# Copyright 2019 Google LLC
# SPDX-License-Identifier: Apache-2.0
#
# Provides a "type-system" for Nix that provides various primitive &
# polymorphic types as well as the ability to define & check records.
#
# All types (should) compose as expected.
{ lib ? (import <nixpkgs> { }).lib, ... }:
with builtins; let
prettyPrint = lib.generators.toPretty { };
# typedef' :: struct {
# name = string;
# checkType = function; (a -> result)
# checkToBool = option function; (result -> bool)
# toError = option function; (a -> result -> string)
# def = option any;
# match = option function;
# } -> type
# -> (a -> b)
# -> (b -> bool)
# -> (a -> b -> string)
# -> type
#
# This function creates an attribute set that acts as a type.
#
# It receives a type name, a function that is used to perform a
# check on an arbitrary value, a function that can translate the
# return of that check to a boolean that informs whether the value
# is type-conformant, and a function that can construct error
# messages from the check result.
#
# This function is the low-level primitive used to create types. For
# many cases the higher-level 'typedef' function is more appropriate.
typedef' =
{ name
, checkType
, checkToBool ? (result: result.ok)
, toError ? (_: result: result.err)
, def ? null
, match ? null
}: {
inherit name checkToBool toError;
# check :: a -> bool
#
# This function is used to determine whether a given type is
# conformant.
check = value: checkToBool (checkType value);
# checkType :: a -> struct { ok = bool; err = option string; }
#
# This function checks whether the passed value is type conformant
# and returns an optional type error string otherwise.
inherit checkType;
# __functor :: a -> a
#
# This function checks whether the passed value is type conformant
# and throws an error if it is not.
#
# The name of this function is a special attribute in Nix that
# makes it possible to execute a type attribute set like a normal
# function.
__functor = self: value:
let result = self.checkType value;
in if checkToBool result then value
else throw (toError value result);
};
typeError = type: val:
"expected type '${type}', but value '${prettyPrint val}' is of type '${typeOf val}'";
# typedef :: string -> (a -> bool) -> type
#
# typedef is the simplified version of typedef' which uses a default
# error message constructor.
typedef = name: check: typedef' {
inherit name;
checkType = v:
let res = check v;
in {
ok = res;
} // (lib.optionalAttrs (!res) {
err = typeError name v;
});
};
checkEach = name: t: l: foldl'
(acc: e:
let
res = t.checkType e;
isT = t.checkToBool res;
in
{
ok = acc.ok && isT;
err =
if isT
then acc.err
else acc.err + "${prettyPrint e}: ${t.toError e res}\n";
})
{ ok = true; err = "expected type ${name}, but found:\n"; }
l;
in
lib.fix (self: {
# Primitive types
any = typedef "any" (_: true);
unit = typedef "unit" (v: v == { });
int = typedef "int" isInt;
bool = typedef "bool" isBool;
float = typedef "float" isFloat;
string = typedef "string" isString;
path = typedef "path" (x: typeOf x == "path");
drv = typedef "derivation" (x: isAttrs x && x ? "type" && x.type == "derivation");
function = typedef "function" (x: isFunction x || (isAttrs x && x ? "__functor"
&& isFunction x.__functor));
# Type for types themselves. Useful when defining polymorphic types.
type = typedef "type" (x:
isAttrs x
&& hasAttr "name" x && self.string.check x.name
&& hasAttr "checkType" x && self.function.check x.checkType
&& hasAttr "checkToBool" x && self.function.check x.checkToBool
&& hasAttr "toError" x && self.function.check x.toError
);
# Polymorphic types
option = t: typedef' rec {
name = "option<${t.name}>";
checkType = v:
let res = t.checkType v;
in {
ok = isNull v || (self.type t).checkToBool res;
err = "expected type ${name}, but value does not conform to '${t.name}': "
+ t.toError v res;
};
};
eitherN = tn: typedef "either<${concatStringsSep ", " (map (x: x.name) tn)}>"
(x: any (t: (self.type t).check x) tn);
either = t1: t2: self.eitherN [ t1 t2 ];
list = t: typedef' rec {
name = "list<${t.name}>";
checkType = v:
if isList v
then checkEach name (self.type t) v
else {
ok = false;
err = typeError name v;
};
};
attrs = t: typedef' rec {
name = "attrs<${t.name}>";
checkType = v:
if isAttrs v
then checkEach name (self.type t) (attrValues v)
else {
ok = false;
err = typeError name v;
};
};
