//
// immer: immutable data structures for C++
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
//
// This software is distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
//
#pragma once
#include <immer/detail/combine_standard_layout.hpp>
#include <immer/detail/hamts/bits.hpp>
#include <immer/detail/util.hpp>
#include <cassert>
namespace immer {
namespace detail {
namespace hamts {
template <typename T,
typename Hash,
typename Equal,
typename MemoryPolicy,
bits_t B>
struct node
{
using node_t = node;
using memory = MemoryPolicy;
using heap_policy = typename memory::heap;
using heap = typename heap_policy::type;
using transience = typename memory::transience_t;
using refs_t = typename memory::refcount;
using ownee_t = typename transience::ownee;
using edit_t = typename transience::edit;
using value_t = T;
using bitmap_t = typename get_bitmap_type<B>::type;
enum class kind_t
{
collision,
inner
};
struct collision_t
{
count_t count;
aligned_storage_for<T> buffer;
};
struct values_data_t
{
aligned_storage_for<T> buffer;
};
using values_t = combine_standard_layout_t<values_data_t, refs_t>;
struct inner_t
{
bitmap_t nodemap;
bitmap_t datamap;
values_t* values;
aligned_storage_for<node_t*> buffer;
};
union data_t
{
inner_t inner;
collision_t collision;
};
struct impl_data_t
{
#if IMMER_TAGGED_NODE
kind_t kind;
#endif
data_t data;
};
using impl_t = combine_standard_layout_t<impl_data_t, refs_t>;
impl_t impl;
constexpr static std::size_t sizeof_values_n(count_t count)
{
return std::max(sizeof(values_t),
immer_offsetof(values_t, d.buffer) +
sizeof(values_data_t::buffer) * count);
}
constexpr static std::size_t sizeof_collision_n(count_t count)
{
return immer_offsetof(impl_t, d.data.collision.buffer) +
sizeof(collision_t::buffer) * count;
}
constexpr static std::size_t sizeof_inner_n(count_t count)
{
return immer_offsetof(impl_t, d.data.inner.buffer) +
sizeof(inner_t::buffer) * count;
}
#if IMMER_TAGGED_NODE
kind_t kind() const { return impl.d.kind; }
#endif
auto values()
{
IMMER_ASSERT_TAGGED(kind() == kind_t::inner);
assert(impl.d.data.inner.values);
return (T*) &impl.d.data.inner.values->d.buffer;
}
auto values() const
{
IMMER_ASSERT_TAGGED(kind() == kind_t::inner);
assert(impl.d.data.inner.values);
return (const T*) &impl.d.data.inner.values->d.buffer;
}
auto children()
{
IMMER_ASSERT_TAGGED(kind() == kind_t::inner);
return (node_t**) &impl.d.data.inner.buffer;
}
auto children() const
{
IMMER_ASSERT_TAGGED(kind() == kind_t::inner);
return (const node_t* const*) &impl.d.data.inner.buffer;
}
auto datamap() const
{
IMMER_ASSERT_TAGGED(kind() == kind_t::inner);
return impl.d.data.inner.datamap;
}
auto nodemap() const
{
IMMER_ASSERT_TAGGED(kind() == kind_t::inner);
return impl.d.data.inner.nodemap;
}
auto collision_count() const
{
IMMER_ASSERT_TAGGED(kind() == kind_t::collision);
return impl.d.data.collision.count;
}
T* collisions()
{
IMMER_ASSERT_TAGGED(kind() == kind_t::collision);
return (T*) &impl.d.data.collision.buffer;
}
const T* collisions() const
{
IMMER_ASSERT_TAGGED(kind() == kind_t::collision);
return (const T*) &impl.d.data.collision.buffer;
}
