/* linenoise.c -- guerrilla line editing library against the idea that a
* line editing lib needs to be 20,000 lines of C code.
*
* Copyright (c) 2010, Salvatore Sanfilippo <antirez at gmail dot com>
* Copyright (c) 2010, Pieter Noordhuis <pcnoordhuis at gmail dot com>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* line editing lib needs to be 20,000 lines of C code.
*
* You can find the latest source code at:
*
* http://github.com/antirez/linenoise
*
* Does a number of crazy assumptions that happen to be true in 99.9999% of
* the 2010 UNIX computers around.
*
* References:
* - http://invisible-island.net/xterm/ctlseqs/ctlseqs.html
* - http://www.3waylabs.com/nw/WWW/products/wizcon/vt220.html
*
* Todo list:
* - Switch to gets() if $TERM is something we can't support.
* - Filter bogus Ctrl+<char> combinations.
* - Win32 support
*
* Bloat:
* - Completion?
* - History search like Ctrl+r in readline?
*
* List of escape sequences used by this program, we do everything just
* with three sequences. In order to be so cheap we may have some
* flickering effect with some slow terminal, but the lesser sequences
* the more compatible.
*
* CHA (Cursor Horizontal Absolute)
* Sequence: ESC [ n G
* Effect: moves cursor to column n (1 based)
*
* EL (Erase Line)
* Sequence: ESC [ n K
* Effect: if n is 0 or missing, clear from cursor to end of line
* Effect: if n is 1, clear from beginning of line to cursor
* Effect: if n is 2, clear entire line
*
* CUF (Cursor Forward)
* Sequence: ESC [ n C
* Effect: moves cursor forward of n chars
*
* The following are used to clear the screen: ESC [ H ESC [ 2 J
* This is actually composed of two sequences:
*
* cursorhome
* Sequence: ESC [ H
* Effect: moves the cursor to upper left corner
*
* ED2 (Clear entire screen)
* Sequence: ESC [ 2 J
* Effect: clear the whole screen
*
*/
#ifdef _WIN32
#include <conio.h>
#include <windows.h>
#include <io.h>
#if defined(_MSC_VER) && _MSC_VER < 1900
#define snprintf _snprintf // Microsoft headers use underscores in some names
#endif
#if !defined GNUC
#define strcasecmp _stricmp
#endif
#define strdup _strdup
#define isatty _isatty
#define write _write
#define STDIN_FILENO 0
#else /* _WIN32 */
#include <signal.h>
#include <termios.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <cctype>
#include <wctype.h>
#endif /* _WIN32 */
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include "linenoise.h"
#include "ConvertUTF.h"
#include <string>
#include <vector>
#include <memory>
using std::string;
using std::vector;
using std::unique_ptr;
using namespace linenoise_ng;
typedef unsigned char char8_t;
static ConversionResult copyString8to32(char32_t* dst, size_t dstSize,
size_t& dstCount, const char* src) {
const UTF8* sourceStart = reinterpret_cast<const UTF8*>(src);
const UTF8* sourceEnd = sourceStart + strlen(src);
UTF32* targetStart = reinterpret_cast<UTF32*>(dst);
UTF32* targetEnd = targetStart + dstSize;
ConversionResult res = ConvertUTF8toUTF32(
&sourceStart, sourceEnd, &targetStart, targetEnd, lenientConversion);
if (res == conversionOK) {
dstCount = targetStart - reinterpret_cast<UTF32*>(dst);
if (dstCount < dstSize) {
*targetStart = 0;
}
}
return res;
}
static ConversionResult copyString8to32(char32_t* dst, size_t dstSize,
size_t& dstCount, const char8_t* src) {
return copyString8to32(dst, dstSize, dstCount,
reinterpret_cast<const char*>(src));
}
static size_t strlen32(const char32_t* str) {
const char32_t* ptr = str;
while (*ptr) {
++ptr;
}
return ptr - str;
}
static size_t strlen8(const char8_t* str) {
return strlen(reinterpret_cast<const char*>(str));
}
static char8_t* strdup8(const char* src) {
return reinterpret_cast<char8_t*>(strdup(src));
}
#ifdef _WIN32
static const int FOREGROUND_WHITE =
FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUE;
static const int BACKGROUND_WHITE =
BACKGROUND_RED | BACKGROUND_GREEN | BACKGROUND_BLUE;
static const int INTENSITY = FOREGROUND_INTENSITY | BACKGROUND_INTENSITY;
class WinAttributes {
public:
WinAttributes() {
CONSOLE_SCREEN_BUFFER_INFO info;
GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &info);
_defaultAttribute = info.wAttributes & INTENSITY;
_defaultColor = info.wAttributes & FOREGROUND_WHITE;
_defaultBackground = info.wAttributes & BACKGROUND_WHITE;
_consoleAttribute = _defaultAttribute;
_consoleColor = _defaultColor | _defaultBackground;
}
public:
int _defaultAttribute;
int _defaultColor;
int _defaultBackground;
int _consoleAttribute;
int _consoleColor;
};
static WinAttributes WIN_ATTR;
static void copyString32to16(char16_t* dst, size_t dstSize, size_t* dstCount,
const char32_t* src, size_t srcSize) {
const UTF32* sourceStart = reinterpret_cast<const UTF32*>(src);
const UTF32* sourceEnd = sourceStart + srcSize;
char16_t* targetStart = reinterpret_cast<char16_t*>(dst);
char16_t* targetEnd = targetStart + dstSize;
ConversionResult res = ConvertUTF32toUTF16(
&sourceStart, sourceEnd, &targetStart, targetEnd, lenientConversion);
if (res == conversionOK) {
*dstCount = targetStart - reinterpret_cast<char16_t*>(dst);
if (*dstCount < dstSize) {
*targetStart = 0;
}
}
}
#endif
static void copyString32to8(char* dst, size_t dstSize, size_t* dstCount,
const char32_t* src, size_t srcSize) {
const UTF32* sourceStart = reinterpret_cast<const UTF32*>(src);
const UTF32* sourceEnd = sourceStart + srcSize;
UTF8* targetStart = reinterpret_cast<UTF8*>(dst);
UTF8* targetEnd = targetStart + dstSize;
ConversionResult res = ConvertUTF32toUTF8(
&sourceStart, sourceEnd, &targetStart, targetEnd, lenientConversion);
if (res == conversionOK) {
*dstCount = targetStart - reinterpret_cast<UTF8*>(dst);
if (*dstCount < dstSize) {
*targetStart = 0;
}
}
}
static void copyString32to8(char* dst, size_t dstLen, const char32_t* src) {
size_t dstCount = 0;
copyString32to8(dst, dstLen, &dstCount, src, strlen32(src));
}
static void copyString32(char32_t* dst, const char32_t* src, size_t len) {
while (0 < len && *src) {
*dst++ = *src++;
--len;
}
*dst = 0;
}
static int strncmp32(const char32_t* left, const char32_t* right, size_t len) {
while (0 < len && *left) {
if (*left != *right) {
return *left - *right;
}
++left;
++right;
--len;
}
return 0;
}
#ifdef _WIN32
#include <iostream>
static size_t OutputWin(char16_t* text16, char32_t* text32, size_t len32) {
size_t count16 = 0;
copyString32to16(text16, len32, &count16, text32, len32);
WriteConsoleW(GetStdHandle(STD_OUTPUT_HANDLE), text16,
static_cast<DWORD>(count16), nullptr, nullptr);
return count16;
}
static char32_t* HandleEsc(char32_t* p, char32_t* end) {
if (*p == '[') {
int code = 0;
for (++p; p < end; ++p) {
char32_t c = *p;
if ('0' <= c && c <= '9') {
code = code * 10 + (c - '0');
} else if (c == 'm' || c == ';') {
switch (code) {
case 0:
WIN_ATTR._consoleAttribute = WIN_ATTR._defaultAttribute;
WIN_ATTR._consoleColor =
WIN_ATTR._defaultColor | WIN_ATTR._defaultBackground;
break;
case 1: // BOLD
case 5: // BLINK
WIN_ATTR._consoleAttribute =
(WIN_ATTR._defaultAttribute ^ FOREGROUND_INTENSITY) & INTENSITY;
break;
case 30:
WIN_ATTR._consoleColor = BACKGROUND_WHITE;
break;
case 31:
WIN_ATTR._consoleColor =
FOREGROUND_RED | WIN_ATTR._defaultBackground;
break;
case 32:
WIN_ATTR._consoleColor =
FOREGROUND_GREEN | WIN_ATTR._defaultBackground;
break;
case 33:
WIN_ATTR._consoleColor =
FOREGROUND_RED | FOREGROUND_GREEN | WIN_ATTR._defaultBackground;
break;
case 34:
WIN_ATTR._consoleColor =
FOREGROUND_BLUE | WIN_ATTR._defaultBackground;
break;
case 35:
WIN_ATTR._consoleColor =
FOREGROUND_BLUE | FOREGROUND_RED | WIN_ATTR._defaultBackground;
break;
case 36:
WIN_ATTR._consoleColor = FOREGROUND_BLUE | FOREGROUND_GREEN |
WIN_ATTR._defaultBackground;
break;
case 37:
WIN_ATTR._consoleColor = FOREGROUND_GREEN | FOREGROUND_RED |
FOREGROUND_BLUE |
WIN_ATTR._defaultBackground;
break;
}
code = 0;
}
if (*p == 'm') {
++p;
break;
}
}
} else {
++p;
}
auto handle = GetStdHandle(STD_OUTPUT_HANDLE);
SetConsoleTextAttribute(handle,
WIN_ATTR._consoleAttribute | WIN_ATTR._consoleColor);
return p;
}
static size_t WinWrite32(char16_t* text16, char32_t* text32, size_t len32) {
char32_t* p = text32;
char32_t* q = p;
char32_t* e = text32 + len32;
size_t count16 = 0;
while (p < e) {
if (*p == 27) {
if (q < p) {
count16 += OutputWin(text16, q, p - q);
}
q = p = HandleEsc(p + 1, e);
} else {
++p;
}
}
if (q < p) {
count16 += OutputWin(text16, q, p - q);
}
return count16;
}
#endif
static int write32(int fd, char32_t* text32, int len32) {
#ifdef _WIN32
if (isatty(fd)) {
size_t len16 = 2 * len32 + 1;
unique_ptr<char16_t[]> text16(new char16_t[len16]);
size_t count16 = WinWrite32(text16.get(), text32, len32);
return static_cast<int>(count16);
} else {
size_t len8 = 4 * len32 + 1;
unique_ptr<char[]> text8(new char[len8]);
size_t count8 = 0;
copyString32to8(text8.get(), len8, &count8, text32, len32);
return write(fd, text8.get(), static_cast<unsigned int>(count8));
}
#else
size_t len8 = 4 * len32 + 1;
unique_ptr<char[]> text8(new char[len8]);
size_t count8 = 0;
copyString32to8(text8.get(), len8, &count8, text32, len32);
return write(fd, text8.get(), count8);
#endif
}
class Utf32String {
public:
Utf32String() : _length(0), _data(nullptr) {
// note: parens intentional, _data must be properly initialized
_data = new char32_t[1]();
}
explicit Utf32String(const char* src) : _length(0), _data(nullptr) {
size_t len = strlen(src);
// note: parens intentional, _data must be properly initialized
_data = new char32_t[len + 1]();
copyString8to32(_data, len + 1, _length, src);
}
explicit Utf32String(const char8_t* src) : _length(0), _data(nullptr) {
size_t len = strlen(reinterpret_cast<const char*>(src));
// note: parens intentional, _data must be properly initialized
_data = new char32_t[len + 1]();
copyString8to32(_data, len + 1, _length, src);
}
explicit Utf32String(const char32_t* src) : _length(0), _data(nullptr) {
for (_length = 0; src[_length] != 0; ++_length) {
}
// note: parens intentional, _data must be properly initialized
_data = new char32_t[_length + 1]();
memcpy(_data, src, _length * sizeof(char32_t));
}
explicit Utf32String(const char32_t* src, int len) : _length(len), _data(nullptr) {
// note: parens intentional, _data must be properly initialized
_data = new char32_t[len + 1]();
memcpy(_data, src, len * sizeof(char32_t));
}
explicit Utf32String(int len) : _length(0), _data(nullptr) {
// note: parens intentional, _data must be properly initialized
_data = new char32_t[len]();
}
explicit Utf32String(const Utf32String& that) : _length(that._length), _data(nullptr) {
// note: parens intentional, _data must be properly initialized
_data = new char32_t[_length + 1]();
memcpy(_data, that._data, sizeof(char32_t) * _length);
}
Utf32String& operator=(const Utf32String& that) {
if (this != &that) {
delete[] _data;
_data = new char32_t[that._length]();
_length = that._length;
memcpy(_data, that._data, sizeof(char32_t) * _length);
}
return *this;
}
~Utf32String() { delete[] _data; }
public:
char32_t* get() const { return _data; }
size_t length() const { return _length; }
size_t chars() const { return _length; }
void initFromBuffer() {
for (_length = 0; _data[_length] != 0; ++_length) {
}
}
const char32_t& operator[](size_t pos) const { return _data[pos]; }
char32_t& operator[](size_t pos) { return _data[pos]; }
private:
size_t _length;
char32_t* _data;
};
class Utf8String {
Utf8String(const Utf8String&) = delete;
Utf8String& operator=(const Utf8String&) = delete;
public:
explicit Utf8String(const Utf32String& src) {
size_t len = src.length() * 4 + 1;
_data = new char[len];
copyString32to8(_data, len, src.get());
}
~Utf8String() { delete[] _data; }
public:
char* get() const { return _data; }
private:
char* _data;
};
struct linenoiseCompletions {
vector<Utf32String> completionStrings;
};
#define LINENOISE_DEFAULT_HISTORY_MAX_LEN 100
#define LINENOISE_MAX_LINE 4096
// make control-characters more readable
#define ctrlChar(upperCaseASCII) (upperCaseASCII - 0x40)
/**
* Recompute widths of all characters in a char32_t buffer
* @param text input buffer of Unicode characters
* @param widths output buffer of character widths
* @param charCount number of characters in buffer
*/
namespace linenoise_ng {
int mk_wcwidth(char32_t ucs);
}
static void recomputeCharacterWidths(const char32_t* text, char* widths,
int charCount) {
for (int i = 0; i < charCount; ++i) {
widths[i] = mk_wcwidth(text[i]);
}
}
/**
* Calculate a new screen position given a starting position, screen width and
* character count
* @param x initial x position (zero-based)
* @param y initial y position (zero-based)
* @param screenColumns screen column count
* @param charCount character positions to advance
* @param xOut returned x position (zero-based)
* @param yOut returned y position (zero-based)
*/
static void calculateScreenPosition(int x, int y, int screenColumns,
int charCount, int& xOut, int& yOut) {
xOut = x;
yOut = y;
int charsRemaining = charCount;
while (charsRemaining > 0) {