# Structs / record types
#
# Checks that all fields match their declared types, no optional
# fields are missing and no unexpected fields occur in the struct.
#
# Anonymous structs are supported (e.g. for nesting) by omitting the
# name.
#
# TODO: Support open records?
struct =
# Struct checking is more involved than the simpler types above.
# To make the actual type definition more readable, several
# helpers are defined below.
let
# checkField checks an individual field of the struct against
# its definition and creates a typecheck result. These results
# are aggregated during the actual checking.
checkField = def: name: value:
let result = def.checkType value; in rec {
ok = def.checkToBool result;
err =
if !ok && isNull value
then "missing required ${def.name} field '${name}'\n"
else "field '${name}': ${def.toError value result}\n";
};
# checkExtraneous determines whether a (closed) struct contains
# any fields that are not part of the definition.
checkExtraneous = def: has: acc:
if (length has) == 0 then acc
else if (hasAttr (head has) def)
then checkExtraneous def (tail has) acc
else
checkExtraneous def (tail has) {
ok = false;
err = acc.err + "unexpected struct field '${head has}'\n";
};
# checkStruct combines all structure checks and creates one
# typecheck result from them
checkStruct = def: value:
let
init = { ok = true; err = ""; };
extraneous = checkExtraneous def (attrNames value) init;
checkedFields = map
(n:
let v = if hasAttr n value then value."${n}" else null;
in checkField def."${n}" n v)
(attrNames def);
combined = foldl'
(acc: res: {
ok = acc.ok && res.ok;
err = if !res.ok then acc.err + res.err else acc.err;
})
init
checkedFields;
in
{
ok = combined.ok && extraneous.ok;
err = combined.err + extraneous.err;
};
struct' = name: def: typedef' {
inherit name def;
checkType = value:
if isAttrs value
then (checkStruct (self.attrs self.type def) value)
else { ok = false; err = typeError name value; };
toError = _: result: "expected '${name}'-struct, but found:\n" + result.err;
};
in
arg: if isString arg then (struct' arg) else (struct' "anon" arg);
# Enums & pattern matching
enum =
let
plain = name: def: typedef' {
inherit name def;
checkType = (x: isString x && elem x def);
checkToBool = x: x;
toError = value: _: "'${prettyPrint value} is not a member of enum ${name}";
};
enum' = name: def: lib.fix (e: (plain name def) // {
match = x: actions: deepSeq (map e (attrNames actions)) (
let
actionKeys = attrNames actions;
missing = foldl' (m: k: if (elem k actionKeys) then m else m ++ [ k ]) [ ] def;
in
if (length missing) > 0
then throw "Missing match action for members: ${prettyPrint missing}"
else actions."${e x}"
);
});
in
arg: if isString arg then (enum' arg) else (enum' "anon" arg);
# Sum types
#
# The representation of a sum type is an attribute set with only one
# value, where the key of the value denotes the variant of the type.
sum =
let
plain = name: def: typedef' {
inherit name def;
checkType = (x:
let variant = elemAt (attrNames x) 0;
in if isAttrs x && length (attrNames x) == 1 && hasAttr variant def
then
let
t = def."${variant}";
v = x."${variant}";
res = t.checkType v;
in
if t.checkToBool res
then { ok = true; }
else {
ok = false;
err = "while checking '${name}' variant '${variant}': "
+ t.toError v res;
}
else { ok = false; err = typeError name x; }
);
};
sum' = name: def: lib.fix (s: (plain name def) // {
match = x: actions:
let
variant = deepSeq (s x) (elemAt (attrNames x) 0);
actionKeys = attrNames actions;
defKeys = attrNames def;
missing = foldl' (m: k: if (elem k actionKeys) then m else m ++ [ k ]) [ ] defKeys;
in
if (length missing) > 0
then throw "Missing match action for variants: ${prettyPrint missing}"
else actions."${variant}" x."${variant}";
});
in
arg: if isString arg then (sum' arg) else (sum' "anon" arg);
# Typed function definitions
#
# These definitions wrap the supplied function in type-checking
# forms that are evaluated when the function is called.
#
# Note that typed functions themselves are not types and can not be
# used to check values for conformity.
defun =
let
mkFunc = sig: f: {
inherit sig;
__toString = self: foldl' (s: t: "${s} -> ${t.name}")
"λ :: ${(head self.sig).name}"
(tail self.sig);
__functor = _: f;
};
defun' = sig: func:
if length sig > 2
then mkFunc sig (x: defun' (tail sig) (func ((head sig) x)))
else mkFunc sig (x: ((head (tail sig)) (func ((head sig) x))));
in
sig: func:
if length sig < 2
then (throw "Signature must at least have two types (a -> b)")
else defun' sig func;
# Restricting types
#
# `restrict` wraps a type `t`, and uses a predicate `pred` to further
# restrict the values, giving the restriction a descriptive `name`.
#
# First, the wrapped type definition is checked (e.g. int) and then the
# value is checked with the predicate, so the predicate can already
# depend on the value being of the wrapped type.
restrict = name: pred: t:
let restriction = "${t.name}[${name}]"; in typedef' {
name = restriction;
checkType = v:
let res = t.checkType v;
in
if !(t.checkToBool res)
then res
else
let
iok = pred v;
in
if isBool iok then {
ok = iok;
err = "${prettyPrint v} does not conform to restriction '${restriction}'";
} else
# use throw here to avoid spamming the build log
throw "restriction '${restriction}' predicate returned unexpected value '${prettyPrint iok}' instead of boolean";
};
})