static refs_t& refs(const values_t* x)
{
return auto_const_cast(get<refs_t>(*x));
}
static const ownee_t& ownee(const values_t* x) { return get<ownee_t>(*x); }
static ownee_t& ownee(values_t* x) { return get<ownee_t>(*x); }
static refs_t& refs(const node_t* x)
{
return auto_const_cast(get<refs_t>(x->impl));
}
static const ownee_t& ownee(const node_t* x)
{
return get<ownee_t>(x->impl);
}
static ownee_t& ownee(node_t* x) { return get<ownee_t>(x->impl); }
static node_t* make_inner_n(count_t n)
{
assert(n <= branches<B>);
auto m = heap::allocate(sizeof_inner_n(n));
auto p = new (m) node_t;
#if IMMER_TAGGED_NODE
p->impl.d.kind = node_t::kind_t::inner;
#endif
p->impl.d.data.inner.nodemap = 0;
p->impl.d.data.inner.datamap = 0;
p->impl.d.data.inner.values = nullptr;
return p;
}
static node_t* make_inner_n(count_t n, values_t* values)
{
auto p = make_inner_n(n);
if (values) {
p->impl.d.data.inner.values = values;
refs(values).inc();
}
return p;
}
static node_t* make_inner_n(count_t n, count_t nv)
{
assert(nv <= branches<B>);
auto p = make_inner_n(n);
if (nv) {
try {
p->impl.d.data.inner.values =
new (heap::allocate(sizeof_values_n(nv))) values_t{};
} catch (...) {
deallocate_inner(p, n);
throw;
}
}
return p;
}
static node_t* make_inner_n(count_t n, count_t idx, node_t* child)
{
assert(n >= 1);
auto p = make_inner_n(n);
p->impl.d.data.inner.nodemap = bitmap_t{1u} << idx;
p->children()[0] = child;
return p;
}
static node_t* make_inner_n(count_t n, bitmap_t bitmap, T x)
{
auto p = make_inner_n(n, 1);
p->impl.d.data.inner.datamap = bitmap;
try {
new (p->values()) T{std::move(x)};
} catch (...) {
deallocate_inner(p, n, 1);
throw;
}
return p;
}
static node_t*
make_inner_n(count_t n, count_t idx1, T x1, count_t idx2, T x2)
{
assert(idx1 != idx2);
auto p = make_inner_n(n, 2);
p->impl.d.data.inner.datamap =
(bitmap_t{1u} << idx1) | (bitmap_t{1u} << idx2);
auto assign = [&](auto&& x1, auto&& x2) {
auto vp = p->values();
try {
new (vp) T{std::move(x1)};
try {
new (vp + 1) T{std::move(x2)};
} catch (...) {
vp->~T();
throw;
}
} catch (...) {
deallocate_inner(p, n, 2);
throw;
}
};
if (idx1 < idx2)
assign(x1, x2);
else
assign(x2, x1);
return p;
}
static node_t* make_collision_n(count_t n)
{
auto m = heap::allocate(sizeof_collision_n(n));
auto p = new (m) node_t;
#if IMMER_TAGGED_NODE
p->impl.d.kind = node_t::kind_t::collision;
#endif
p->impl.d.data.collision.count = n;
return p;
}
static node_t* make_collision(T v1, T v2)
{
auto m = heap::allocate(sizeof_collision_n(2));
auto p = new (m) node_t;
#if IMMER_TAGGED_NODE
p->impl.d.kind = node_t::kind_t::collision;
#endif
p->impl.d.data.collision.count = 2;
auto cols = p->collisions();
try {
new (cols) T{std::move(v1)};
try {
new (cols + 1) T{std::move(v2)};
} catch (...) {
cols->~T();
throw;
}
} catch (...) {
deallocate_collision(p, 2);
throw;
}
return p;
}
static node_t* copy_collision_insert(node_t* src, T v)
{
IMMER_ASSERT_TAGGED(src->kind() == kind_t::collision);
auto n = src->collision_count();
auto dst = make_collision_n(n + 1);
auto srcp = src->collisions();
auto dstp = dst->collisions();
try {
new (dstp) T{std::move(v)};
try {
