#!/usr/bin/python
import codecs
import json
import random
import socket
import struct
import threading
import time
from datetime import datetime
from zlib import adler32
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
def gendevice(devtype, host, mac):
devices = {
sp1: [0],
sp2: [0x2711, # SP2
0x2719, 0x7919, 0x271a, 0x791a, # Honeywell SP2
0x2720, # SPMini
0x753e, # SP3
0x7D00, # OEM branded SP3
0x947a, 0x9479, # SP3S
0x2728, # SPMini2
0x2733, 0x273e, # OEM branded SPMini
0x7530, 0x7546, 0x7918, # OEM branded SPMini2
0x7D0D, # TMall OEM SPMini3
0x2736 # SPMiniPlus
],
rm: [0x2712, # RM2
0x2737, # RM Mini
0x273d, # RM Pro Phicomm
0x2783, # RM2 Home Plus
0x277c, # RM2 Home Plus GDT
0x272a, # RM2 Pro Plus
0x2787, # RM2 Pro Plus2
0x279d, # RM2 Pro Plus3
0x27a9, # RM2 Pro Plus_300
0x278b, # RM2 Pro Plus BL
0x2797, # RM2 Pro Plus HYC
0x27a1, # RM2 Pro Plus R1
0x27a6, # RM2 Pro PP
0x278f, # RM Mini Shate
0x27c2, # RM Mini 3
0x27de # RM Mini 3 (C)
],
a1: [0x2714], # A1
mp1: [0x4EB5, # MP1
0x4EF7 # Honyar oem mp1
],
hysen: [0x4EAD], # Hysen controller
S1C: [0x2722], # S1 (SmartOne Alarm Kit)
dooya: [0x4E4D], # Dooya DT360E (DOOYA_CURTAIN_V2)
bg1: [0x51E3] # BG Electrical Smart Power Socket
}
# Look for the class associated to devtype in devices
[device_class] = [dev for dev in devices if devtype in devices[dev]] or [None]
if device_class is None:
return device(host=host, mac=mac, devtype=devtype)
return device_class(host=host, mac=mac, devtype=devtype)
def discover(timeout=None, local_ip_address=None):
if local_ip_address is None:
local_ip_address = socket.gethostbyname(socket.gethostname())
if local_ip_address.startswith('127.'):
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(('8.8.8.8', 53)) # connecting to a UDP address doesn't send packets
local_ip_address = s.getsockname()[0]
address = local_ip_address.split('.')
cs = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
cs.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
cs.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
cs.bind((local_ip_address, 0))
port = cs.getsockname()[1]
starttime = time.time()
devices = []
timezone = int(time.timezone / -3600)
packet = bytearray(0x30)
year = datetime.now().year
if timezone < 0:
packet[0x08] = 0xff + timezone - 1
packet[0x09] = 0xff
packet[0x0a] = 0xff
packet[0x0b] = 0xff
else:
packet[0x08] = timezone
packet[0x09] = 0
packet[0x0a] = 0
packet[0x0b] = 0
packet[0x0c] = year & 0xff
packet[0x0d] = year >> 8
packet[0x0e] = datetime.now().minute
packet[0x0f] = datetime.now().hour
subyear = str(year)[2:]
packet[0x10] = int(subyear)
packet[0x11] = datetime.now().isoweekday()
packet[0x12] = datetime.now().day
packet[0x13] = datetime.now().month
packet[0x18] = int(address[0])
packet[0x19] = int(address[1])
packet[0x1a] = int(address[2])
packet[0x1b] = int(address[3])
packet[0x1c] = port & 0xff
packet[0x1d] = port >> 8
packet[0x26] = 6
checksum = adler32(packet, 0xbeaf) & 0xffff
packet[0x20] = checksum & 0xff
packet[0x21] = checksum >> 8
cs.sendto(packet, ('255.255.255.255', 80))
if timeout is None:
response = cs.recvfrom(1024)
responsepacket = bytearray(response[0])
host = response[1]
mac = responsepacket[0x3a:0x40]
devtype = responsepacket[0x34] | responsepacket[0x35] << 8
return gendevice(devtype, host, mac)
while (time.time() - starttime) < timeout:
cs.settimeout(timeout - (time.time() - starttime))
try:
response = cs.recvfrom(1024)
except socket.timeout:
return devices
responsepacket = bytearray(response[0])
host = response[1]
devtype = responsepacket[0x34] | responsepacket[0x35] << 8
mac = responsepacket[0x3a:0x40]