int charsThisRow = (x + charsRemaining < screenColumns) ? charsRemaining
: screenColumns - x;
xOut = x + charsThisRow;
yOut = y;
charsRemaining -= charsThisRow;
x = 0;
++y;
}
if (xOut == screenColumns) { // we have to special-case line wrap
xOut = 0;
++yOut;
}
}
/**
* Calculate a column width using mk_wcswidth()
* @param buf32 text to calculate
* @param len length of text to calculate
*/
namespace linenoise_ng {
int mk_wcswidth(const char32_t* pwcs, size_t n);
}
static int calculateColumnPosition(char32_t* buf32, int len) {
int width = mk_wcswidth(reinterpret_cast<const char32_t*>(buf32), len);
if (width == -1)
return len;
else
return width;
}
static bool isControlChar(char32_t testChar) {
return (testChar < ' ') || // C0 controls
(testChar >= 0x7F && testChar <= 0x9F); // DEL and C1 controls
}
struct PromptBase { // a convenience struct for grouping prompt info
Utf32String promptText; // our copy of the prompt text, edited
char* promptCharWidths; // character widths from mk_wcwidth()
int promptChars; // chars in promptText
int promptBytes; // bytes in promptText
int promptExtraLines; // extra lines (beyond 1) occupied by prompt
int promptIndentation; // column offset to end of prompt
int promptLastLinePosition; // index into promptText where last line begins
int promptPreviousInputLen; // promptChars of previous input line, for
// clearing
int promptCursorRowOffset; // where the cursor is relative to the start of
// the prompt
int promptScreenColumns; // width of screen in columns
int promptPreviousLen; // help erasing
int promptErrorCode; // error code (invalid UTF-8) or zero
PromptBase() : promptPreviousInputLen(0) {}
bool write() {
if (write32(1, promptText.get(), promptBytes) == -1) return false;
return true;
}
};
struct PromptInfo : public PromptBase {
PromptInfo(const char* textPtr, int columns) {
promptExtraLines = 0;
promptLastLinePosition = 0;
promptPreviousLen = 0;
promptScreenColumns = columns;
Utf32String tempUnicode(textPtr);
// strip control characters from the prompt -- we do allow newline
char32_t* pIn = tempUnicode.get();
char32_t* pOut = pIn;
int len = 0;
int x = 0;
bool const strip = (isatty(1) == 0);
while (*pIn) {
char32_t c = *pIn;
if ('\n' == c || !isControlChar(c)) {
*pOut = c;
++pOut;
++pIn;
++len;
if ('\n' == c || ++x >= promptScreenColumns) {
x = 0;
++promptExtraLines;
promptLastLinePosition = len;
}
} else if (c == '\x1b') {
if (strip) {
// jump over control chars
++pIn;
if (*pIn == '[') {
++pIn;
while (*pIn && ((*pIn == ';') || ((*pIn >= '0' && *pIn <= '9')))) {
++pIn;
}
if (*pIn == 'm') {
++pIn;
}
}
} else {
// copy control chars
*pOut = *pIn;
++pOut;
++pIn;
if (*pIn == '[') {
*pOut = *pIn;
++pOut;
++pIn;
while (*pIn && ((*pIn == ';') || ((*pIn >= '0' && *pIn <= '9')))) {
*pOut = *pIn;
++pOut;
++pIn;
}
if (*pIn == 'm') {
*pOut = *pIn;
++pOut;
++pIn;
}
}
}
} else {
++pIn;
}
}
*pOut = 0;
promptChars = len;
promptBytes = static_cast<int>(pOut - tempUnicode.get());
promptText = tempUnicode;
promptIndentation = len - promptLastLinePosition;
promptCursorRowOffset = promptExtraLines;
}
};
// Used with DynamicPrompt (history search)
//
static const Utf32String forwardSearchBasePrompt("(i-search)`");
static const Utf32String reverseSearchBasePrompt("(reverse-i-search)`");
static const Utf32String endSearchBasePrompt("': ");
static Utf32String
previousSearchText; // remembered across invocations of linenoise()
// changing prompt for "(reverse-i-search)`text':" etc.
//
struct DynamicPrompt : public PromptBase {
Utf32String searchText; // text we are searching for
char* searchCharWidths; // character widths from mk_wcwidth()
int searchTextLen; // chars in searchText
int direction; // current search direction, 1=forward, -1=reverse
DynamicPrompt(PromptBase& pi, int initialDirection)
: searchTextLen(0), direction(initialDirection) {
promptScreenColumns = pi.promptScreenColumns;
promptCursorRowOffset = 0;
Utf32String emptyString(1);
searchText = emptyString;
const Utf32String* basePrompt =
(direction > 0) ? &forwardSearchBasePrompt : &reverseSearchBasePrompt;
size_t promptStartLength = basePrompt->length();
promptChars =
static_cast<int>(promptStartLength + endSearchBasePrompt.length());
promptBytes = promptChars;
promptLastLinePosition = promptChars; // TODO fix this, we are asssuming
// that the history prompt won't wrap
// (!)
promptPreviousLen = promptChars;
Utf32String tempUnicode(promptChars + 1);
memcpy(tempUnicode.get(), basePrompt->get(),
sizeof(char32_t) * promptStartLength);
memcpy(&tempUnicode[promptStartLength], endSearchBasePrompt.get(),
sizeof(char32_t) * (endSearchBasePrompt.length() + 1));
tempUnicode.initFromBuffer();
promptText = tempUnicode;
calculateScreenPosition(0, 0, pi.promptScreenColumns, promptChars,
promptIndentation, promptExtraLines);
}
void updateSearchPrompt(void) {
const Utf32String* basePrompt =
(direction > 0) ? &forwardSearchBasePrompt : &reverseSearchBasePrompt;
size_t promptStartLength = basePrompt->length();
promptChars = static_cast<int>(promptStartLength + searchTextLen +
endSearchBasePrompt.length());
promptBytes = promptChars;
Utf32String tempUnicode(promptChars + 1);
memcpy(tempUnicode.get(), basePrompt->get(),
sizeof(char32_t) * promptStartLength);
memcpy(&tempUnicode[promptStartLength], searchText.get(),
sizeof(char32_t) * searchTextLen);
size_t endIndex = promptStartLength + searchTextLen;
memcpy(&tempUnicode[endIndex], endSearchBasePrompt.get(),
sizeof(char32_t) * (endSearchBasePrompt.length() + 1));
tempUnicode.initFromBuffer();
promptText = tempUnicode;
}
void updateSearchText(const char32_t* textPtr) {
Utf32String tempUnicode(textPtr);
searchTextLen = static_cast<int>(tempUnicode.chars());
searchText = tempUnicode;
updateSearchPrompt();
}
};
class KillRing {
static const int capacity = 10;
int size;
int index;
char indexToSlot[10];
vector<Utf32String> theRing;
public:
enum action { actionOther, actionKill, actionYank };
action lastAction;
size_t lastYankSize;
KillRing() : size(0), index(0), lastAction(actionOther) {
theRing.reserve(capacity);
}
void kill(const char32_t* text, int textLen, bool forward) {
if (textLen == 0) {
return;
}
Utf32String killedText(text, textLen);
if (lastAction == actionKill && size > 0) {
int slot = indexToSlot[0];
int currentLen = static_cast<int>(theRing[slot].length());
int resultLen = currentLen + textLen;
Utf32String temp(resultLen + 1);
if (forward) {
memcpy(temp.get(), theRing[slot].get(), currentLen * sizeof(char32_t));
memcpy(&temp[currentLen], killedText.get(), textLen * sizeof(char32_t));
} else {
memcpy(temp.get(), killedText.get(), textLen * sizeof(char32_t));
memcpy(&temp[textLen], theRing[slot].get(),
currentLen * sizeof(char32_t));
}
temp[resultLen] = 0;
temp.initFromBuffer();
theRing[slot] = temp;
} else {
if (size < capacity) {
if (size > 0) {
memmove(&indexToSlot[1], &indexToSlot[0], size);
}
indexToSlot[0] = size;
size++;
theRing.push_back(killedText);
} else {
int slot = indexToSlot[capacity - 1];
theRing[slot] = killedText;
memmove(&indexToSlot[1], &indexToSlot[0], capacity - 1);
indexToSlot[0] = slot;
}
index = 0;
}
}
Utf32String* yank() { return (size > 0) ? &theRing[indexToSlot[index]] : 0; }
Utf32String* yankPop() {
if (size == 0) {
return 0;
}
++index;
if (index == size) {
index = 0;
}
return &theRing[indexToSlot[index]];
}
};
class InputBuffer {
char32_t* buf32; // input buffer
char* charWidths; // character widths from mk_wcwidth()
int buflen; // buffer size in characters
int len; // length of text in input buffer
int pos; // character position in buffer ( 0 <= pos <= len )
void clearScreen(PromptBase& pi);
int incrementalHistorySearch(PromptBase& pi, int startChar);
int completeLine(PromptBase& pi);
void refreshLine(PromptBase& pi);
public:
InputBuffer(char32_t* buffer, char* widthArray, int bufferLen)
: buf32(buffer),
charWidths(widthArray),
buflen(bufferLen - 1),
len(0),
pos(0) {
buf32[0] = 0;
}
void preloadBuffer(const char* preloadText) {
size_t ucharCount = 0;
copyString8to32(buf32, buflen + 1, ucharCount, preloadText);
recomputeCharacterWidths(buf32, charWidths, static_cast<int>(ucharCount));
len = static_cast<int>(ucharCount);
pos = static_cast<int>(ucharCount);
}
int getInputLine(PromptBase& pi);
int length(void) const { return len; }
};
// Special codes for keyboard input:
//
// Between Windows and the various Linux "terminal" programs, there is some
// pretty diverse behavior in the "scan codes" and escape sequences we are
// presented with. So ... we'll translate them all into our own pidgin
// pseudocode, trying to stay out of the way of UTF-8 and international
// characters. Here's the general plan.
//
// "User input keystrokes" (key chords, whatever) will be encoded as a single
// value.
// The low 21 bits are reserved for Unicode characters. Popular function-type
// keys
// get their own codes in the range 0x10200000 to (if needed) 0x1FE00000,
// currently
// just arrow keys, Home, End and Delete. Keypresses with Ctrl get ORed with
// 0x20000000, with Alt get ORed with 0x40000000. So, Ctrl+Alt+Home is encoded
// as 0x20000000 + 0x40000000 + 0x10A00000 == 0x70A00000. To keep things
// complicated,
// the Alt key is equivalent to prefixing the keystroke with ESC, so ESC
// followed by
// D is treated the same as Alt + D ... we'll just use Emacs terminology and
// call
// this "Meta". So, we will encode both ESC followed by D and Alt held down
// while D
// is pressed the same, as Meta-D, encoded as 0x40000064.
//
// Here are the definitions of our component constants:
//
// Maximum unsigned 32-bit value = 0xFFFFFFFF; // For reference, max 32-bit
// value
// Highest allocated Unicode char = 0x001FFFFF; // For reference, max
// Unicode value
static const int META = 0x40000000; // Meta key combination
static const int CTRL = 0x20000000; // Ctrl key combination
// static const int SPECIAL_KEY = 0x10000000; // Common bit for all special
// keys
static const int UP_ARROW_KEY = 0x10200000; // Special keys
static const int DOWN_ARROW_KEY = 0x10400000;
static const int RIGHT_ARROW_KEY = 0x10600000;
static const int LEFT_ARROW_KEY = 0x10800000;
static const int HOME_KEY = 0x10A00000;
static const int END_KEY = 0x10C00000;
static const int DELETE_KEY = 0x10E00000;
static const int PAGE_UP_KEY = 0x11000000;
static const int PAGE_DOWN_KEY = 0x11200000;
static const char* unsupported_term[] = {"dumb", "cons25", "emacs", NULL};
static linenoiseCompletionCallback* completionCallback = NULL;
#ifdef _WIN32
static HANDLE console_in, console_out;
static DWORD oldMode;
static WORD oldDisplayAttribute;
#else
static struct termios orig_termios; /* in order to restore at exit */
#endif
static KillRing killRing;
static int rawmode = 0; /* for atexit() function to check if restore is needed*/
static int atexit_registered = 0; /* register atexit just 1 time */
static int historyMaxLen = LINENOISE_DEFAULT_HISTORY_MAX_LEN;
static int historyLen = 0;
static int historyIndex = 0;
static char8_t** history = NULL;
// used to emulate Windows command prompt on down-arrow after a recall
// we use -2 as our "not set" value because we add 1 to the previous index on
// down-arrow,
// and zero is a valid index (so -1 is a valid "previous index")
static int historyPreviousIndex = -2;
static bool historyRecallMostRecent = false;
static void linenoiseAtExit(void);
static bool isUnsupportedTerm(void) {
char* term = getenv("TERM");
if (term == NULL) return false;
for (int j = 0; unsupported_term[j]; ++j)
if (!strcasecmp(term, unsupported_term[j])) {
return true;
}
return false;
}
static void beep() {
fprintf(stderr, "\x7"); // ctrl-G == bell/beep
fflush(stderr);
}
void linenoiseHistoryFree(void) {
if (history) {
for (int j = 0; j < historyLen; ++j) free(history[j]);
historyLen = 0;
free(history);
history = 0;
}
}
static int enableRawMode(void) {
#ifdef _WIN32
if (!console_in) {
console_in = GetStdHandle(STD_INPUT_HANDLE);
console_out = GetStdHandle(STD_OUTPUT_HANDLE);
GetConsoleMode(console_in, &oldMode);
SetConsoleMode(console_in, oldMode &
~(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT |
ENABLE_PROCESSED_INPUT));
}
return 0;
#else
struct termios raw;
if (!isatty(STDIN_FILENO)) goto fatal;
if (!atexit_registered) {
atexit(linenoiseAtExit);
atexit_registered = 1;
}
if (tcgetattr(0, &orig_termios) == -1) goto fatal;
raw = orig_termios; /* modify the original mode */
/* input modes: no break, no CR to NL, no parity check, no strip char,
* no start/stop output control. */
raw.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON);
/* output modes - disable post processing */
// this is wrong, we don't want raw output, it turns newlines into straight
// linefeeds
// raw.c_oflag &= ~(OPOST);
/* control modes - set 8 bit chars */
raw.c_cflag |= (CS8);
/* local modes - echoing off, canonical off, no extended functions,
* no signal chars (^Z,^C) */
raw.c_lflag &= ~(ECHO | ICANON | IEXTEN | ISIG);
/* control chars - set return condition: min number of bytes and timer.
