v2.push_back(42);
v2 = v2.push_back(42);
t0 = v2.transient();
t1.prepend(t0);
t1.prepend(t0);
t1.prepend(t0);
t0.prepend(std::move(t1));
t1 = {};
}
#if __GNUC__ != 9
SECTION("")
{
constexpr std::uint8_t input[] = {
0xff, 0xff, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
0x82, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x0, 0x0, 0x3d, 0x0,
0x0, 0x0, 0x2, 0x84, 0x0, 0x3b, 0x1, 0xb, 0x0, 0xa, 0x1,
0xb, 0x0, 0x0, 0x3, 0x2, 0x0, 0x3b, 0x1, 0xb, 0x1, 0x0,
0x0, 0xc, 0xb, 0x1, 0x8, 0xff, 0xff, 0xfc, 0xfd, 0x0, 0x3b,
0x3, 0x2, 0x0, 0x3b, 0x1, 0x9, 0x1, 0x3b,
};
CHECK(run_input(input, sizeof(input)) == 0);
}
#endif
}