dev = gendevice(devtype, host, mac)
devices.append(dev)
return devices
class device:
def __init__(self, host, mac, devtype, timeout=10):
self.host = host
self.mac = mac.encode() if isinstance(mac, str) else mac
self.devtype = devtype
self.timeout = timeout
self.count = random.randrange(0xffff)
self.iv = bytearray(
[0x56, 0x2e, 0x17, 0x99, 0x6d, 0x09, 0x3d, 0x28, 0xdd, 0xb3, 0xba, 0x69, 0x5a, 0x2e, 0x6f, 0x58])
self.id = bytearray([0, 0, 0, 0])
self.cs = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.cs.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.cs.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
self.cs.bind(('', 0))
self.type = "Unknown"
self.lock = threading.Lock()
self.aes = None
key = bytearray(
[0x09, 0x76, 0x28, 0x34, 0x3f, 0xe9, 0x9e, 0x23, 0x76, 0x5c, 0x15, 0x13, 0xac, 0xcf, 0x8b, 0x02])
self.update_aes(key)
def update_aes(self, key):
self.aes = Cipher(algorithms.AES(key), modes.CBC(self.iv),
backend=default_backend())
def encrypt(self, payload):
encryptor = self.aes.encryptor()
return encryptor.update(payload) + encryptor.finalize()
def decrypt(self, payload):
decryptor = self.aes.decryptor()
return decryptor.update(payload) + decryptor.finalize()
def auth(self):
payload = bytearray(0x50)
payload[0x04] = 0x31
payload[0x05] = 0x31
payload[0x06] = 0x31
payload[0x07] = 0x31
payload[0x08] = 0x31
payload[0x09] = 0x31
payload[0x0a] = 0x31
payload[0x0b] = 0x31
payload[0x0c] = 0x31
payload[0x0d] = 0x31
payload[0x0e] = 0x31
payload[0x0f] = 0x31
payload[0x10] = 0x31
payload[0x11] = 0x31
payload[0x12] = 0x31
payload[0x1e] = 0x01
payload[0x2d] = 0x01
payload[0x30] = ord('T')
payload[0x31] = ord('e')
payload[0x32] = ord('s')
payload[0x33] = ord('t')
payload[0x34] = ord(' ')
payload[0x35] = ord(' ')
payload[0x36] = ord('1')
response = self.send_packet(0x65, payload)
payload = self.decrypt(response[0x38:])
if not payload:
return False
key = payload[0x04:0x14]
if len(key) % 16 != 0:
return False
self.id = payload[0x00:0x04]
self.update_aes(key)
return True
def get_type(self):
return self.type
def send_packet(self, command, payload):
self.count = (self.count + 1) & 0xffff
packet = bytearray(0x38)
packet[0x00] = 0x5a
packet[0x01] = 0xa5
packet[0x02] = 0xaa
packet[0x03] = 0x55
packet[0x04] = 0x5a
packet[0x05] = 0xa5
packet[0x06] = 0xaa
packet[0x07] = 0x55
packet[0x24] = 0x2a
packet[0x25] = 0x27
packet[0x26] = command
packet[0x28] = self.count & 0xff
packet[0x29] = self.count >> 8
packet[0x2a] = self.mac[0]
packet[0x2b] = self.mac[1]
packet[0x2c] = self.mac[2]
packet[0x2d] = self.mac[3]
packet[0x2e] = self.mac[4]
packet[0x2f] = self.mac[5]
packet[0x30] = self.id[0]
packet[0x31] = self.id[1]
packet[0x32] = self.id[2]
packet[0x33] = self.id[3]
# pad the payload for AES encryption
if payload:
payload += bytearray(((len(payload)-1)//16+1)*16 - len(payload))
checksum = adler32(payload, 0xbeaf) & 0xffff
packet[0x34] = checksum & 0xff
packet[0x35] = checksum >> 8
payload = self.encrypt(payload)
for i in range(len(payload)):
packet.append(payload[i])
checksum = adler32(packet, 0xbeaf) & 0xffff
packet[0x20] = checksum & 0xff
packet[0x21] = checksum >> 8
start_time = time.time()
with self.lock:
while True:
try:
self.cs.sendto(packet, self.host)
self.cs.settimeout(1)
response = self.cs.recvfrom(2048)
break
except socket.timeout:
if (time.time() - start_time) > self.timeout:
raise
return bytearray(response[0])
class mp1(device):
def __init__(self, host, mac, devtype):
device.__init__(self, host, mac, devtype)
self.type = "MP1"
def set_power_mask(self, sid_mask, state):
"""Sets the power state of the smart power strip."""