* We want read to return every single byte, without timeout. */
raw.c_cc[VMIN] = 1;
raw.c_cc[VTIME] = 0; /* 1 byte, no timer */
/* put terminal in raw mode after flushing */
if (tcsetattr(0, TCSADRAIN, &raw) < 0) goto fatal;
rawmode = 1;
return 0;
fatal:
errno = ENOTTY;
return -1;
#endif
}
static void disableRawMode(void) {
#ifdef _WIN32
SetConsoleMode(console_in, oldMode);
console_in = 0;
console_out = 0;
#else
if (rawmode && tcsetattr(0, TCSADRAIN, &orig_termios) != -1) rawmode = 0;
#endif
}
// At exit we'll try to fix the terminal to the initial conditions
static void linenoiseAtExit(void) { disableRawMode(); }
static int getScreenColumns(void) {
int cols;
#ifdef _WIN32
CONSOLE_SCREEN_BUFFER_INFO inf;
GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &inf);
cols = inf.dwSize.X;
#else
struct winsize ws;
cols = (ioctl(1, TIOCGWINSZ, &ws) == -1) ? 80 : ws.ws_col;
#endif
// cols is 0 in certain circumstances like inside debugger, which creates
// further issues
return (cols > 0) ? cols : 80;
}
static int getScreenRows(void) {
int rows;
#ifdef _WIN32
CONSOLE_SCREEN_BUFFER_INFO inf;
GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &inf);
rows = 1 + inf.srWindow.Bottom - inf.srWindow.Top;
#else
struct winsize ws;
rows = (ioctl(1, TIOCGWINSZ, &ws) == -1) ? 24 : ws.ws_row;
#endif
return (rows > 0) ? rows : 24;
}
static void setDisplayAttribute(bool enhancedDisplay, bool error) {
#ifdef _WIN32
if (enhancedDisplay) {
CONSOLE_SCREEN_BUFFER_INFO inf;
GetConsoleScreenBufferInfo(console_out, &inf);
oldDisplayAttribute = inf.wAttributes;
BYTE oldLowByte = oldDisplayAttribute & 0xFF;
BYTE newLowByte;
switch (oldLowByte) {
case 0x07:
// newLowByte = FOREGROUND_BLUE | FOREGROUND_INTENSITY; // too dim
// newLowByte = FOREGROUND_BLUE; // even dimmer
newLowByte = FOREGROUND_BLUE |
FOREGROUND_GREEN; // most similar to xterm appearance
break;
case 0x70:
newLowByte = BACKGROUND_BLUE | BACKGROUND_INTENSITY;
break;
default:
newLowByte = oldLowByte ^ 0xFF; // default to inverse video
break;
}
inf.wAttributes = (inf.wAttributes & 0xFF00) | newLowByte;
SetConsoleTextAttribute(console_out, inf.wAttributes);
} else {
SetConsoleTextAttribute(console_out, oldDisplayAttribute);
}
#else
if (enhancedDisplay) {
char const* p = (error ? "\x1b[1;31m" : "\x1b[1;34m");
if (write(1, p, 7) == -1)
return; /* bright blue (visible with both B&W bg) */
} else {
if (write(1, "\x1b[0m", 4) == -1) return; /* reset */
}
#endif
}
/**
* Display the dynamic incremental search prompt and the current user input
* line.
* @param pi PromptBase struct holding information about the prompt and our
* screen position
* @param buf32 input buffer to be displayed
* @param len count of characters in the buffer
* @param pos current cursor position within the buffer (0 <= pos <= len)
*/
static void dynamicRefresh(PromptBase& pi, char32_t* buf32, int len, int pos) {
// calculate the position of the end of the prompt
int xEndOfPrompt, yEndOfPrompt;
calculateScreenPosition(0, 0, pi.promptScreenColumns, pi.promptChars,
xEndOfPrompt, yEndOfPrompt);
pi.promptIndentation = xEndOfPrompt;
// calculate the position of the end of the input line
int xEndOfInput, yEndOfInput;
calculateScreenPosition(xEndOfPrompt, yEndOfPrompt, pi.promptScreenColumns,
calculateColumnPosition(buf32, len), xEndOfInput,
yEndOfInput);
// calculate the desired position of the cursor
int xCursorPos, yCursorPos;
calculateScreenPosition(xEndOfPrompt, yEndOfPrompt, pi.promptScreenColumns,
calculateColumnPosition(buf32, pos), xCursorPos,
yCursorPos);
#ifdef _WIN32
// position at the start of the prompt, clear to end of previous input
CONSOLE_SCREEN_BUFFER_INFO inf;
GetConsoleScreenBufferInfo(console_out, &inf);
inf.dwCursorPosition.X = 0;
inf.dwCursorPosition.Y -= pi.promptCursorRowOffset /*- pi.promptExtraLines*/;
SetConsoleCursorPosition(console_out, inf.dwCursorPosition);
DWORD count;
FillConsoleOutputCharacterA(console_out, ' ',
pi.promptPreviousLen + pi.promptPreviousInputLen,
inf.dwCursorPosition, &count);
pi.promptPreviousLen = pi.promptIndentation;
pi.promptPreviousInputLen = len;
// display the prompt
if (!pi.write()) return;
// display the input line
if (write32(1, buf32, len) == -1) return;
// position the cursor
GetConsoleScreenBufferInfo(console_out, &inf);
inf.dwCursorPosition.X = xCursorPos; // 0-based on Win32
inf.dwCursorPosition.Y -= yEndOfInput - yCursorPos;
SetConsoleCursorPosition(console_out, inf.dwCursorPosition);
#else // _WIN32
char seq[64];
int cursorRowMovement = pi.promptCursorRowOffset - pi.promptExtraLines;
if (cursorRowMovement > 0) { // move the cursor up as required
snprintf(seq, sizeof seq, "\x1b[%dA", cursorRowMovement);
if (write(1, seq, strlen(seq)) == -1) return;
}
// position at the start of the prompt, clear to end of screen
snprintf(seq, sizeof seq, "\x1b[1G\x1b[J"); // 1-based on VT100
if (write(1, seq, strlen(seq)) == -1) return;
// display the prompt
if (!pi.write()) return;
// display the input line
if (write32(1, buf32, len) == -1) return;
// we have to generate our own newline on line wrap
if (xEndOfInput == 0 && yEndOfInput > 0)
if (write(1, "\n", 1) == -1) return;
// position the cursor
cursorRowMovement = yEndOfInput - yCursorPos;
if (cursorRowMovement > 0) { // move the cursor up as required
snprintf(seq, sizeof seq, "\x1b[%dA", cursorRowMovement);
if (write(1, seq, strlen(seq)) == -1) return;
}
// position the cursor within the line
snprintf(seq, sizeof seq, "\x1b[%dG", xCursorPos + 1); // 1-based on VT100
if (write(1, seq, strlen(seq)) == -1) return;
#endif
pi.promptCursorRowOffset =
pi.promptExtraLines + yCursorPos; // remember row for next pass
}
/**
* Refresh the user's input line: the prompt is already onscreen and is not
* redrawn here
* @param pi PromptBase struct holding information about the prompt and our
* screen position
*/
void InputBuffer::refreshLine(PromptBase& pi) {
// check for a matching brace/bracket/paren, remember its position if found
int highlight = -1;
bool indicateError = false;
if (pos < len) {
/* this scans for a brace matching buf32[pos] to highlight */
unsigned char part1, part2;
int scanDirection = 0;
if (strchr("}])", buf32[pos])) {
scanDirection = -1; /* backwards */
if (buf32[pos] == '}') {
part1 = '}'; part2 = '{';
} else if (buf32[pos] == ']') {
part1 = ']'; part2 = '[';
} else {
part1 = ')'; part2 = '(';
}
}
else if (strchr("{[(", buf32[pos])) {
scanDirection = 1; /* forwards */
if (buf32[pos] == '{') {
//part1 = '{'; part2 = '}';
part1 = '}'; part2 = '{';
} else if (buf32[pos] == '[') {
//part1 = '['; part2 = ']';
part1 = ']'; part2 = '[';
} else {
//part1 = '('; part2 = ')';
part1 = ')'; part2 = '(';
}
}
if (scanDirection) {
int unmatched = scanDirection;
int unmatchedOther = 0;
for (int i = pos + scanDirection; i >= 0 && i < len; i += scanDirection) {
/* TODO: the right thing when inside a string */
if (strchr("}])", buf32[i])) {
if (buf32[i] == part1) {
--unmatched;
} else {
--unmatchedOther;
}
} else if (strchr("{[(", buf32[i])) {
if (buf32[i] == part2) {
++unmatched;
} else {
++unmatchedOther;
}
}
/*
if (strchr("}])", buf32[i]))
--unmatched;
else if (strchr("{[(", buf32[i]))
++unmatched;
*/
if (unmatched == 0) {
highlight = i;
indicateError = (unmatchedOther != 0);
break;
}
}
}
}
// calculate the position of the end of the input line
int xEndOfInput, yEndOfInput;
calculateScreenPosition(pi.promptIndentation, 0, pi.promptScreenColumns,
calculateColumnPosition(buf32, len), xEndOfInput,
yEndOfInput);
// calculate the desired position of the cursor
int xCursorPos, yCursorPos;
calculateScreenPosition(pi.promptIndentation, 0, pi.promptScreenColumns,
calculateColumnPosition(buf32, pos), xCursorPos,
yCursorPos);
#ifdef _WIN32
// position at the end of the prompt, clear to end of previous input
CONSOLE_SCREEN_BUFFER_INFO inf;
GetConsoleScreenBufferInfo(console_out, &inf);
inf.dwCursorPosition.X = pi.promptIndentation; // 0-based on Win32
inf.dwCursorPosition.Y -= pi.promptCursorRowOffset - pi.promptExtraLines;
SetConsoleCursorPosition(console_out, inf.dwCursorPosition);
DWORD count;
if (len < pi.promptPreviousInputLen)
FillConsoleOutputCharacterA(console_out, ' ', pi.promptPreviousInputLen,
inf.dwCursorPosition, &count);
pi.promptPreviousInputLen = len;
// display the input line
if (highlight == -1) {
if (write32(1, buf32, len) == -1) return;
} else {
if (write32(1, buf32, highlight) == -1) return;
setDisplayAttribute(true, indicateError); /* bright blue (visible with both B&W bg) */
if (write32(1, &buf32[highlight], 1) == -1) return;
setDisplayAttribute(false, indicateError);
if (write32(1, buf32 + highlight + 1, len - highlight - 1) == -1) return;
}
// position the cursor
GetConsoleScreenBufferInfo(console_out, &inf);
inf.dwCursorPosition.X = xCursorPos; // 0-based on Win32
inf.dwCursorPosition.Y -= yEndOfInput - yCursorPos;
SetConsoleCursorPosition(console_out, inf.dwCursorPosition);
#else // _WIN32
char seq[64];
int cursorRowMovement = pi.promptCursorRowOffset - pi.promptExtraLines;
if (cursorRowMovement > 0) { // move the cursor up as required
snprintf(seq, sizeof seq, "\x1b[%dA", cursorRowMovement);
if (write(1, seq, strlen(seq)) == -1) return;
}
// position at the end of the prompt, clear to end of screen
snprintf(seq, sizeof seq, "\x1b[%dG\x1b[J",
pi.promptIndentation + 1); // 1-based on VT100
if (write(1, seq, strlen(seq)) == -1) return;
if (highlight == -1) { // write unhighlighted text
if (write32(1, buf32, len) == -1) return;
} else { // highlight the matching brace/bracket/parenthesis
if (write32(1, buf32, highlight) == -1) return;
setDisplayAttribute(true, indicateError);
if (write32(1, &buf32[highlight], 1) == -1) return;
setDisplayAttribute(false, indicateError);
if (write32(1, buf32 + highlight + 1, len - highlight - 1) == -1) return;
}
// we have to generate our own newline on line wrap
if (xEndOfInput == 0 && yEndOfInput > 0)
if (write(1, "\n", 1) == -1) return;
// position the cursor
cursorRowMovement = yEndOfInput - yCursorPos;
if (cursorRowMovement > 0) { // move the cursor up as required
snprintf(seq, sizeof seq, "\x1b[%dA", cursorRowMovement);
if (write(1, seq, strlen(seq)) == -1) return;
}
// position the cursor within the line
snprintf(seq, sizeof seq, "\x1b[%dG", xCursorPos + 1); // 1-based on VT100
if (write(1, seq, strlen(seq)) == -1) return;
#endif
pi.promptCursorRowOffset =
pi.promptExtraLines + yCursorPos; // remember row for next pass
}
#ifndef _WIN32
/**
* Read a UTF-8 sequence from the non-Windows keyboard and return the Unicode
* (char32_t) character it
* encodes
*
* @return char32_t Unicode character
*/
static char32_t readUnicodeCharacter(void) {
static char8_t utf8String[5];
static size_t utf8Count = 0;
while (true) {
char8_t c;
/* Continue reading if interrupted by signal. */
ssize_t nread;
do {
nread = read(0, &c, 1);
} while ((nread == -1) && (errno == EINTR));
if (nread <= 0) return 0;
if (c <= 0x7F) { // short circuit ASCII
utf8Count = 0;
return c;
} else if (utf8Count < sizeof(utf8String) - 1) {
utf8String[utf8Count++] = c;
utf8String[utf8Count] = 0;
char32_t unicodeChar[2];
size_t ucharCount;
ConversionResult res =
copyString8to32(unicodeChar, 2, ucharCount, utf8String);
if (res == conversionOK && ucharCount) {
utf8Count = 0;
return unicodeChar[0];
}
} else {
utf8Count =
0; // this shouldn't happen: got four bytes but no UTF-8 character
}
}
}
namespace EscapeSequenceProcessing { // move these out of global namespace
// This chunk of code does parsing of the escape sequences sent by various Linux
// terminals.
