about summary refs log blame commit diff
path: root/absl/types/internal/variant.h
blob: f220afd044152dd141c8234fe36caac2e4044451 (plain) (tree)
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066




















                                                                           
                  
                  
                  




                      
                             


                                               
                             




                                          

                                   





















































































                                                                                

                                 
































































































































                                                                               






















































                                                                                





                                                      










































































































































































































                                                                                








                                                                             

                                                                               
                                    
                                                                              








































                                                                               
                                                          





                                                                          
                                                                 

                                                                 







                                                                                









                                                                        













































































































































































































































































































































































































































































                                                                                


















                                                                               

                                                    
                     


                                                                               


                               


                                                                


                               


                                                                


                                      


                                                                     


                                         


                                                                        


                                  


                                                                 













































































































                                                                                
                                                                              



                                                                                
                                                                   




                                                                           
                                                                              



                                                                                
                                                                   





































                                                                                
                                                                              


































                                                                              
                                                                           









































                                                                              
                                                                           
































                                                                               
                                      



























                                                                                
                                      











































































































































                                                                                
                                                                             
































                                                                               



                                                                    








                                                                              
                                          
                                         
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Implementation details of absl/types/variant.h, pulled into a
// separate file to avoid cluttering the top of the API header with
// implementation details.

#ifndef ABSL_TYPES_variant_internal_H_
#define ABSL_TYPES_variant_internal_H_

#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <memory>
#include <stdexcept>
#include <tuple>
#include <type_traits>

#include "absl/base/config.h"
#include "absl/base/internal/identity.h"
#include "absl/base/internal/inline_variable.h"
#include "absl/base/internal/invoke.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/meta/type_traits.h"
#include "absl/types/bad_variant_access.h"
#include "absl/utility/utility.h"

#if !defined(ABSL_HAVE_STD_VARIANT)

namespace absl {

template <class... Types>
class variant;

ABSL_INTERNAL_INLINE_CONSTEXPR(size_t, variant_npos, -1);

template <class T>
struct variant_size;

template <std::size_t I, class T>
struct variant_alternative;

namespace variant_internal {

// NOTE: See specializations below for details.
template <std::size_t I, class T>
struct VariantAlternativeSfinae {};

// Requires: I < variant_size_v<T>.
//
// Value: The Ith type of Types...
template <std::size_t I, class T0, class... Tn>
struct VariantAlternativeSfinae<I, variant<T0, Tn...>>
    : VariantAlternativeSfinae<I - 1, variant<Tn...>> {};

// Value: T0
template <class T0, class... Ts>
struct VariantAlternativeSfinae<0, variant<T0, Ts...>> {
  using type = T0;
};

template <std::size_t I, class T>
using VariantAlternativeSfinaeT = typename VariantAlternativeSfinae<I, T>::type;

// NOTE: Requires T to be a reference type.
template <class T, class U>
struct GiveQualsTo;

template <class T, class U>
struct GiveQualsTo<T&, U> {
  using type = U&;
};

template <class T, class U>
struct GiveQualsTo<T&&, U> {
  using type = U&&;
};

template <class T, class U>
struct GiveQualsTo<const T&, U> {
  using type = const U&;
};

template <class T, class U>
struct GiveQualsTo<const T&&, U> {
  using type = const U&&;
};

template <class T, class U>
struct GiveQualsTo<volatile T&, U> {
  using type = volatile U&;
};

template <class T, class U>
struct GiveQualsTo<volatile T&&, U> {
  using type = volatile U&&;
};

template <class T, class U>
struct GiveQualsTo<volatile const T&, U> {
  using type = volatile const U&;
};

template <class T, class U>
struct GiveQualsTo<volatile const T&&, U> {
  using type = volatile const U&&;
};

template <class T, class U>
using GiveQualsToT = typename GiveQualsTo<T, U>::type;