packet = bytearray(16)
packet[0x00] = 0x0d
packet[0x02] = 0xa5
packet[0x03] = 0xa5
packet[0x04] = 0x5a
packet[0x05] = 0x5a
packet[0x06] = 0xb2 + ((sid_mask << 1) if state else sid_mask)
packet[0x07] = 0xc0
packet[0x08] = 0x02
packet[0x0a] = 0x03
packet[0x0d] = sid_mask
packet[0x0e] = sid_mask if state else 0
self.send_packet(0x6a, packet)
def set_power(self, sid, state):
"""Sets the power state of the smart power strip."""
sid_mask = 0x01 << (sid - 1)
return self.set_power_mask(sid_mask, state)
def check_power_raw(self):
"""Returns the power state of the smart power strip in raw format."""
packet = bytearray(16)
packet[0x00] = 0x0a
packet[0x02] = 0xa5
packet[0x03] = 0xa5
packet[0x04] = 0x5a
packet[0x05] = 0x5a
packet[0x06] = 0xae
packet[0x07] = 0xc0
packet[0x08] = 0x01
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
state = payload[0x0e]
else:
state = ord(payload[0x0e])
return state
def check_power(self):
"""Returns the power state of the smart power strip."""
state = self.check_power_raw()
if state is None:
return {'s1': None, 's2': None, 's3': None, 's4': None}
data = {}
data['s1'] = bool(state & 0x01)
data['s2'] = bool(state & 0x02)
data['s3'] = bool(state & 0x04)
data['s4'] = bool(state & 0x08)
return data
class bg1(device):
def __init__(self, host, mac, devtype):
device.__init__(self, host, mac, devtype)
self.type = "BG1"
def get_state(self):
"""Get state of device.
Returns:
dict: Dictionary of current state
eg. `{"pwr":1,"pwr1":1,"pwr2":0,"maxworktime":60,"maxworktime1":60,"maxworktime2":0,"idcbrightness":50}`"""
packet = self._encode(1, b'{}')
response = self.send_packet(0x6a, packet)
return self._decode(response)
def set_state(self, pwr=None, pwr1=None, pwr2=None, maxworktime=None, maxworktime1=None, maxworktime2=None, idcbrightness=None):
data = {}
if pwr is not None:
data['pwr'] = int(bool(pwr))
if pwr1 is not None:
data['pwr1'] = int(bool(pwr1))
if pwr2 is not None:
data['pwr2'] = int(bool(pwr2))
if maxworktime is not None:
data['maxworktime'] = maxworktime
if maxworktime1 is not None:
data['maxworktime1'] = maxworktime1
if maxworktime2 is not None:
data['maxworktime2'] = maxworktime2
if idcbrightness is not None:
data['idcbrightness'] = idcbrightness
js = json.dumps(data).encode('utf8')
packet = self._encode(2, js)
response = self.send_packet(0x6a, packet)
return self._decode(response)
def _encode(self, flag, js):
# packet format is:
# 0x00-0x01 length
# 0x02-0x05 header
# 0x06-0x07 00
# 0x08 flag (1 for read or 2 write?)
# 0x09 unknown (0xb)
# 0x0a-0x0d length of json
# 0x0e- json data
packet = bytearray(14)
length = 4 + 2 + 2 + 4 + len(js)
struct.pack_into('<HHHHBBI', packet, 0, length, 0xa5a5, 0x5a5a, 0x0000, flag, 0x0b, len(js))
for i in range(len(js)):
packet.append(js[i])
checksum = adler32(packet[0x08:], 0xc0ad) & 0xffff
packet[0x06] = checksum & 0xff
packet[0x07] = checksum >> 8
return packet
def _decode(self, response):
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
js_len = struct.unpack_from('<I', payload, 0x0a)[0]
state = json.loads(payload[0x0e:0x0e+js_len])
return state
class sp1(device):
def __init__(self, host, mac, devtype):
device.__init__(self, host, mac, devtype)
self.type = "SP1"
def set_power(self, state):
packet = bytearray(4)
packet[0] = state
self.send_packet(0x66, packet)
class sp2(device):
def __init__(self, host, mac, devtype):
device.__init__(self, host, mac, devtype)
self.type = "SP2"
def set_power(self, state):
"""Sets the power state of the smart plug."""