//
// It handles arrow keys, Home, End and Delete keys by interpreting the
// sequences sent by
// gnome terminal, xterm, rxvt, konsole, aterm and yakuake including the Alt and
// Ctrl key
// combinations that are understood by linenoise.
//
// The parsing uses tables, a bunch of intermediate dispatch routines and a
// doDispatch
// loop that reads the tables and sends control to "deeper" routines to continue
// the
// parsing. The starting call to doDispatch( c, initialDispatch ) will
// eventually return
// either a character (with optional CTRL and META bits set), or -1 if parsing
// fails, or
// zero if an attempt to read from the keyboard fails.
//
// This is rather sloppy escape sequence processing, since we're not paying
// attention to what the
// actual TERM is set to and are processing all key sequences for all terminals,
// but it works with
// the most common keystrokes on the most common terminals. It's intricate, but
// the nested 'if'
// statements required to do it directly would be worse. This way has the
// advantage of allowing
// changes and extensions without having to touch a lot of code.
// This is a typedef for the routine called by doDispatch(). It takes the
// current character
// as input, does any required processing including reading more characters and
// calling other
// dispatch routines, then eventually returns the final (possibly extended or
// special) character.
//
typedef char32_t (*CharacterDispatchRoutine)(char32_t);
// This structure is used by doDispatch() to hold a list of characters to test
// for and
// a list of routines to call if the character matches. The dispatch routine
// list is one
// longer than the character list; the final entry is used if no character
// matches.
//
struct CharacterDispatch {
unsigned int len; // length of the chars list
const char* chars; // chars to test
CharacterDispatchRoutine* dispatch; // array of routines to call
};
// This dispatch routine is given a dispatch table and then farms work out to
// routines
// listed in the table based on the character it is called with. The dispatch
// routines can
// read more input characters to decide what should eventually be returned.
// Eventually,
// a called routine returns either a character or -1 to indicate parsing
// failure.
//
static char32_t doDispatch(char32_t c, CharacterDispatch& dispatchTable) {
for (unsigned int i = 0; i < dispatchTable.len; ++i) {
if (static_cast<unsigned char>(dispatchTable.chars[i]) == c) {
return dispatchTable.dispatch[i](c);
}
}
return dispatchTable.dispatch[dispatchTable.len](c);
}
static char32_t thisKeyMetaCtrl =
0; // holds pre-set Meta and/or Ctrl modifiers
// Final dispatch routines -- return something
//
static char32_t normalKeyRoutine(char32_t c) { return thisKeyMetaCtrl | c; }
static char32_t upArrowKeyRoutine(char32_t) {
return thisKeyMetaCtrl | UP_ARROW_KEY;
}
static char32_t downArrowKeyRoutine(char32_t) {
return thisKeyMetaCtrl | DOWN_ARROW_KEY;
}
static char32_t rightArrowKeyRoutine(char32_t) {
return thisKeyMetaCtrl | RIGHT_ARROW_KEY;
}
static char32_t leftArrowKeyRoutine(char32_t) {
return thisKeyMetaCtrl | LEFT_ARROW_KEY;
}
static char32_t homeKeyRoutine(char32_t) { return thisKeyMetaCtrl | HOME_KEY; }
static char32_t endKeyRoutine(char32_t) { return thisKeyMetaCtrl | END_KEY; }
static char32_t pageUpKeyRoutine(char32_t) {
return thisKeyMetaCtrl | PAGE_UP_KEY;
}
static char32_t pageDownKeyRoutine(char32_t) {
return thisKeyMetaCtrl | PAGE_DOWN_KEY;
}
static char32_t deleteCharRoutine(char32_t) {
return thisKeyMetaCtrl | ctrlChar('H');
} // key labeled Backspace
static char32_t deleteKeyRoutine(char32_t) {
return thisKeyMetaCtrl | DELETE_KEY;
} // key labeled Delete
static char32_t ctrlUpArrowKeyRoutine(char32_t) {
return thisKeyMetaCtrl | CTRL | UP_ARROW_KEY;
}
static char32_t ctrlDownArrowKeyRoutine(char32_t) {
return thisKeyMetaCtrl | CTRL | DOWN_ARROW_KEY;
}
static char32_t ctrlRightArrowKeyRoutine(char32_t) {
return thisKeyMetaCtrl | CTRL | RIGHT_ARROW_KEY;
}
static char32_t ctrlLeftArrowKeyRoutine(char32_t) {
return thisKeyMetaCtrl | CTRL | LEFT_ARROW_KEY;
}
static char32_t escFailureRoutine(char32_t) {
beep();
return -1;
}
// Handle ESC [ 1 ; 3 (or 5) <more stuff> escape sequences
//
static CharacterDispatchRoutine escLeftBracket1Semicolon3or5Routines[] = {
upArrowKeyRoutine, downArrowKeyRoutine, rightArrowKeyRoutine,
leftArrowKeyRoutine, escFailureRoutine};
static CharacterDispatch escLeftBracket1Semicolon3or5Dispatch = {
4, "ABCD", escLeftBracket1Semicolon3or5Routines};
// Handle ESC [ 1 ; <more stuff> escape sequences
//
static char32_t escLeftBracket1Semicolon3Routine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
thisKeyMetaCtrl |= META;
return doDispatch(c, escLeftBracket1Semicolon3or5Dispatch);
}
static char32_t escLeftBracket1Semicolon5Routine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
thisKeyMetaCtrl |= CTRL;
return doDispatch(c, escLeftBracket1Semicolon3or5Dispatch);
}
static CharacterDispatchRoutine escLeftBracket1SemicolonRoutines[] = {
escLeftBracket1Semicolon3Routine, escLeftBracket1Semicolon5Routine,
escFailureRoutine};
static CharacterDispatch escLeftBracket1SemicolonDispatch = {
2, "35", escLeftBracket1SemicolonRoutines};
// Handle ESC [ 1 <more stuff> escape sequences
//
static char32_t escLeftBracket1SemicolonRoutine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escLeftBracket1SemicolonDispatch);
}
static CharacterDispatchRoutine escLeftBracket1Routines[] = {
homeKeyRoutine, escLeftBracket1SemicolonRoutine, escFailureRoutine};
static CharacterDispatch escLeftBracket1Dispatch = {2, "~;",
escLeftBracket1Routines};
// Handle ESC [ 3 <more stuff> escape sequences
//
static CharacterDispatchRoutine escLeftBracket3Routines[] = {deleteKeyRoutine,
escFailureRoutine};
static CharacterDispatch escLeftBracket3Dispatch = {1, "~",
escLeftBracket3Routines};
// Handle ESC [ 4 <more stuff> escape sequences
//
static CharacterDispatchRoutine escLeftBracket4Routines[] = {endKeyRoutine,
escFailureRoutine};
static CharacterDispatch escLeftBracket4Dispatch = {1, "~",
escLeftBracket4Routines};
// Handle ESC [ 5 <more stuff> escape sequences
//
static CharacterDispatchRoutine escLeftBracket5Routines[] = {pageUpKeyRoutine,
escFailureRoutine};
static CharacterDispatch escLeftBracket5Dispatch = {1, "~",
escLeftBracket5Routines};
// Handle ESC [ 6 <more stuff> escape sequences
//
static CharacterDispatchRoutine escLeftBracket6Routines[] = {pageDownKeyRoutine,
escFailureRoutine};
static CharacterDispatch escLeftBracket6Dispatch = {1, "~",
escLeftBracket6Routines};
// Handle ESC [ 7 <more stuff> escape sequences
//
static CharacterDispatchRoutine escLeftBracket7Routines[] = {homeKeyRoutine,
escFailureRoutine};
static CharacterDispatch escLeftBracket7Dispatch = {1, "~",
escLeftBracket7Routines};
// Handle ESC [ 8 <more stuff> escape sequences
//
static CharacterDispatchRoutine escLeftBracket8Routines[] = {endKeyRoutine,
escFailureRoutine};
static CharacterDispatch escLeftBracket8Dispatch = {1, "~",
escLeftBracket8Routines};
// Handle ESC [ <digit> escape sequences
//
static char32_t escLeftBracket0Routine(char32_t c) {
return escFailureRoutine(c);
}
static char32_t escLeftBracket1Routine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escLeftBracket1Dispatch);
}
static char32_t escLeftBracket2Routine(char32_t c) {
return escFailureRoutine(c); // Insert key, unused
}
static char32_t escLeftBracket3Routine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escLeftBracket3Dispatch);
}
static char32_t escLeftBracket4Routine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escLeftBracket4Dispatch);
}
static char32_t escLeftBracket5Routine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escLeftBracket5Dispatch);
}
static char32_t escLeftBracket6Routine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escLeftBracket6Dispatch);
}
static char32_t escLeftBracket7Routine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escLeftBracket7Dispatch);
}
static char32_t escLeftBracket8Routine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escLeftBracket8Dispatch);
}
static char32_t escLeftBracket9Routine(char32_t c) {
return escFailureRoutine(c);
}
// Handle ESC [ <more stuff> escape sequences
//
static CharacterDispatchRoutine escLeftBracketRoutines[] = {
upArrowKeyRoutine, downArrowKeyRoutine, rightArrowKeyRoutine,
leftArrowKeyRoutine, homeKeyRoutine, endKeyRoutine,
escLeftBracket0Routine, escLeftBracket1Routine, escLeftBracket2Routine,
escLeftBracket3Routine, escLeftBracket4Routine, escLeftBracket5Routine,
escLeftBracket6Routine, escLeftBracket7Routine, escLeftBracket8Routine,
escLeftBracket9Routine, escFailureRoutine};
static CharacterDispatch escLeftBracketDispatch = {16, "ABCDHF0123456789",
escLeftBracketRoutines};
// Handle ESC O <char> escape sequences
//
static CharacterDispatchRoutine escORoutines[] = {
upArrowKeyRoutine, downArrowKeyRoutine, rightArrowKeyRoutine,
leftArrowKeyRoutine, homeKeyRoutine, endKeyRoutine,
ctrlUpArrowKeyRoutine, ctrlDownArrowKeyRoutine, ctrlRightArrowKeyRoutine,
ctrlLeftArrowKeyRoutine, escFailureRoutine};
static CharacterDispatch escODispatch = {10, "ABCDHFabcd", escORoutines};
// Initial ESC dispatch -- could be a Meta prefix or the start of an escape
// sequence
//
static char32_t escLeftBracketRoutine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escLeftBracketDispatch);
}
static char32_t escORoutine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escODispatch);
}
static char32_t setMetaRoutine(char32_t c); // need forward reference
static CharacterDispatchRoutine escRoutines[] = {escLeftBracketRoutine,
escORoutine, setMetaRoutine};
static CharacterDispatch escDispatch = {2, "[O", escRoutines};
// Initial dispatch -- we are not in the middle of anything yet
//
static char32_t escRoutine(char32_t c) {
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escDispatch);
}
static CharacterDispatchRoutine initialRoutines[] = {
escRoutine, deleteCharRoutine, normalKeyRoutine};
static CharacterDispatch initialDispatch = {2, "\x1B\x7F", initialRoutines};
// Special handling for the ESC key because it does double duty
//
static char32_t setMetaRoutine(char32_t c) {
thisKeyMetaCtrl = META;
if (c == 0x1B) { // another ESC, stay in ESC processing mode
c = readUnicodeCharacter();
if (c == 0) return 0;
return doDispatch(c, escDispatch);
}
return doDispatch(c, initialDispatch);
}
} // namespace EscapeSequenceProcessing // move these out of global namespace
#endif // #ifndef _WIN32
// linenoiseReadChar -- read a keystroke or keychord from the keyboard, and
// translate it
// into an encoded "keystroke". When convenient, extended keys are translated
// into their
// simpler Emacs keystrokes, so an unmodified "left arrow" becomes Ctrl-B.
//
// A return value of zero means "no input available", and a return value of -1
// means "invalid key".