std::uninitialized_copy(srcp, srcp + n, dstp + 1);
} catch (...) {
dstp->~T();
throw;
}
} catch (...) {
deallocate_collision(dst, n + 1);
throw;
}
return dst;
}
static node_t* copy_collision_remove(node_t* src, T* v)
{
IMMER_ASSERT_TAGGED(src->kind() == kind_t::collision);
assert(src->collision_count() > 1);
auto n = src->collision_count();
auto dst = make_collision_n(n - 1);
auto srcp = src->collisions();
auto dstp = dst->collisions();
try {
dstp = std::uninitialized_copy(srcp, v, dstp);
try {
std::uninitialized_copy(v + 1, srcp + n, dstp);
} catch (...) {
destroy(dst->collisions(), dstp);
throw;
}
} catch (...) {
deallocate_collision(dst, n - 1);
throw;
}
return dst;
}
static node_t* copy_collision_replace(node_t* src, T* pos, T v)
{
IMMER_ASSERT_TAGGED(src->kind() == kind_t::collision);
auto n = src->collision_count();
auto dst = make_collision_n(n);
auto srcp = src->collisions();
auto dstp = dst->collisions();
assert(pos >= srcp && pos < srcp + n);
try {
new (dstp) T{std::move(v)};
try {
dstp = std::uninitialized_copy(srcp, pos, dstp + 1);
try {
std::uninitialized_copy(pos + 1, srcp + n, dstp);
} catch (...) {
destroy(dst->collisions(), dstp);
throw;
}
} catch (...) {
dst->collisions()->~T();
throw;
}
} catch (...) {
deallocate_collision(dst, n);
throw;
}
return dst;
}
static node_t*
copy_inner_replace(node_t* src, count_t offset, node_t* child)
{
IMMER_ASSERT_TAGGED(src->kind() == kind_t::inner);
auto n = popcount(src->nodemap());
auto dst = make_inner_n(n, src->impl.d.data.inner.values);
auto srcp = src->children();
auto dstp = dst->children();
dst->impl.d.data.inner.datamap = src->datamap();
dst->impl.d.data.inner.nodemap = src->nodemap();
std::uninitialized_copy(srcp, srcp + n, dstp);
inc_nodes(srcp, n);
srcp[offset]->dec_unsafe();
dstp[offset] = child;
return dst;
}
static node_t* copy_inner_replace_value(node_t* src, count_t offset, T v)
{
IMMER_ASSERT_TAGGED(src->kind() == kind_t::inner);
assert(offset < popcount(src->datamap()));
auto n = popcount(src->nodemap());
auto nv = popcount(src->datamap());
auto dst = make_inner_n(n, nv);
dst->impl.d.data.inner.datamap = src->datamap();
dst->impl.d.data.inner.nodemap = src->nodemap();
try {
std::uninitialized_copy(
src->values(), src->values() + nv, dst->values());
try {
dst->values()[offset] = std::move(v);
} catch (...) {
destroy_n(dst->values(), nv);
throw;
}
} catch (...) {
deallocate_inner(dst, n, nv);
throw;
}
inc_nodes(src->children(), n);
std::uninitialized_copy(
src->children(), src->children() + n, dst->children());
return dst;
}
static node_t* copy_inner_replace_merged(node_t* src,
bitmap_t bit,
count_t voffset,
node_t* node)
{
IMMER_ASSERT_TAGGED(src->kind() == kind_t::inner);
assert(!(src->nodemap() & bit));
assert(src->datamap() & bit);
assert(voffset == popcount(src->datamap() & (bit - 1)));
auto n = popcount(src->nodemap());
auto nv = popcount(src->datamap());
auto dst = make_inner_n(n + 1, nv - 1);
auto noffset = popcount(src->nodemap() & (bit - 1));
dst->impl.d.data.inner.datamap = src->datamap() & ~bit;
dst->impl.d.data.inner.nodemap = src->nodemap() | bit;
if (nv > 1) {
try {
std::uninitialized_copy(