packet = bytearray(16)
packet[0] = 2
if self.check_nightlight():
packet[4] = 3 if state else 2
else:
packet[4] = 1 if state else 0
self.send_packet(0x6a, packet)
def set_nightlight(self, state):
"""Sets the night light state of the smart plug"""
packet = bytearray(16)
packet[0] = 2
if self.check_power():
packet[4] = 3 if state else 1
else:
packet[4] = 2 if state else 0
self.send_packet(0x6a, packet)
def check_power(self):
"""Returns the power state of the smart plug."""
packet = bytearray(16)
packet[0] = 1
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
return bool(payload[0x4] == 1 or payload[0x4] == 3 or payload[0x4] == 0xFD)
return bool(ord(payload[0x4]) == 1 or ord(payload[0x4]) == 3 or ord(payload[0x4]) == 0xFD)
def check_nightlight(self):
"""Returns the power state of the smart plug."""
packet = bytearray(16)
packet[0] = 1
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
return bool(payload[0x4] == 2 or payload[0x4] == 3 or payload[0x4] == 0xFF)
return bool(ord(payload[0x4]) == 2 or ord(payload[0x4]) == 3 or ord(payload[0x4]) == 0xFF)
def get_energy(self):
packet = bytearray([8, 0, 254, 1, 5, 1, 0, 0, 0, 45])
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x7], int):
energy = int(hex(payload[0x07] * 256 + payload[0x06])[2:]) + int(hex(payload[0x05])[2:]) / 100.0
else:
energy = int(hex(ord(payload[0x07]) * 256 + ord(payload[0x06]))[2:]) + int(
hex(ord(payload[0x05]))[2:]) / 100.0
return energy
class a1(device):
def __init__(self, host, mac, devtype):
device.__init__(self, host, mac, devtype)
self.type = "A1"
def check_sensors(self):
packet = bytearray(16)
packet[0] = 1
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
data = {}
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
data['temperature'] = (payload[0x4] * 10 + payload[0x5]) / 10.0
data['humidity'] = (payload[0x6] * 10 + payload[0x7]) / 10.0
light = payload[0x8]
air_quality = payload[0x0a]
noise = payload[0xc]
else:
data['temperature'] = (ord(payload[0x4]) * 10 + ord(payload[0x5])) / 10.0
data['humidity'] = (ord(payload[0x6]) * 10 + ord(payload[0x7])) / 10.0
light = ord(payload[0x8])
air_quality = ord(payload[0x0a])
noise = ord(payload[0xc])
if light == 0:
data['light'] = 'dark'
elif light == 1:
data['light'] = 'dim'
elif light == 2:
data['light'] = 'normal'
elif light == 3:
data['light'] = 'bright'
else:
data['light'] = 'unknown'
if air_quality == 0:
data['air_quality'] = 'excellent'
elif air_quality == 1:
data['air_quality'] = 'good'
elif air_quality == 2:
data['air_quality'] = 'normal'
elif air_quality == 3:
data['air_quality'] = 'bad'
else:
data['air_quality'] = 'unknown'
if noise == 0:
data['noise'] = 'quiet'
elif noise == 1:
data['noise'] = 'normal'
elif noise == 2:
data['noise'] = 'noisy'
else:
data['noise'] = 'unknown'
return data
def check_sensors_raw(self):
packet = bytearray(16)
packet[0] = 1
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
data = {}
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
data['temperature'] = (payload[0x4] * 10 + payload[0x5]) / 10.0
data['humidity'] = (payload[0x6] * 10 + payload[0x7]) / 10.0
data['light'] = payload[0x8]
data['air_quality'] = payload[0x0a]
data['noise'] = payload[0xc]
else:
data['temperature'] = (ord(payload[0x4]) * 10 + ord(payload[0x5])) / 10.0
data['humidity'] = (ord(payload[0x6]) * 10 + ord(payload[0x7])) / 10.0
data['light'] = ord(payload[0x8])
data['air_quality'] = ord(payload[0x0a])
data['noise'] = ord(payload[0xc])
return data
class rm(device):
def __init__(self, host, mac, devtype):
device.__init__(self, host, mac, devtype)
self.type = "RM2"
def check_data(self):
packet = bytearray(16)
packet[0] = 4
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
return payload[0x04:]
def send_data(self, data):
packet = bytearray([0x02, 0x00, 0x00, 0x00])
packet += data
self.send_packet(0x6a, packet)
def enter_learning(self):
packet = bytearray(16)
packet[0] = 3
self.send_packet(0x6a, packet)
def sweep_frequency(self):
packet = bytearray(16)
packet[0] = 0x19
self.send_packet(0x6a, packet)
def cancel_sweep_frequency(self):
packet = bytearray(16)
packet[0] = 0x1e
self.send_packet(0x6a, packet)
def check_frequency(self):
packet = bytearray(16)
packet[0] = 0x1a
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return False