//
static char32_t linenoiseReadChar(void) {
#ifdef _WIN32
INPUT_RECORD rec;
DWORD count;
int modifierKeys = 0;
bool escSeen = false;
while (true) {
ReadConsoleInputW(console_in, &rec, 1, &count);
#if 0 // helper for debugging keystrokes, display info in the debug "Output"
// window in the debugger
{
if ( rec.EventType == KEY_EVENT ) {
//if ( rec.Event.KeyEvent.uChar.UnicodeChar ) {
char buf[1024];
sprintf(
buf,
"Unicode character 0x%04X, repeat count %d, virtual keycode 0x%04X, "
"virtual scancode 0x%04X, key %s%s%s%s%s\n",
rec.Event.KeyEvent.uChar.UnicodeChar,
rec.Event.KeyEvent.wRepeatCount,
rec.Event.KeyEvent.wVirtualKeyCode,
rec.Event.KeyEvent.wVirtualScanCode,
rec.Event.KeyEvent.bKeyDown ? "down" : "up",
(rec.Event.KeyEvent.dwControlKeyState & LEFT_CTRL_PRESSED) ?
" L-Ctrl" : "",
(rec.Event.KeyEvent.dwControlKeyState & RIGHT_CTRL_PRESSED) ?
" R-Ctrl" : "",
(rec.Event.KeyEvent.dwControlKeyState & LEFT_ALT_PRESSED) ?
" L-Alt" : "",
(rec.Event.KeyEvent.dwControlKeyState & RIGHT_ALT_PRESSED) ?
" R-Alt" : ""
);
OutputDebugStringA( buf );
//}
}
}
#endif
if (rec.EventType != KEY_EVENT) {
continue;
}
// Windows provides for entry of characters that are not on your keyboard by
// sending the
// Unicode characters as a "key up" with virtual keycode 0x12 (VK_MENU ==
// Alt key) ...
// accept these characters, otherwise only process characters on "key down"
if (!rec.Event.KeyEvent.bKeyDown &&
rec.Event.KeyEvent.wVirtualKeyCode != VK_MENU) {
continue;
}
modifierKeys = 0;
// AltGr is encoded as ( LEFT_CTRL_PRESSED | RIGHT_ALT_PRESSED ), so don't
// treat this
// combination as either CTRL or META we just turn off those two bits, so it
// is still
// possible to combine CTRL and/or META with an AltGr key by using
// right-Ctrl and/or
// left-Alt
if ((rec.Event.KeyEvent.dwControlKeyState &
(LEFT_CTRL_PRESSED | RIGHT_ALT_PRESSED)) ==
(LEFT_CTRL_PRESSED | RIGHT_ALT_PRESSED)) {
rec.Event.KeyEvent.dwControlKeyState &=
~(LEFT_CTRL_PRESSED | RIGHT_ALT_PRESSED);
}
if (rec.Event.KeyEvent.dwControlKeyState &
(RIGHT_CTRL_PRESSED | LEFT_CTRL_PRESSED)) {
modifierKeys |= CTRL;
}
if (rec.Event.KeyEvent.dwControlKeyState &
(RIGHT_ALT_PRESSED | LEFT_ALT_PRESSED)) {
modifierKeys |= META;
}
if (escSeen) {
modifierKeys |= META;
}
if (rec.Event.KeyEvent.uChar.UnicodeChar == 0) {
switch (rec.Event.KeyEvent.wVirtualKeyCode) {
case VK_LEFT:
return modifierKeys | LEFT_ARROW_KEY;
case VK_RIGHT:
return modifierKeys | RIGHT_ARROW_KEY;
case VK_UP:
return modifierKeys | UP_ARROW_KEY;
case VK_DOWN:
return modifierKeys | DOWN_ARROW_KEY;
case VK_DELETE:
return modifierKeys | DELETE_KEY;
case VK_HOME:
return modifierKeys | HOME_KEY;
case VK_END:
return modifierKeys | END_KEY;
case VK_PRIOR:
return modifierKeys | PAGE_UP_KEY;
case VK_NEXT:
return modifierKeys | PAGE_DOWN_KEY;
default:
continue; // in raw mode, ReadConsoleInput shows shift, ctrl ...
} // ... ignore them
} else if (rec.Event.KeyEvent.uChar.UnicodeChar ==
ctrlChar('[')) { // ESC, set flag for later
escSeen = true;
continue;
} else {
// we got a real character, return it
return modifierKeys | rec.Event.KeyEvent.uChar.UnicodeChar;
}
}
#else
char32_t c;
c = readUnicodeCharacter();
if (c == 0) return 0;
// If _DEBUG_LINUX_KEYBOARD is set, then ctrl-^ puts us into a keyboard
// debugging mode
// where we print out decimal and decoded values for whatever the "terminal"
// program
// gives us on different keystrokes. Hit ctrl-C to exit this mode.
//
#define _DEBUG_LINUX_KEYBOARD
#if defined(_DEBUG_LINUX_KEYBOARD)
if (c == ctrlChar('^')) { // ctrl-^, special debug mode, prints all keys hit,
// ctrl-C to get out
printf(
"\nEntering keyboard debugging mode (on ctrl-^), press ctrl-C to exit "
"this mode\n");
while (true) {
unsigned char keys[10];
int ret = read(0, keys, 10);
if (ret <= 0) {
printf("\nret: %d\n", ret);
}
for (int i = 0; i < ret; ++i) {
char32_t key = static_cast<char32_t>(keys[i]);
char* friendlyTextPtr;
char friendlyTextBuf[10];
const char* prefixText = (key < 0x80) ? "" : "0x80+";
char32_t keyCopy = (key < 0x80) ? key : key - 0x80;
if (keyCopy >= '!' && keyCopy <= '~') { // printable
friendlyTextBuf[0] = '\'';
friendlyTextBuf[1] = keyCopy;
friendlyTextBuf[2] = '\'';
friendlyTextBuf[3] = 0;
friendlyTextPtr = friendlyTextBuf;
} else if (keyCopy == ' ') {
friendlyTextPtr = const_cast<char*>("space");
} else if (keyCopy == 27) {
friendlyTextPtr = const_cast<char*>("ESC");
} else if (keyCopy == 0) {
friendlyTextPtr = const_cast<char*>("NUL");
} else if (keyCopy == 127) {
friendlyTextPtr = const_cast<char*>("DEL");
} else {
friendlyTextBuf[0] = '^';
friendlyTextBuf[1] = keyCopy + 0x40;
friendlyTextBuf[2] = 0;
friendlyTextPtr = friendlyTextBuf;
}
printf("%d x%02X (%s%s) ", key, key, prefixText, friendlyTextPtr);
}
printf("\x1b[1G\n"); // go to first column of new line
// drop out of this loop on ctrl-C
if (keys[0] == ctrlChar('C')) {
printf("Leaving keyboard debugging mode (on ctrl-C)\n");
fflush(stdout);
return -2;
}
}
}
#endif // _DEBUG_LINUX_KEYBOARD
EscapeSequenceProcessing::thisKeyMetaCtrl =
0; // no modifiers yet at initialDispatch
return EscapeSequenceProcessing::doDispatch(
c, EscapeSequenceProcessing::initialDispatch);
#endif // #_WIN32
}
/**
* Free memory used in a recent command completion session
*
* @param lc pointer to a linenoiseCompletions struct
*/
static void freeCompletions(linenoiseCompletions* lc) {
lc->completionStrings.clear();
}
/**
* convert {CTRL + 'A'}, {CTRL + 'a'} and {CTRL + ctrlChar( 'A' )} into
* ctrlChar( 'A' )
* leave META alone
*
* @param c character to clean up
* @return cleaned-up character
*/
static int cleanupCtrl(int c) {
if (c & CTRL) {
int d = c & 0x1FF;
if (d >= 'a' && d <= 'z') {
c = (c + ('a' - ctrlChar('A'))) & ~CTRL;
}
if (d >= 'A' && d <= 'Z') {
c = (c + ('A' - ctrlChar('A'))) & ~CTRL;
}
if (d >= ctrlChar('A') && d <= ctrlChar('Z')) {
c = c & ~CTRL;
}
}
return c;
}
// break characters that may precede items to be completed
static const char breakChars[] = " =+-/\\*?\"'`&<>;|@{([])}";
// maximum number of completions to display without asking
static const size_t completionCountCutoff = 100;
/**
* Handle command completion, using a completionCallback() routine to provide
* possible substitutions
* This routine handles the mechanics of updating the user's input buffer with
* possible replacement
* of text as the user selects a proposed completion string, or cancels the
* completion attempt.
* @param pi PromptBase struct holding information about the prompt and our
* screen position
*/
int InputBuffer::completeLine(PromptBase& pi) {
linenoiseCompletions lc;
char32_t c = 0;
// completionCallback() expects a parsable entity, so find the previous break
// character and
// extract a copy to parse. we also handle the case where tab is hit while
// not at end-of-line.
int startIndex = pos;
while (--startIndex >= 0) {
if (strchr(breakChars, buf32[startIndex])) {
break;
}
}
++startIndex;
int itemLength = pos - startIndex;
Utf32String unicodeCopy(&buf32[startIndex], itemLength);
Utf8String parseItem(unicodeCopy);
// get a list of completions
completionCallback(parseItem.get(), &lc);
// if no completions, we are done
if (lc.completionStrings.size() == 0) {
beep();
freeCompletions(&lc);
return 0;
}
// at least one completion
int longestCommonPrefix = 0;
int displayLength = 0;
if (lc.completionStrings.size() == 1) {
longestCommonPrefix = static_cast<int>(lc.completionStrings[0].length());
} else {
bool keepGoing = true;
while (keepGoing) {
for (size_t j = 0; j < lc.completionStrings.size() - 1; ++j) {
char32_t c1 = lc.completionStrings[j][longestCommonPrefix];
char32_t c2 = lc.completionStrings[j + 1][longestCommonPrefix];
if ((0 == c1) || (0 == c2) || (c1 != c2)) {
keepGoing = false;
break;
}
}
if (keepGoing) {
++longestCommonPrefix;
}
}
}
if (lc.completionStrings.size() != 1) { // beep if ambiguous
beep();
}
// if we can extend the item, extend it and return to main loop
if (longestCommonPrefix > itemLength) {
displayLength = len + longestCommonPrefix - itemLength;
if (displayLength > buflen) {
longestCommonPrefix -= displayLength - buflen; // don't overflow buffer
displayLength = buflen; // truncate the insertion
beep(); // and make a noise
}
Utf32String displayText(displayLength + 1);
memcpy(displayText.get(), buf32, sizeof(char32_t) * startIndex);
memcpy(&displayText[startIndex], &lc.completionStrings[0][0],
sizeof(char32_t) * longestCommonPrefix);
int tailIndex = startIndex + longestCommonPrefix;
memcpy(&displayText[tailIndex], &buf32[pos],
sizeof(char32_t) * (displayLength - tailIndex + 1));
copyString32(buf32, displayText.get(), displayLength);
pos = startIndex + longestCommonPrefix;
len = displayLength;
refreshLine(pi);
return 0;
}
// we can't complete any further, wait for second tab
do {
c = linenoiseReadChar();
c = cleanupCtrl(c);
} while (c == static_cast<char32_t>(-1));
// if any character other than tab, pass it to the main loop
if (c != ctrlChar('I')) {
freeCompletions(&lc);
return c;
}
// we got a second tab, maybe show list of possible completions
bool showCompletions = true;
bool onNewLine = false;
if (lc.completionStrings.size() > completionCountCutoff) {
int savePos =
pos; // move cursor to EOL to avoid overwriting the command line
pos = len;
refreshLine(pi);
pos = savePos;
printf("\nDisplay all %u possibilities? (y or n)",
static_cast<unsigned int>(lc.completionStrings.size()));
fflush(stdout);
onNewLine = true;
while (c != 'y' && c != 'Y' && c != 'n' && c != 'N' && c != ctrlChar('C')) {
do {
c = linenoiseReadChar();
c = cleanupCtrl(c);
} while (c == static_cast<char32_t>(-1));
}
switch (c) {
case 'n':
case 'N':
showCompletions = false;
freeCompletions(&lc);
break;
case ctrlChar('C'):
showCompletions = false;
freeCompletions(&lc);
if (write(1, "^C", 2) == -1) return -1; // Display the ^C we got
c = 0;
break;
}
}
// if showing the list, do it the way readline does it
bool stopList = false;
if (showCompletions) {
int longestCompletion = 0;
for (size_t j = 0; j < lc.completionStrings.size(); ++j) {
itemLength = static_cast<int>(lc.completionStrings[j].length());
if (itemLength > longestCompletion) {
longestCompletion = itemLength;
}
}
longestCompletion += 2;
int columnCount = pi.promptScreenColumns / longestCompletion;
if (columnCount < 1) {
columnCount = 1;
}
if (!onNewLine) { // skip this if we showed "Display all %d possibilities?"