src->values(), src->values() + voffset, dst->values());
try {
std::uninitialized_copy(src->values() + voffset + 1,
src->values() + nv,
dst->values() + voffset);
} catch (...) {
destroy_n(dst->values(), voffset);
throw;
}
} catch (...) {
deallocate_inner(dst, n + 1, nv - 1);
throw;
}
}
inc_nodes(src->children(), n);
std::uninitialized_copy(
src->children(), src->children() + noffset, dst->children());
std::uninitialized_copy(src->children() + noffset,
src->children() + n,
dst->children() + noffset + 1);
dst->children()[noffset] = node;
return dst;
}
static node_t* copy_inner_replace_inline(node_t* src,
bitmap_t bit,
count_t noffset,
T value)
{
IMMER_ASSERT_TAGGED(src->kind() == kind_t::inner);
assert(!(src->datamap() & bit));
assert(src->nodemap() & bit);
assert(noffset == popcount(src->nodemap() & (bit - 1)));
auto n = popcount(src->nodemap());
auto nv = popcount(src->datamap());
auto dst = make_inner_n(n - 1, nv + 1);
auto voffset = popcount(src->datamap() & (bit - 1));
dst->impl.d.data.inner.nodemap = src->nodemap() & ~bit;
dst->impl.d.data.inner.datamap = src->datamap() | bit;
try {
if (nv)
std::uninitialized_copy(
src->values(), src->values() + voffset, dst->values());
try {
new (dst->values() + voffset) T{std::move(value)};
try {
if (nv)
std::uninitialized_copy(src->values() + voffset,
src->values() + nv,
dst->values() + voffset + 1);
} catch (...) {
dst->values()[voffset].~T();
throw;
}
} catch (...) {
destroy_n(dst->values(), voffset);
throw;
}
} catch (...) {
deallocate_inner(dst, n - 1, nv + 1);
throw;
}
inc_nodes(src->children(), n);
src->children()[noffset]->dec_unsafe();
std::uninitialized_copy(
src->children(), src->children() + noffset, dst->children());
std::uninitialized_copy(src->children() + noffset + 1,
src->children() + n,
dst->children() + noffset);
return dst;
}
static node_t*
copy_inner_remove_value(node_t* src, bitmap_t bit, count_t voffset)
{
IMMER_ASSERT_TAGGED(src->kind() == kind_t::inner);
assert(!(src->nodemap() & bit));
assert(src->datamap() & bit);
assert(voffset == popcount(src->datamap() & (bit - 1)));
auto n = popcount(src->nodemap());
auto nv = popcount(src->datamap());
auto dst = make_inner_n(n, nv - 1);
dst->impl.d.data.inner.datamap = src->datamap() & ~bit;
dst->impl.d.data.inner.nodemap = src->nodemap();
if (nv > 1) {
try {
std::uninitialized_copy(
src->values(), src->values() + voffset, dst->values());
try {
std::uninitialized_copy(src->values() + voffset + 1,
src->values() + nv,
dst->values() + voffset);
} catch (...) {
destroy_n(dst->values(), voffset);
throw;
}
} catch (...) {
deallocate_inner(dst, n, nv - 1);
throw;
}
}
inc_nodes(src->children(), n);
std::uninitialized_copy(
src->children(), src->children() + n, dst->children());
return dst;
}
static node_t* copy_inner_insert_value(node_t* src, bitmap_t bit, T v)
{
IMMER_ASSERT_TAGGED(src->kind() == kind_t::inner);
auto n = popcount(src->nodemap());
auto nv = popcount(src->datamap());
auto offset = popcount(src->datamap() & (bit - 1));
auto dst = make_inner_n(n, nv + 1);
dst->impl.d.data.inner.datamap = src->datamap() | bit;
dst->impl.d.data.inner.nodemap = src->nodemap();
try {
if (nv)