payload = self.decrypt(bytes(response[0x38:]))
if payload[0x04] == 1:
return True
return False
def find_rf_packet(self):
packet = bytearray(16)
packet[0] = 0x1b
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return False
payload = self.decrypt(bytes(response[0x38:]))
if payload[0x04] == 1:
return True
return False
def check_temperature(self):
packet = bytearray(16)
packet[0] = 1
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return False
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
temp = (payload[0x4] * 10 + payload[0x5]) / 10.0
else:
temp = (ord(payload[0x4]) * 10 + ord(payload[0x5])) / 10.0
return temp
# For legacy compatibility - don't use this
class rm2(rm):
def __init__(self):
device.__init__(self, None, None, None)
def discover(self):
dev = discover()
self.host = dev.host
self.mac = dev.mac
class hysen(device):
def __init__(self, host, mac, devtype):
device.__init__(self, host, mac, devtype)
self.type = "Hysen heating controller"
# Send a request
# input_payload should be a bytearray, usually 6 bytes, e.g. bytearray([0x01,0x06,0x00,0x02,0x10,0x00])
# Returns decrypted payload
# New behaviour: raises a ValueError if the device response indicates an error or CRC check fails
# The function prepends length (2 bytes) and appends CRC
def send_request(self, input_payload):
from PyCRC.CRC16 import CRC16
crc = CRC16(modbus_flag=True).calculate(bytes(input_payload))
# first byte is length, +2 for CRC16
request_payload = bytearray([len(input_payload) + 2, 0x00])
request_payload.extend(input_payload)
# append CRC
request_payload.append(crc & 0xFF)
request_payload.append((crc >> 8) & 0xFF)
# send to device
response = self.send_packet(0x6a, request_payload)
# check for error
err = response[0x22] | (response[0x23] << 8)
if err:
raise ValueError('broadlink_response_error', err)
response_payload = bytearray(self.decrypt(bytes(response[0x38:])))
# experimental check on CRC in response (first 2 bytes are len, and trailing bytes are crc)
response_payload_len = response_payload[0]
if response_payload_len + 2 > len(response_payload):
raise ValueError('hysen_response_error', 'first byte of response is not length')
crc = CRC16(modbus_flag=True).calculate(bytes(response_payload[2:response_payload_len]))
if (response_payload[response_payload_len] == crc & 0xFF) and (
response_payload[response_payload_len + 1] == (crc >> 8) & 0xFF):
return response_payload[2:response_payload_len]
raise ValueError('hysen_response_error', 'CRC check on response failed')
# Get current room temperature in degrees celsius
def get_temp(self):
payload = self.send_request(bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x08]))
return payload[0x05] / 2.0
# Get current external temperature in degrees celsius
def get_external_temp(self):
payload = self.send_request(bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x08]))
return payload[18] / 2.0
# Get full status (including timer schedule)
def get_full_status(self):
payload = self.send_request(bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x16]))
data = {}
data['remote_lock'] = payload[3] & 1
data['power'] = payload[4] & 1
data['active'] = (payload[4] >> 4) & 1
data['temp_manual'] = (payload[4] >> 6) & 1
data['room_temp'] = (payload[5] & 255) / 2.0
data['thermostat_temp'] = (payload[6] & 255) / 2.0
data['auto_mode'] = payload[7] & 15
data['loop_mode'] = (payload[7] >> 4) & 15
data['sensor'] = payload[8]
data['osv'] = payload[9]
data['dif'] = payload[10]
data['svh'] = payload[11]
data['svl'] = payload[12]
data['room_temp_adj'] = ((payload[13] << 8) + payload[14]) / 2.0
if data['room_temp_adj'] > 32767:
data['room_temp_adj'] = 32767 - data['room_temp_adj']
data['fre'] = payload[15]
data['poweron'] = payload[16]
data['unknown'] = payload[17]
data['external_temp'] = (payload[18] & 255) / 2.0
data['hour'] = payload[19]
data['min'] = payload[20]
data['sec'] = payload[21]
data['dayofweek'] = payload[22]
weekday = []
for i in range(0, 6):
weekday.append(
{'start_hour': payload[2 * i + 23], 'start_minute': payload[2 * i + 24], 'temp': payload[i + 39] / 2.0})
data['weekday'] = weekday
weekend = []
for i in range(6, 8):
weekend.append(
{'start_hour': payload[2 * i + 23], 'start_minute': payload[2 * i + 24], 'temp': payload[i + 39] / 2.0})