int savePos =
pos; // move cursor to EOL to avoid overwriting the command line
pos = len;
refreshLine(pi);
pos = savePos;
}
size_t pauseRow = getScreenRows() - 1;
size_t rowCount =
(lc.completionStrings.size() + columnCount - 1) / columnCount;
for (size_t row = 0; row < rowCount; ++row) {
if (row == pauseRow) {
printf("\n--More--");
fflush(stdout);
c = 0;
bool doBeep = false;
while (c != ' ' && c != '\r' && c != '\n' && c != 'y' && c != 'Y' &&
c != 'n' && c != 'N' && c != 'q' && c != 'Q' &&
c != ctrlChar('C')) {
if (doBeep) {
beep();
}
doBeep = true;
do {
c = linenoiseReadChar();
c = cleanupCtrl(c);
} while (c == static_cast<char32_t>(-1));
}
switch (c) {
case ' ':
case 'y':
case 'Y':
printf("\r \r");
pauseRow += getScreenRows() - 1;
break;
case '\r':
case '\n':
printf("\r \r");
++pauseRow;
break;
case 'n':
case 'N':
case 'q':
case 'Q':
printf("\r \r");
stopList = true;
break;
case ctrlChar('C'):
if (write(1, "^C", 2) == -1) return -1; // Display the ^C we got
stopList = true;
break;
}
} else {
printf("\n");
}
if (stopList) {
break;
}
for (int column = 0; column < columnCount; ++column) {
size_t index = (column * rowCount) + row;
if (index < lc.completionStrings.size()) {
itemLength = static_cast<int>(lc.completionStrings[index].length());
fflush(stdout);
if (write32(1, lc.completionStrings[index].get(), itemLength) == -1)
return -1;
if (((column + 1) * rowCount) + row < lc.completionStrings.size()) {
for (int k = itemLength; k < longestCompletion; ++k) {
printf(" ");
}
}
}
}
}
fflush(stdout);
freeCompletions(&lc);
}
// display the prompt on a new line, then redisplay the input buffer
if (!stopList || c == ctrlChar('C')) {
if (write(1, "\n", 1) == -1) return 0;
}
if (!pi.write()) return 0;
#ifndef _WIN32
// we have to generate our own newline on line wrap on Linux
if (pi.promptIndentation == 0 && pi.promptExtraLines > 0)
if (write(1, "\n", 1) == -1) return 0;
#endif
pi.promptCursorRowOffset = pi.promptExtraLines;
refreshLine(pi);
return 0;
}
/**
* Clear the screen ONLY (no redisplay of anything)
*/
void linenoiseClearScreen(void) {
#ifdef _WIN32
COORD coord = {0, 0};
CONSOLE_SCREEN_BUFFER_INFO inf;
HANDLE screenHandle = GetStdHandle(STD_OUTPUT_HANDLE);
GetConsoleScreenBufferInfo(screenHandle, &inf);
SetConsoleCursorPosition(screenHandle, coord);
DWORD count;
FillConsoleOutputCharacterA(screenHandle, ' ', inf.dwSize.X * inf.dwSize.Y,
coord, &count);
#else
if (write(1, "\x1b[H\x1b[2J", 7) <= 0) return;
#endif
}
void InputBuffer::clearScreen(PromptBase& pi) {
linenoiseClearScreen();
if (!pi.write()) return;
#ifndef _WIN32
// we have to generate our own newline on line wrap on Linux
if (pi.promptIndentation == 0 && pi.promptExtraLines > 0)
if (write(1, "\n", 1) == -1) return;
#endif
pi.promptCursorRowOffset = pi.promptExtraLines;
refreshLine(pi);
}
/**
* Incremental history search -- take over the prompt and keyboard as the user
* types a search
* string, deletes characters from it, changes direction, and either accepts the
* found line (for
* execution orediting) or cancels.
* @param pi PromptBase struct holding information about the (old,
* static) prompt and our
* screen position
* @param startChar the character that began the search, used to set the initial
* direction
*/
int InputBuffer::incrementalHistorySearch(PromptBase& pi, int startChar) {
size_t bufferSize;
size_t ucharCount = 0;
// if not already recalling, add the current line to the history list so we
// don't have to
// special case it
if (historyIndex == historyLen - 1) {
free(history[historyLen - 1]);
bufferSize = sizeof(char32_t) * len + 1;
unique_ptr<char[]> tempBuffer(new char[bufferSize]);
copyString32to8(tempBuffer.get(), bufferSize, buf32);
history[historyLen - 1] = strdup8(tempBuffer.get());
}
int historyLineLength = len;
int historyLinePosition = pos;
char32_t emptyBuffer[1];
char emptyWidths[1];
InputBuffer empty(emptyBuffer, emptyWidths, 1);
empty.refreshLine(pi); // erase the old input first
DynamicPrompt dp(pi, (startChar == ctrlChar('R')) ? -1 : 1);
dp.promptPreviousLen = pi.promptPreviousLen;
dp.promptPreviousInputLen = pi.promptPreviousInputLen;
dynamicRefresh(dp, buf32, historyLineLength,
historyLinePosition); // draw user's text with our prompt
// loop until we get an exit character
int c = 0;
bool keepLooping = true;
bool useSearchedLine = true;
bool searchAgain = false;
char32_t* activeHistoryLine = 0;
while (keepLooping) {
c = linenoiseReadChar();
c = cleanupCtrl(c); // convert CTRL + <char> into normal ctrl
switch (c) {
// these characters keep the selected text but do not execute it
case ctrlChar('A'): // ctrl-A, move cursor to start of line
case HOME_KEY:
case ctrlChar('B'): // ctrl-B, move cursor left by one character
case LEFT_ARROW_KEY:
case META + 'b': // meta-B, move cursor left by one word
case META + 'B':
case CTRL + LEFT_ARROW_KEY:
case META + LEFT_ARROW_KEY: // Emacs allows Meta, bash & readline don't
case ctrlChar('D'):
case META + 'd': // meta-D, kill word to right of cursor
case META + 'D':
case ctrlChar('E'): // ctrl-E, move cursor to end of line
case END_KEY:
case ctrlChar('F'): // ctrl-F, move cursor right by one character
case RIGHT_ARROW_KEY:
case META + 'f': // meta-F, move cursor right by one word
case META + 'F':
case CTRL + RIGHT_ARROW_KEY:
case META + RIGHT_ARROW_KEY: // Emacs allows Meta, bash & readline don't
case META + ctrlChar('H'):
case ctrlChar('J'):
case ctrlChar('K'): // ctrl-K, kill from cursor to end of line
case ctrlChar('M'):
case ctrlChar('N'): // ctrl-N, recall next line in history
case ctrlChar('P'): // ctrl-P, recall previous line in history
case DOWN_ARROW_KEY:
case UP_ARROW_KEY:
case ctrlChar('T'): // ctrl-T, transpose characters
case ctrlChar(
'U'): // ctrl-U, kill all characters to the left of the cursor
case ctrlChar('W'):
case META + 'y': // meta-Y, "yank-pop", rotate popped text
case META + 'Y':
case 127:
case DELETE_KEY:
case META + '<': // start of history
case PAGE_UP_KEY:
case META + '>': // end of history
case PAGE_DOWN_KEY:
keepLooping = false;
break;
// these characters revert the input line to its previous state
case ctrlChar('C'): // ctrl-C, abort this line
case ctrlChar('G'):
case ctrlChar('L'): // ctrl-L, clear screen and redisplay line
keepLooping = false;
useSearchedLine = false;
if (c != ctrlChar('L')) {
c = -1; // ctrl-C and ctrl-G just abort the search and do nothing
// else
}
break;
// these characters stay in search mode and update the display
case ctrlChar('S'):
case ctrlChar('R'):
if (dp.searchTextLen ==
0) { // if no current search text, recall previous text
if (previousSearchText.length()) {
dp.updateSearchText(previousSearchText.get());
}
}
if ((dp.direction == 1 && c == ctrlChar('R')) ||
(dp.direction == -1 && c == ctrlChar('S'))) {
dp.direction = 0 - dp.direction; // reverse direction
dp.updateSearchPrompt(); // change the prompt
} else {
searchAgain = true; // same direction, search again
}
break;
// job control is its own thing
#ifndef _WIN32
case ctrlChar('Z'): // ctrl-Z, job control
disableRawMode(); // Returning to Linux (whatever) shell, leave raw
// mode
raise(SIGSTOP); // Break out in mid-line
enableRawMode(); // Back from Linux shell, re-enter raw mode
{
bufferSize = historyLineLength + 1;
unique_ptr<char32_t[]> tempUnicode(new char32_t[bufferSize]);
copyString8to32(tempUnicode.get(), bufferSize, ucharCount,
history[historyIndex]);
dynamicRefresh(dp, tempUnicode.get(), historyLineLength,
historyLinePosition);
}
continue;
break;
#endif
// these characters update the search string, and hence the selected input
// line
case ctrlChar('H'): // backspace/ctrl-H, delete char to left of cursor
if (dp.searchTextLen > 0) {
unique_ptr<char32_t[]> tempUnicode(new char32_t[dp.searchTextLen]);
--dp.searchTextLen;
dp.searchText[dp.searchTextLen] = 0;
copyString32(tempUnicode.get(), dp.searchText.get(),
dp.searchTextLen);
dp.updateSearchText(tempUnicode.get());
} else {
beep();
}
break;
case ctrlChar('Y'): // ctrl-Y, yank killed text
break;
default:
if (!isControlChar(c) && c <= 0x0010FFFF) { // not an action character
unique_ptr<char32_t[]> tempUnicode(
new char32_t[dp.searchTextLen + 2]);
copyString32(tempUnicode.get(), dp.searchText.get(),
dp.searchTextLen);
tempUnicode[dp.searchTextLen] = c;
tempUnicode[dp.searchTextLen + 1] = 0;
dp.updateSearchText(tempUnicode.get());
} else {
beep();
}
} // switch
// if we are staying in search mode, search now
if (keepLooping) {
bufferSize = historyLineLength + 1;
if (activeHistoryLine) {
delete[] activeHistoryLine;
activeHistoryLine = nullptr;
}
activeHistoryLine = new char32_t[bufferSize];
copyString8to32(activeHistoryLine, bufferSize, ucharCount,
history[historyIndex]);
if (dp.searchTextLen > 0) {
bool found = false;
int historySearchIndex = historyIndex;
int lineLength = static_cast<int>(ucharCount);
int lineSearchPos = historyLinePosition;
if (searchAgain) {
lineSearchPos += dp.direction;
}
searchAgain = false;
while (true) {
while ((dp.direction > 0) ? (lineSearchPos < lineLength)
: (lineSearchPos >= 0)) {
if (strncmp32(dp.searchText.get(),
&activeHistoryLine[lineSearchPos],
dp.searchTextLen) == 0) {
found = true;
break;
}
lineSearchPos += dp.direction;
}
if (found) {
historyIndex = historySearchIndex;
historyLineLength = lineLength;
historyLinePosition = lineSearchPos;
break;
} else if ((dp.direction > 0) ? (historySearchIndex < historyLen - 1)
: (historySearchIndex > 0)) {
historySearchIndex += dp.direction;
bufferSize = strlen8(history[historySearchIndex]) + 1;
delete[] activeHistoryLine;
activeHistoryLine = nullptr;
activeHistoryLine = new char32_t[bufferSize];
copyString8to32(activeHistoryLine, bufferSize, ucharCount,
history[historySearchIndex]);
lineLength = static_cast<int>(ucharCount);
lineSearchPos =
(dp.direction > 0) ? 0 : (lineLength - dp.searchTextLen);
} else {
beep();
break;
}
}; // while
}
if (activeHistoryLine) {
delete[] activeHistoryLine;
activeHistoryLine = nullptr;
}
bufferSize = historyLineLength + 1;
activeHistoryLine = new char32_t[bufferSize];
copyString8to32(activeHistoryLine, bufferSize, ucharCount,
history[historyIndex]);
dynamicRefresh(dp, activeHistoryLine, historyLineLength,
historyLinePosition); // draw user's text with our prompt
}
} // while
// leaving history search, restore previous prompt, maybe make searched line
// current
PromptBase pb;
pb.promptChars = pi.promptIndentation;
pb.promptBytes = pi.promptBytes;
Utf32String tempUnicode(pb.promptBytes + 1);
copyString32(tempUnicode.get(), &pi.promptText[pi.promptLastLinePosition],
pb.promptBytes - pi.promptLastLinePosition);
tempUnicode.initFromBuffer();
pb.promptText = tempUnicode;
pb.promptExtraLines = 0;
pb.promptIndentation = pi.promptIndentation;
pb.promptLastLinePosition = 0;
pb.promptPreviousInputLen = historyLineLength;
pb.promptCursorRowOffset = dp.promptCursorRowOffset;
pb.promptScreenColumns = pi.promptScreenColumns;
pb.promptPreviousLen = dp.promptChars;
if (useSearchedLine && activeHistoryLine) {
historyRecallMostRecent = true;
copyString32(buf32, activeHistoryLine, buflen + 1);
len = historyLineLength;
pos = historyLinePosition;
}
if (activeHistoryLine) {
delete[] activeHistoryLine;
activeHistoryLine = nullptr;
}
dynamicRefresh(pb, buf32, len,
pos); // redraw the original prompt with current input
pi.promptPreviousInputLen = len;
pi.promptCursorRowOffset = pi.promptExtraLines + pb.promptCursorRowOffset;
previousSearchText =
dp.searchText; // save search text for possible reuse on ctrl-R ctrl-R
return c; // pass a character or -1 back to main loop
}
static bool isCharacterAlphanumeric(char32_t testChar) {
#ifdef _WIN32
return (iswalnum((wint_t)testChar) != 0 ? true : false);
#else
return (iswalnum(testChar) != 0 ? true : false);
#endif
}
#ifndef _WIN32
static bool gotResize = false;
#endif
static int keyType = 0;
int InputBuffer::getInputLine(PromptBase& pi) {
keyType = 0;
// The latest history entry is always our current buffer
if (len > 0) {
size_t bufferSize = sizeof(char32_t) * len + 1;
unique_ptr<char[]> tempBuffer(new char[bufferSize]);