// Convenience alias, since size_t integral_constant is used a lot in this file.
template <std::size_t I>
using SizeT = std::integral_constant<std::size_t, I>;

using NPos = SizeT<variant_npos>;

template <class Variant, class T, class = void>
struct IndexOfConstructedType {};

template <std::size_t I, class Variant>
struct VariantAccessResultImpl;

template <std::size_t I, template <class...> class Variantemplate, class... T>
struct VariantAccessResultImpl<I, Variantemplate<T...>&> {
  using type = typename absl::variant_alternative<I, variant<T...>>::type&;
};

template <std::size_t I, template <class...> class Variantemplate, class... T>
struct VariantAccessResultImpl<I, const Variantemplate<T...>&> {
  using type =
      const typename absl::variant_alternative<I, variant<T...>>::type&;
};

template <std::size_t I, template <class...> class Variantemplate, class... T>
struct VariantAccessResultImpl<I, Variantemplate<T...>&&> {
  using type = typename absl::variant_alternative<I, variant<T...>>::type&&;
};

template <std::size_t I, template <class...> class Variantemplate, class... T>
struct VariantAccessResultImpl<I, const Variantemplate<T...>&&> {
  using type =
      const typename absl::variant_alternative<I, variant<T...>>::type&&;
};

template <std::size_t I, class Variant>
using VariantAccessResult =
    typename VariantAccessResultImpl<I, Variant&&>::type;

// NOTE: This is used instead of std::array to reduce instantiation overhead.
template <class T, std::size_t Size>
struct SimpleArray {
  static_assert(Size != 0, "");
  T value[Size];
};

template <class T>
struct AccessedType {
  using type = T;
};

template <class T>
using AccessedTypeT = typename AccessedType<T>::type;

template <class T, std::size_t Size>
struct AccessedType<SimpleArray<T, Size>> {
  using type = AccessedTypeT<T>;
};

template <class T>
constexpr T AccessSimpleArray(const T& value) {
  return value;
}

template <class T, std::size_t Size, class... SizeT>
constexpr AccessedTypeT<T> AccessSimpleArray(const SimpleArray<T, Size>& table,
                                             std::size_t head_index,
                                             SizeT... tail_indices) {
  return AccessSimpleArray(table.value[head_index], tail_indices...);
}

// Note: Intentionally is an alias.
template <class T>
using AlwaysZero = SizeT<0>;

template <class Op, class... Vs>
struct VisitIndicesResultImpl {
  using type = absl::result_of_t<Op(AlwaysZero<Vs>...)>;
};

template <class Op, class... Vs>
using VisitIndicesResultT = typename VisitIndicesResultImpl<Op, Vs...>::type;

template <class ReturnType, class FunctionObject, class EndIndices,
          std::size_t... BoundIndices>
struct MakeVisitationMatrix;

template <class ReturnType, class FunctionObject, std::size_t... Indices>
constexpr ReturnType call_with_indices(FunctionObject&& function) {
  static_assert(
      std::is_same<ReturnType, decltype(std::declval<FunctionObject>()(
                                   SizeT<Indices>()...))>::value,
      "Not all visitation overloads have the same return type.");
  return absl::forward<FunctionObject>(function)(SizeT<Indices>()...);
}

template <class ReturnType, class FunctionObject, std::size_t... BoundIndices>
struct MakeVisitationMatrix<ReturnType, FunctionObject, index_sequence<>,
                            BoundIndices...> {
  using ResultType = ReturnType (*)(FunctionObject&&);
  static constexpr ResultType Run() {
    return &call_with_indices<ReturnType, FunctionObject,
                              (BoundIndices - 1)...>;
  }
};

template <class ReturnType, class FunctionObject, class EndIndices,
          class CurrIndices, std::size_t... BoundIndices>
struct MakeVisitationMatrixImpl;