data['weekend'] = weekend
return data
# Change controller mode
# auto_mode = 1 for auto (scheduled/timed) mode, 0 for manual mode.
# Manual mode will activate last used temperature.
# In typical usage call set_temp to activate manual control and set temp.
# loop_mode refers to index in [ "12345,67", "123456,7", "1234567" ]
# E.g. loop_mode = 0 ("12345,67") means Saturday and Sunday follow the "weekend" schedule
# loop_mode = 2 ("1234567") means every day (including Saturday and Sunday) follows the "weekday" schedule
# The sensor command is currently experimental
def set_mode(self, auto_mode, loop_mode, sensor=0):
mode_byte = ((loop_mode + 1) << 4) + auto_mode
self.send_request(bytearray([0x01, 0x06, 0x00, 0x02, mode_byte, sensor]))
# Advanced settings
# Sensor mode (SEN) sensor = 0 for internal sensor, 1 for external sensor,
# 2 for internal control temperature, external limit temperature. Factory default: 0.
# Set temperature range for external sensor (OSV) osv = 5..99. Factory default: 42C
# Deadzone for floor temprature (dIF) dif = 1..9. Factory default: 2C
# Upper temperature limit for internal sensor (SVH) svh = 5..99. Factory default: 35C
# Lower temperature limit for internal sensor (SVL) svl = 5..99. Factory default: 5C
# Actual temperature calibration (AdJ) adj = -0.5. Prescision 0.1C
# Anti-freezing function (FrE) fre = 0 for anti-freezing function shut down,
# 1 for anti-freezing function open. Factory default: 0
# Power on memory (POn) poweron = 0 for power on memory off, 1 for power on memory on. Factory default: 0
def set_advanced(self, loop_mode, sensor, osv, dif, svh, svl, adj, fre, poweron):
input_payload = bytearray([0x01, 0x10, 0x00, 0x02, 0x00, 0x05, 0x0a, loop_mode, sensor, osv, dif, svh, svl,
(int(adj * 2) >> 8 & 0xff), (int(adj * 2) & 0xff), fre, poweron])
self.send_request(input_payload)
# For backwards compatibility only. Prefer calling set_mode directly.
# Note this function invokes loop_mode=0 and sensor=0.
def switch_to_auto(self):
self.set_mode(auto_mode=1, loop_mode=0)
def switch_to_manual(self):
self.set_mode(auto_mode=0, loop_mode=0)
# Set temperature for manual mode (also activates manual mode if currently in automatic)
def set_temp(self, temp):
self.send_request(bytearray([0x01, 0x06, 0x00, 0x01, 0x00, int(temp * 2)]))
# Set device on(1) or off(0), does not deactivate Wifi connectivity.
# Remote lock disables control by buttons on thermostat.
def set_power(self, power=1, remote_lock=0):
self.send_request(bytearray([0x01, 0x06, 0x00, 0x00, remote_lock, power]))
# set time on device
# n.b. day=1 is Monday, ..., day=7 is Sunday
def set_time(self, hour, minute, second, day):
self.send_request(bytearray([0x01, 0x10, 0x00, 0x08, 0x00, 0x02, 0x04, hour, minute, second, day]))