copyString32to8(tempBuffer.get(), bufferSize, buf32);
linenoiseHistoryAdd(tempBuffer.get());
} else {
linenoiseHistoryAdd("");
}
historyIndex = historyLen - 1;
historyRecallMostRecent = false;
// display the prompt
if (!pi.write()) return -1;
#ifndef _WIN32
// we have to generate our own newline on line wrap on Linux
if (pi.promptIndentation == 0 && pi.promptExtraLines > 0)
if (write(1, "\n", 1) == -1) return -1;
#endif
// the cursor starts out at the end of the prompt
pi.promptCursorRowOffset = pi.promptExtraLines;
// kill and yank start in "other" mode
killRing.lastAction = KillRing::actionOther;
// when history search returns control to us, we execute its terminating
// keystroke
int terminatingKeystroke = -1;
// if there is already text in the buffer, display it first
if (len > 0) {
refreshLine(pi);
}
// loop collecting characters, respond to line editing characters
while (true) {
int c;
if (terminatingKeystroke == -1) {
c = linenoiseReadChar(); // get a new keystroke
keyType = 0;
if (c != 0) {
// set flag that we got some input
if (c == ctrlChar('C')) {
keyType = 1;
} else if (c == ctrlChar('D')) {
keyType = 2;
}
}
#ifndef _WIN32
if (c == 0 && gotResize) {
// caught a window resize event
// now redraw the prompt and line
gotResize = false;
pi.promptScreenColumns = getScreenColumns();
dynamicRefresh(pi, buf32, len,
pos); // redraw the original prompt with current input
continue;
}
#endif
} else {
c = terminatingKeystroke; // use the terminating keystroke from search
terminatingKeystroke = -1; // clear it once we've used it
}
c = cleanupCtrl(c); // convert CTRL + <char> into normal ctrl
if (c == 0) {
return len;
}
if (c == -1) {
refreshLine(pi);
continue;
}
if (c == -2) {
if (!pi.write()) return -1;
refreshLine(pi);
continue;
}
// ctrl-I/tab, command completion, needs to be before switch statement
if (c == ctrlChar('I') && completionCallback) {
killRing.lastAction = KillRing::actionOther;
historyRecallMostRecent = false;
// completeLine does the actual completion and replacement
c = completeLine(pi);
if (c < 0) // return on error
return len;
if (c == 0) // read next character when 0
continue;
// deliberate fall-through here, so we use the terminating character
}
switch (c) {
case ctrlChar('A'): // ctrl-A, move cursor to start of line
case HOME_KEY:
killRing.lastAction = KillRing::actionOther;
pos = 0;
refreshLine(pi);
break;
case ctrlChar('B'): // ctrl-B, move cursor left by one character
case LEFT_ARROW_KEY:
killRing.lastAction = KillRing::actionOther;
if (pos > 0) {
--pos;
refreshLine(pi);
}
break;
case META + 'b': // meta-B, move cursor left by one word
case META + 'B':
case CTRL + LEFT_ARROW_KEY:
case META + LEFT_ARROW_KEY: // Emacs allows Meta, bash & readline don't
killRing.lastAction = KillRing::actionOther;
if (pos > 0) {
while (pos > 0 && !isCharacterAlphanumeric(buf32[pos - 1])) {
--pos;
}
while (pos > 0 && isCharacterAlphanumeric(buf32[pos - 1])) {
--pos;
}
refreshLine(pi);
}
break;
case ctrlChar('C'): // ctrl-C, abort this line
killRing.lastAction = KillRing::actionOther;
historyRecallMostRecent = false;
errno = EAGAIN;
--historyLen;
free(history[historyLen]);
// we need one last refresh with the cursor at the end of the line
// so we don't display the next prompt over the previous input line
pos = len; // pass len as pos for EOL
refreshLine(pi);
if (write(1, "^C", 2) == -1) return -1; // Display the ^C we got
return -1;
case META + 'c': // meta-C, give word initial Cap
case META + 'C':
killRing.lastAction = KillRing::actionOther;
historyRecallMostRecent = false;
if (pos < len) {
while (pos < len && !isCharacterAlphanumeric(buf32[pos])) {
++pos;
}
if (pos < len && isCharacterAlphanumeric(buf32[pos])) {
if (buf32[pos] >= 'a' && buf32[pos] <= 'z') {
buf32[pos] += 'A' - 'a';
}
++pos;
}
while (pos < len && isCharacterAlphanumeric(buf32[pos])) {
if (buf32[pos] >= 'A' && buf32[pos] <= 'Z') {
buf32[pos] += 'a' - 'A';
}
++pos;
}
refreshLine(pi);
}
break;
// ctrl-D, delete the character under the cursor
// on an empty line, exit the shell
case ctrlChar('D'):
killRing.lastAction = KillRing::actionOther;
if (len > 0 && pos < len) {
historyRecallMostRecent = false;
memmove(buf32 + pos, buf32 + pos + 1, sizeof(char32_t) * (len - pos));
--len;
refreshLine(pi);
} else if (len == 0) {
--historyLen;
free(history[historyLen]);
return -1;
}
break;
case META + 'd': // meta-D, kill word to right of cursor
case META + 'D':
if (pos < len) {
historyRecallMostRecent = false;
int endingPos = pos;
while (endingPos < len &&
!isCharacterAlphanumeric(buf32[endingPos])) {
++endingPos;
}
while (endingPos < len && isCharacterAlphanumeric(buf32[endingPos])) {
++endingPos;
}
killRing.kill(&buf32[pos], endingPos - pos, true);
memmove(buf32 + pos, buf32 + endingPos,
sizeof(char32_t) * (len - endingPos + 1));
len -= endingPos - pos;
refreshLine(pi);
}
killRing.lastAction = KillRing::actionKill;
break;
case ctrlChar('E'): // ctrl-E, move cursor to end of line
case END_KEY:
killRing.lastAction = KillRing::actionOther;
pos = len;
refreshLine(pi);
break;
case ctrlChar('F'): // ctrl-F, move cursor right by one character
case RIGHT_ARROW_KEY:
killRing.lastAction = KillRing::actionOther;
if (pos < len) {
++pos;
refreshLine(pi);
}
break;
case META + 'f': // meta-F, move cursor right by one word
case META + 'F':
case CTRL + RIGHT_ARROW_KEY:
case META + RIGHT_ARROW_KEY: // Emacs allows Meta, bash & readline don't
killRing.lastAction = KillRing::actionOther;
if (pos < len) {
while (pos < len && !isCharacterAlphanumeric(buf32[pos])) {
++pos;
}
while (pos < len && isCharacterAlphanumeric(buf32[pos])) {
++pos;
}
refreshLine(pi);
}
break;
case ctrlChar('H'): // backspace/ctrl-H, delete char to left of cursor
killRing.lastAction = KillRing::actionOther;
if (pos > 0) {
historyRecallMostRecent = false;
memmove(buf32 + pos - 1, buf32 + pos,
sizeof(char32_t) * (1 + len - pos));
--pos;
--len;
refreshLine(pi);
}
break;
// meta-Backspace, kill word to left of cursor
case META + ctrlChar('H'):
if (pos > 0) {
historyRecallMostRecent = false;
int startingPos = pos;
while (pos > 0 && !isCharacterAlphanumeric(buf32[pos - 1])) {
--pos;
}
while (pos > 0 && isCharacterAlphanumeric(buf32[pos - 1])) {
--pos;
}
killRing.kill(&buf32[pos], startingPos - pos, false);
memmove(buf32 + pos, buf32 + startingPos,
sizeof(char32_t) * (len - startingPos + 1));
len -= startingPos - pos;
refreshLine(pi);
}
killRing.lastAction = KillRing::actionKill;
break;
case ctrlChar('J'): // ctrl-J/linefeed/newline, accept line
case ctrlChar('M'): // ctrl-M/return/enter
killRing.lastAction = KillRing::actionOther;
// we need one last refresh with the cursor at the end of the line
// so we don't display the next prompt over the previous input line
pos = len; // pass len as pos for EOL
refreshLine(pi);
historyPreviousIndex = historyRecallMostRecent ? historyIndex : -2;
--historyLen;
free(history[historyLen]);
return len;
case ctrlChar('K'): // ctrl-K, kill from cursor to end of line
killRing.kill(&buf32[pos], len - pos, true);
buf32[pos] = '\0';
len = pos;
refreshLine(pi);
killRing.lastAction = KillRing::actionKill;
historyRecallMostRecent = false;
break;
case ctrlChar('L'): // ctrl-L, clear screen and redisplay line
clearScreen(pi);
break;
case META + 'l': // meta-L, lowercase word
case META + 'L':
killRing.lastAction = KillRing::actionOther;
if (pos < len) {
historyRecallMostRecent = false;
while (pos < len && !isCharacterAlphanumeric(buf32[pos])) {
++pos;
}
while (pos < len && isCharacterAlphanumeric(buf32[pos])) {
if (buf32[pos] >= 'A' && buf32[pos] <= 'Z') {
buf32[pos] += 'a' - 'A';
}
++pos;
}
refreshLine(pi);
}
break;
case ctrlChar('N'): // ctrl-N, recall next line in history
case ctrlChar('P'): // ctrl-P, recall previous line in history
case DOWN_ARROW_KEY:
case UP_ARROW_KEY:
killRing.lastAction = KillRing::actionOther;
// if not already recalling, add the current line to the history list so
// we don't
// have to special case it
if (historyIndex == historyLen - 1) {
free(history[historyLen - 1]);
size_t tempBufferSize = sizeof(char32_t) * len + 1;
unique_ptr<char[]> tempBuffer(new char[tempBufferSize]);
copyString32to8(tempBuffer.get(), tempBufferSize, buf32);
history[historyLen - 1] = strdup8(tempBuffer.get());
}
if (historyLen > 1) {
if (c == UP_ARROW_KEY) {
c = ctrlChar('P');
}
if (historyPreviousIndex != -2 && c != ctrlChar('P')) {
historyIndex =
1 + historyPreviousIndex; // emulate Windows down-arrow
} else {
historyIndex += (c == ctrlChar('P')) ? -1 : 1;
}
historyPreviousIndex = -2;
if (historyIndex < 0) {
historyIndex = 0;
break;
} else if (historyIndex >= historyLen) {
historyIndex = historyLen - 1;
break;
}
historyRecallMostRecent = true;
size_t ucharCount = 0;
copyString8to32(buf32, buflen, ucharCount, history[historyIndex]);
len = pos = static_cast<int>(ucharCount);
refreshLine(pi);
}
break;
case ctrlChar('R'): // ctrl-R, reverse history search
case ctrlChar('S'): // ctrl-S, forward history search
terminatingKeystroke = incrementalHistorySearch(pi, c);
break;
case ctrlChar('T'): // ctrl-T, transpose characters
killRing.lastAction = KillRing::actionOther;
if (pos > 0 && len > 1) {
historyRecallMostRecent = false;
size_t leftCharPos = (pos == len) ? pos - 2 : pos - 1;
char32_t aux = buf32[leftCharPos];
buf32[leftCharPos] = buf32[leftCharPos + 1];
buf32[leftCharPos + 1] = aux;
if (pos != len) ++pos;
refreshLine(pi);
}
break;
case ctrlChar(
'U'): // ctrl-U, kill all characters to the left of the cursor
if (pos > 0) {
historyRecallMostRecent = false;
killRing.kill(&buf32[0], pos, false);
len -= pos;
memmove(buf32, buf32 + pos, sizeof(char32_t) * (len + 1));
pos = 0;
refreshLine(pi);
}
killRing.lastAction = KillRing::actionKill;
break;
case META + 'u': // meta-U, uppercase word
case META + 'U':
killRing.lastAction = KillRing::actionOther;
if (pos < len) {
historyRecallMostRecent = false;
while (pos < len && !isCharacterAlphanumeric(buf32[pos])) {
++pos;
}
while (pos < len && isCharacterAlphanumeric(buf32[pos])) {
if (buf32[pos] >= 'a' && buf32[pos] <= 'z') {
buf32[pos] += 'A' - 'a';
}
++pos;
}
refreshLine(pi);
}
break;
// ctrl-W, kill to whitespace (not word) to left of cursor
case ctrlChar('W'):
if (pos > 0) {
historyRecallMostRecent = false;
int startingPos = pos;
while (pos > 0 && buf32[pos - 1] == ' ') {
--pos;
}
while (pos > 0 && buf32[pos - 1] != ' ') {
--pos;
}
killRing.kill(&buf32[pos], startingPos - pos, false);
memmove(buf32 + pos, buf32 + startingPos,
sizeof(char32_t) * (len - startingPos + 1));
len -= startingPos - pos;
refreshLine(pi);
}
killRing.lastAction = KillRing::actionKill;
break;
case ctrlChar('Y'): // ctrl-Y, yank killed text
historyRecallMostRecent = false;
{
Utf32String* restoredText = killRing.yank();
if (restoredText) {
bool truncated = false;
size_t ucharCount = restoredText->length();
if (ucharCount > static_cast<size_t>(buflen - len)) {
ucharCount = buflen - len;
truncated = true;
}
memmove(buf32 + pos + ucharCount, buf32 + pos,
sizeof(char32_t) * (len - pos + 1));
memmove(buf32 + pos, restoredText->get(),
sizeof(char32_t) * ucharCount);
pos += static_cast<int>(ucharCount);
len += static_cast<int>(ucharCount);
refreshLine(pi);
killRing.lastAction = KillRing::actionYank;
killRing.lastYankSize = ucharCount;
if (truncated) {
beep();
}
} else {
beep();
}
}
break;
case META + 'y': // meta-Y, "yank-pop", rotate popped text
case META + 'Y':
if (killRing.lastAction == KillRing::actionYank) {
historyRecallMostRecent = false;
Utf32String* restoredText = killRing.yankPop();
if (restoredText) {
bool truncated = false;
size_t ucharCount = restoredText->length();
if (ucharCount >
static_cast<size_t>(killRing.lastYankSize + buflen - len)) {
ucharCount = killRing.lastYankSize + buflen - len;
truncated = true;
}
if (ucharCount > killRing.lastYankSize) {
memmove(buf32 + pos + ucharCount - killRing.lastYankSize,
buf32 + pos, sizeof(char32_t) * (len - pos + 1));
memmove(buf32 + pos - killRing.lastYankSize, restoredText->get(),
sizeof(char32_t) * ucharCount);