std::uninitialized_copy(
src->values(), src->values() + offset, dst->values());
try {
new (dst->values() + offset) T{std::move(v)};
try {
if (nv)
std::uninitialized_copy(src->values() + offset,
src->values() + nv,
dst->values() + offset + 1);
} catch (...) {
dst->values()[offset].~T();
throw;
}
} catch (...) {
destroy_n(dst->values(), offset);
throw;
}
} catch (...) {
deallocate_inner(dst, n, nv + 1);
throw;
}
inc_nodes(src->children(), n);
std::uninitialized_copy(
src->children(), src->children() + n, dst->children());
return dst;
}
static node_t*
make_merged(shift_t shift, T v1, hash_t hash1, T v2, hash_t hash2)
{
if (shift < max_shift<B>) {
auto idx1 = hash1 & (mask<B> << shift);
auto idx2 = hash2 & (mask<B> << shift);
if (idx1 == idx2) {
auto merged = make_merged(
shift + B, std::move(v1), hash1, std::move(v2), hash2);
try {
return make_inner_n(1, idx1 >> shift, merged);
} catch (...) {
delete_deep_shift(merged, shift + B);
throw;
}
} else {
return make_inner_n(0,
idx1 >> shift,
std::move(v1),
idx2 >> shift,
std::move(v2));
}
} else {
return make_collision(std::move(v1), std::move(v2));
}
}
node_t* inc()
{
refs(this).inc();
return this;
}
const node_t* inc() const
{
refs(this).inc();
return this;
}
bool dec() const { return refs(this).dec(); }
void dec_unsafe() const { refs(this).dec_unsafe(); }
static void inc_nodes(node_t** p, count_t n)
{
for (auto i = p, e = i + n; i != e; ++i)
refs(*i).inc();
}
static void delete_values(values_t* p, count_t n)
{
assert(p);
deallocate_values(p, n);
}
static void delete_inner(node_t* p)
{
assert(p);
IMMER_ASSERT_TAGGED(p->kind() == kind_t::inner);
auto vp = p->impl.d.data.inner.values;
if (vp && refs(vp).dec())
delete_values(vp, popcount(p->datamap()));
deallocate_inner(p, popcount(p->nodemap()));
}
static void delete_collision(node_t* p)
{
assert(p);
IMMER_ASSERT_TAGGED(p->kind() == kind_t::collision);
auto n = p->collision_count();
deallocate_collision(p, n);
}
static void delete_deep(node_t* p, shift_t s)
{
if (s == max_depth<B>)
delete_collision(p);
else {
auto fst = p->children();
auto lst = fst + popcount(p->nodemap());
for (; fst != lst; ++fst)
if ((*fst)->dec())
delete_deep(*fst, s + 1);
delete_inner(p);
}
}
static void delete_deep_shift(node_t* p, shift_t s)
{
if (s == max_shift<B>)
delete_collision(p);
else {
auto fst = p->children();
auto lst = fst + popcount(p->nodemap());
for (; fst != lst; ++fst)
if ((*fst)->dec())
delete_deep_shift(*fst, s + B);
delete_inner(p);
}
}
static void deallocate_values(values_t* p, count_t n)
{
destroy_n((T*) &p->d.buffer, n);
heap::deallocate(node_t::sizeof_values_n(n), p);
}
static void deallocate_collision(node_t* p, count_t n)
{
destroy_n(p->collisions(), n);
heap::deallocate(node_t::sizeof_collision_n(n), p);
}
static void deallocate_inner(node_t* p, count_t n)
{
heap::deallocate(node_t::sizeof_inner_n(n), p);
}
static void deallocate_inner(node_t* p, count_t n, count_t nv)
{
assert(nv);
heap::deallocate(node_t::sizeof_values_n(nv),
p->impl.d.data.inner.values);
heap::deallocate(node_t::sizeof_inner_n(n), p);
}
};
} // namespace hamts
} // namespace detail
} // namespace immer