# Set timer schedule
# Format is the same as you get from get_full_status.
# weekday is a list (ordered) of 6 dicts like:
# {'start_hour':17, 'start_minute':30, 'temp': 22 }
# Each one specifies the thermostat temp that will become effective at start_hour:start_minute
# weekend is similar but only has 2 (e.g. switch on in morning and off in afternoon)
def set_schedule(self, weekday, weekend):
# Begin with some magic values ...
input_payload = bytearray([0x01, 0x10, 0x00, 0x0a, 0x00, 0x0c, 0x18])
# Now simply append times/temps
# weekday times
for i in range(0, 6):
input_payload.append(weekday[i]['start_hour'])
input_payload.append(weekday[i]['start_minute'])
# weekend times
for i in range(0, 2):
input_payload.append(weekend[i]['start_hour'])
input_payload.append(weekend[i]['start_minute'])
# weekday temperatures
for i in range(0, 6):
input_payload.append(int(weekday[i]['temp'] * 2))
# weekend temperatures
for i in range(0, 2):
input_payload.append(int(weekend[i]['temp'] * 2))
self.send_request(input_payload)
S1C_SENSORS_TYPES = {
0x31: 'Door Sensor', # 49 as hex
0x91: 'Key Fob', # 145 as hex, as serial on fob corpse
0x21: 'Motion Sensor' # 33 as hex
}
class S1C(device):
"""
Its VERY VERY VERY DIRTY IMPLEMENTATION of S1C
"""
def __init__(self, host, mac, devtype):
device.__init__(self, host, mac, devtype)
self.type = 'S1C'
def get_sensors_status(self):
packet = bytearray(16)
packet[0] = 0x06 # 0x06 - get sensors info, 0x07 - probably add sensors
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
if not payload:
return None
count = payload[0x4]
sensors = payload[0x6:]
sensors_a = [bytearray(sensors[i * 83:(i + 1) * 83]) for i in range(len(sensors) // 83)]
sens_res = []
for sens in sensors_a:
status = ord(chr(sens[0]))
_name = str(bytes(sens[4:26]).decode())
_order = ord(chr(sens[1]))
_type = ord(chr(sens[3]))
_serial = bytes(codecs.encode(sens[26:30], "hex")).decode()
type_str = S1C_SENSORS_TYPES.get(_type, 'Unknown')
r = {
'status': status,
'name': _name.strip('\x00'),
'type': type_str,
'order': _order,
'serial': _serial,
}
if r['serial'] != '00000000':
sens_res.append(r)
result = {
'count': count,
'sensors': sens_res
}
return result
class dooya(device):
def __init__(self, host, mac, devtype):
device.__init__(self, host, mac, devtype)
self.type = "Dooya DT360E"
def _send(self, magic1, magic2):
packet = bytearray(16)
packet[0] = 0x09
packet[2] = 0xbb
packet[3] = magic1
packet[4] = magic2
packet[9] = 0xfa
packet[10] = 0x44
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
return ord(payload[4])
def open(self):
return self._send(0x01, 0x00)
def close(self):
return self._send(0x02, 0x00)
def stop(self):
return self._send(0x03, 0x00)
def get_percentage(self):
return self._send(0x06, 0x5d)
def set_percentage_and_wait(self, new_percentage):
current = self.get_percentage()
if current > new_percentage:
self.close()
while current is not None and current > new_percentage:
time.sleep(0.2)
current = self.get_percentage()
elif current < new_percentage:
self.open()
while current is not None and current < new_percentage:
time.sleep(0.2)
current = self.get_percentage()
self.stop()
# Setup a new Broadlink device via AP Mode. Review the README to see how to enter AP Mode.
# Only tested with Broadlink RM3 Mini (Blackbean)
def setup(ssid, password, security_mode):
# Security mode options are (0 - none, 1 = WEP, 2 = WPA1, 3 = WPA2, 4 = WPA1/2)
payload = bytearray(0x88)
payload[0x26] = 0x14 # This seems to always be set to 14
# Add the SSID to the payload
ssid_start = 68
ssid_length = 0
for letter in ssid:
payload[(ssid_start + ssid_length)] = ord(letter)
ssid_length += 1
# Add the WiFi password to the payload
pass_start = 100
pass_length = 0
for letter in password:
payload[(pass_start + pass_length)] = ord(letter)
pass_length += 1
payload[0x84] = ssid_length # Character length of SSID
payload[0x85] = pass_length # Character length of password
payload[0x86] = security_mode # Type of encryption (00 - none, 01 = WEP, 02 = WPA1, 03 = WPA2, 04 = WPA1/2)
checksum = adler32(payload, 0xbeaf) & 0xffff
payload[0x20] = checksum & 0xff # Checksum 1 position
payload[0x21] = checksum >> 8 # Checksum 2 position
sock = socket.socket(socket.AF_INET, # Internet
socket.SOCK_DGRAM) # UDP
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
sock.sendto(payload, ('255.255.255.255', 80))