} else {
memmove(buf32 + pos - killRing.lastYankSize, restoredText->get(),
sizeof(char32_t) * ucharCount);
memmove(buf32 + pos + ucharCount - killRing.lastYankSize,
buf32 + pos, sizeof(char32_t) * (len - pos + 1));
}
pos += static_cast<int>(ucharCount - killRing.lastYankSize);
len += static_cast<int>(ucharCount - killRing.lastYankSize);
killRing.lastYankSize = ucharCount;
refreshLine(pi);
if (truncated) {
beep();
}
break;
}
}
beep();
break;
#ifndef _WIN32
case ctrlChar('Z'): // ctrl-Z, job control
disableRawMode(); // Returning to Linux (whatever) shell, leave raw
// mode
raise(SIGSTOP); // Break out in mid-line
enableRawMode(); // Back from Linux shell, re-enter raw mode
if (!pi.write()) break; // Redraw prompt
refreshLine(pi); // Refresh the line
break;
#endif
// DEL, delete the character under the cursor
case 127:
case DELETE_KEY:
killRing.lastAction = KillRing::actionOther;
if (len > 0 && pos < len) {
historyRecallMostRecent = false;
memmove(buf32 + pos, buf32 + pos + 1, sizeof(char32_t) * (len - pos));
--len;
refreshLine(pi);
}
break;
case META + '<': // meta-<, beginning of history
case PAGE_UP_KEY: // Page Up, beginning of history
case META + '>': // meta->, end of history
case PAGE_DOWN_KEY: // Page Down, end of history
killRing.lastAction = KillRing::actionOther;
// if not already recalling, add the current line to the history list so
// we don't
// have to special case it
if (historyIndex == historyLen - 1) {
free(history[historyLen - 1]);
size_t tempBufferSize = sizeof(char32_t) * len + 1;
unique_ptr<char[]> tempBuffer(new char[tempBufferSize]);
copyString32to8(tempBuffer.get(), tempBufferSize, buf32);
history[historyLen - 1] = strdup8(tempBuffer.get());
}
if (historyLen > 1) {
historyIndex =
(c == META + '<' || c == PAGE_UP_KEY) ? 0 : historyLen - 1;
historyPreviousIndex = -2;
historyRecallMostRecent = true;
size_t ucharCount = 0;
copyString8to32(buf32, buflen, ucharCount, history[historyIndex]);
len = pos = static_cast<int>(ucharCount);
refreshLine(pi);
}
break;
// not one of our special characters, maybe insert it in the buffer
default:
killRing.lastAction = KillRing::actionOther;
historyRecallMostRecent = false;
if (c & (META | CTRL)) { // beep on unknown Ctrl and/or Meta keys
beep();
break;
}
if (len < buflen) {
if (isControlChar(c)) { // don't insert control characters
beep();
break;
}
if (len == pos) { // at end of buffer
buf32[pos] = c;
++pos;
++len;
buf32[len] = '\0';
int inputLen = calculateColumnPosition(buf32, len);
if (pi.promptIndentation + inputLen < pi.promptScreenColumns) {
if (inputLen > pi.promptPreviousInputLen)
pi.promptPreviousInputLen = inputLen;
/* Avoid a full update of the line in the
* trivial case. */
if (write32(1, reinterpret_cast<char32_t*>(&c), 1) == -1)
return -1;
} else {
refreshLine(pi);
}
} else { // not at end of buffer, have to move characters to our
// right
memmove(buf32 + pos + 1, buf32 + pos,
sizeof(char32_t) * (len - pos));
buf32[pos] = c;
++len;
++pos;
buf32[len] = '\0';
refreshLine(pi);
}
} else {
beep(); // buffer is full, beep on new characters
}
break;
}
}
return len;
}
static string preloadedBufferContents; // used with linenoisePreloadBuffer
static string preloadErrorMessage;
/**
* linenoisePreloadBuffer provides text to be inserted into the command buffer
*
* the provided text will be processed to be usable and will be used to preload
* the input buffer on the next call to linenoise()
*
* @param preloadText text to begin with on the next call to linenoise()
*/
void linenoisePreloadBuffer(const char* preloadText) {
if (!preloadText) {
return;
}
int bufferSize = static_cast<int>(strlen(preloadText) + 1);
unique_ptr<char[]> tempBuffer(new char[bufferSize]);
strncpy(&tempBuffer[0], preloadText, bufferSize);
// remove characters that won't display correctly
char* pIn = &tempBuffer[0];
char* pOut = pIn;
bool controlsStripped = false;
bool whitespaceSeen = false;
while (*pIn) {
unsigned char c =
*pIn++; // we need unsigned so chars 0x80 and above are allowed
if ('\r' == c) { // silently skip CR
continue;
}
if ('\n' == c || '\t' == c) { // note newline or tab
whitespaceSeen = true;
continue;
}
if (isControlChar(
c)) { // remove other control characters, flag for message
controlsStripped = true;
*pOut++ = ' ';
continue;
}
if (whitespaceSeen) { // convert whitespace to a single space
*pOut++ = ' ';
whitespaceSeen = false;
}
*pOut++ = c;
}
*pOut = 0;
int processedLength = static_cast<int>(pOut - tempBuffer.get());
bool lineTruncated = false;
if (processedLength > (LINENOISE_MAX_LINE - 1)) {
lineTruncated = true;
tempBuffer[LINENOISE_MAX_LINE - 1] = 0;
}
preloadedBufferContents = tempBuffer.get();
if (controlsStripped) {
preloadErrorMessage +=
" [Edited line: control characters were converted to spaces]\n";
}
if (lineTruncated) {
preloadErrorMessage += " [Edited line: the line length was reduced from ";
char buf[128];
snprintf(buf, sizeof(buf), "%d to %d]\n", processedLength,
(LINENOISE_MAX_LINE - 1));
preloadErrorMessage += buf;
}
}
/**
* linenoise is a readline replacement.
*
* call it with a prompt to display and it will return a line of input from the
* user
*
* @param prompt text of prompt to display to the user
* @return the returned string belongs to the caller on return and must be
* freed to prevent
* memory leaks
*/
char* linenoise(const char* prompt) {
#ifndef _WIN32
gotResize = false;
#endif
if (isatty(STDIN_FILENO)) { // input is from a terminal
char32_t buf32[LINENOISE_MAX_LINE];
char charWidths[LINENOISE_MAX_LINE];
if (!preloadErrorMessage.empty()) {
printf("%s", preloadErrorMessage.c_str());
fflush(stdout);
preloadErrorMessage.clear();
}
PromptInfo pi(prompt, getScreenColumns());
if (isUnsupportedTerm()) {
if (!pi.write()) return 0;
fflush(stdout);
if (preloadedBufferContents.empty()) {
unique_ptr<char[]> buf8(new char[LINENOISE_MAX_LINE]);
if (fgets(buf8.get(), LINENOISE_MAX_LINE, stdin) == NULL) {
return NULL;
}
size_t len = strlen(buf8.get());
while (len && (buf8[len - 1] == '\n' || buf8[len - 1] == '\r')) {
--len;
buf8[len] = '\0';
}
return strdup(buf8.get()); // caller must free buffer
} else {
char* buf8 = strdup(preloadedBufferContents.c_str());
preloadedBufferContents.clear();
return buf8; // caller must free buffer
}
} else {
if (enableRawMode() == -1) {
return NULL;
}
InputBuffer ib(buf32, charWidths, LINENOISE_MAX_LINE);
if (!preloadedBufferContents.empty()) {
ib.preloadBuffer(preloadedBufferContents.c_str());
preloadedBufferContents.clear();
}
int count = ib.getInputLine(pi);
disableRawMode();
printf("\n");
if (count == -1) {
return NULL;
}
size_t bufferSize = sizeof(char32_t) * ib.length() + 1;
unique_ptr<char[]> buf8(new char[bufferSize]);
copyString32to8(buf8.get(), bufferSize, buf32);
return strdup(buf8.get()); // caller must free buffer
}
} else { // input not from a terminal, we should work with piped input, i.e.
// redirected stdin
unique_ptr<char[]> buf8(new char[LINENOISE_MAX_LINE]);
if (fgets(buf8.get(), LINENOISE_MAX_LINE, stdin) == NULL) {
return NULL;
}
// if fgets() gave us the newline, remove it
int count = static_cast<int>(strlen(buf8.get()));
if (count > 0 && buf8[count - 1] == '\n') {
--count;
buf8[count] = '\0';
}
return strdup(buf8.get()); // caller must free buffer
}
}
/* Register a callback function to be called for tab-completion. */
void linenoiseSetCompletionCallback(linenoiseCompletionCallback* fn) {
completionCallback = fn;
}
void linenoiseAddCompletion(linenoiseCompletions* lc, const char* str) {
lc->completionStrings.push_back(Utf32String(str));
}
int linenoiseHistoryAdd(const char* line) {
if (historyMaxLen == 0) {
return 0;
}
if (history == NULL) {
history =
reinterpret_cast<char8_t**>(malloc(sizeof(char8_t*) * historyMaxLen));
if (history == NULL) {
return 0;
}
memset(history, 0, (sizeof(char*) * historyMaxLen));
}
char8_t* linecopy = strdup8(line);
if (!linecopy) {
return 0;
}
// convert newlines in multi-line code to spaces before storing
char8_t* p = linecopy;
while (*p) {
if (*p == '\n') {
*p = ' ';
}
++p;
}
// prevent duplicate history entries
if (historyLen > 0 && history[historyLen - 1] != nullptr &&
strcmp(reinterpret_cast<char const*>(history[historyLen - 1]),
reinterpret_cast<char const*>(linecopy)) == 0) {
free(linecopy);
return 0;
}
if (historyLen == historyMaxLen) {
free(history[0]);
memmove(history, history + 1, sizeof(char*) * (historyMaxLen - 1));
--historyLen;
if (--historyPreviousIndex < -1) {
historyPreviousIndex = -2;
}
}
history[historyLen] = linecopy;
++historyLen;
return 1;
}
int linenoiseHistorySetMaxLen(int len) {
if (len < 1) {
return 0;
}
if (history) {
int tocopy = historyLen;
char8_t** newHistory =
reinterpret_cast<char8_t**>(malloc(sizeof(char8_t*) * len));
if (newHistory == NULL) {
return 0;
}
if (len < tocopy) {
tocopy = len;
}
memcpy(newHistory, history + historyMaxLen - tocopy,
sizeof(char8_t*) * tocopy);
free(history);
history = newHistory;
}
historyMaxLen = len;
if (historyLen > historyMaxLen) {
historyLen = historyMaxLen;
}
return 1;
}
/* Fetch a line of the history by (zero-based) index. If the requested
* line does not exist, NULL is returned. The return value is a heap-allocated
* copy of the line, and the caller is responsible for de-allocating it. */
char* linenoiseHistoryLine(int index) {
if (index < 0 || index >= historyLen) return NULL;
return strdup(reinterpret_cast<char const*>(history[index]));
}
/* Save the history in the specified file. On success 0 is returned
* otherwise -1 is returned. */
int linenoiseHistorySave(const char* filename) {
#if _WIN32
FILE* fp = fopen(filename, "wt");
#else
int fd = open(filename, O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR);
if (fd < 0) {
return -1;
}
FILE* fp = fdopen(fd, "wt");
#endif
if (fp == NULL) {
return -1;
}
for (int j = 0; j < historyLen; ++j) {
if (history[j][0] != '\0') {
fprintf(fp, "%s\n", history[j]);
}
}
fclose(fp);
return 0;
}
/* Load the history from the specified file. If the file does not exist
* zero is returned and no operation is performed.
*
* If the file exists and the operation succeeded 0 is returned, otherwise
* on error -1 is returned. */
int linenoiseHistoryLoad(const char* filename) {
FILE* fp = fopen(filename, "rt");
if (fp == NULL) {
return -1;
}
char buf[LINENOISE_MAX_LINE];
while (fgets(buf, LINENOISE_MAX_LINE, fp) != NULL) {
char* p = strchr(buf, '\r');
if (!p) {
p = strchr(buf, '\n');
}
if (p) {
*p = '\0';
}
if (p != buf) {
linenoiseHistoryAdd(buf);
}
}
fclose(fp);
return 0;
}
/* Set if to use or not the multi line mode. */
/* note that this is a stub only, as linenoise-ng always multi-line */
void linenoiseSetMultiLine(int) {}
/* This special mode is used by linenoise in order to print scan codes
* on screen for debugging / development purposes. It is implemented
* by the linenoise_example program using the --keycodes option. */
void linenoisePrintKeyCodes(void) {
char quit[4];
printf(
"Linenoise key codes debugging mode.\n"
"Press keys to see scan codes. Type 'quit' at any time to exit.\n");
if (enableRawMode() == -1) return;
memset(quit, ' ', 4);
while (1) {
char c;
int nread;
#if _WIN32
nread = _read(STDIN_FILENO, &c, 1);
#else
nread = read(STDIN_FILENO, &c, 1);
#endif
if (nread <= 0) continue;
memmove(quit, quit + 1, sizeof(quit) - 1); /* shift string to left. */
quit[sizeof(quit) - 1] = c; /* Insert current char on the right. */
if (memcmp(quit, "quit", sizeof(quit)) == 0) break;
printf("'%c' %02x (%d) (type quit to exit)\n", isprint(c) ? c : '?', (int)c,
(int)c);
printf("\r"); /* Go left edge manually, we are in raw mode. */
fflush(stdout);
}
disableRawMode();
}
#ifndef _WIN32
static void WindowSizeChanged(int) {
// do nothing here but setting this flag
gotResize = true;
}
#endif
int linenoiseInstallWindowChangeHandler(void) {
#ifndef _WIN32
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sa.sa_handler = &WindowSizeChanged;
if (sigaction(SIGWINCH, &sa, nullptr) == -1) {
return errno;
}
#endif
return 0;
}
int linenoiseKeyType(void) {
return keyType;
}