template <class ReturnType, class FunctionObject, std::size_t... EndIndices,
          std::size_t... CurrIndices, std::size_t... BoundIndices>
struct MakeVisitationMatrixImpl<
    ReturnType, FunctionObject, index_sequence<EndIndices...>,
    index_sequence<CurrIndices...>, BoundIndices...> {
  using ResultType = SimpleArray<
      typename MakeVisitationMatrix<ReturnType, FunctionObject,
                                    index_sequence<EndIndices...>>::ResultType,
      sizeof...(CurrIndices)>;

  static constexpr ResultType Run() {
    return {{MakeVisitationMatrix<ReturnType, FunctionObject,
                                  index_sequence<EndIndices...>,
                                  BoundIndices..., CurrIndices>::Run()...}};
  }
};

template <class ReturnType, class FunctionObject, std::size_t HeadEndIndex,
          std::size_t... TailEndIndices, std::size_t... BoundIndices>
struct MakeVisitationMatrix<ReturnType, FunctionObject,
                            index_sequence<HeadEndIndex, TailEndIndices...>,
                            BoundIndices...>
    : MakeVisitationMatrixImpl<
          ReturnType, FunctionObject, index_sequence<TailEndIndices...>,
          absl::make_index_sequence<HeadEndIndex>, BoundIndices...> {};

struct UnreachableSwitchCase {
  template <class Op>
  [[noreturn]] static VisitIndicesResultT<Op, std::size_t> Run(
      Op&& /*ignored*/) {
#if ABSL_HAVE_BUILTIN(__builtin_unreachable) || \
    (defined(__GNUC__) && !defined(__clang__))
    __builtin_unreachable();
#elif defined(_MSC_VER)
    __assume(false);
#else
    // Try to use assert of false being identified as an unreachable intrinsic.
    // NOTE: We use assert directly to increase chances of exploiting an assume
    //       intrinsic.
    assert(false);  // NOLINT

    // Hack to silence potential no return warning -- cause an infinite loop.
    return Run(absl::forward<Op>(op));
#endif  // Checks for __builtin_unreachable
  }
};

template <class Op, std::size_t I>
struct ReachableSwitchCase {
  static VisitIndicesResultT<Op, std::size_t> Run(Op&& op) {
    return absl::base_internal::Invoke(absl::forward<Op>(op), SizeT<I>());
  }
};

// The number 33 is just a guess at a reasonable maximum to our switch. It is
// not based on any analysis. The reason it is a power of 2 plus 1 instead of a
// power of 2 is because the number was picked to correspond to a power of 2
// amount of "normal" alternatives, plus one for the possibility of the user
// providing "monostate" in addition to the more natural alternatives.
ABSL_INTERNAL_INLINE_CONSTEXPR(std::size_t, MaxUnrolledVisitCases, 33);

// Note: The default-definition is for unreachable cases.
template <bool IsReachable>
struct PickCaseImpl {
  template <class Op, std::size_t I>
  using Apply = UnreachableSwitchCase;
};

template <>
struct PickCaseImpl</*IsReachable =*/true> {
  template <class Op, std::size_t I>
  using Apply = ReachableSwitchCase<Op, I>;
};

// Note: This form of dance with template aliases is to make sure that we
//       instantiate a number of templates proportional to the number of variant
//       alternatives rather than a number of templates proportional to our
//       maximum unrolled amount of visitation cases (aliases are effectively
//       "free" whereas other template instantiations are costly).
template <class Op, std::size_t I, std::size_t EndIndex>
using PickCase = typename PickCaseImpl<(I < EndIndex)>::template Apply<Op, I>;

template <class ReturnType>
[[noreturn]] ReturnType TypedThrowBadVariantAccess() {
  absl::variant_internal::ThrowBadVariantAccess();
}

// Given N variant sizes, determine the number of cases there would need to be
// in a single switch-statement that would cover every possibility in the
// corresponding N-ary visit operation.
template <std::size_t... NumAlternatives>
struct NumCasesOfSwitch;

template <std::size_t HeadNumAlternatives, std::size_t... TailNumAlternatives>
struct NumCasesOfSwitch<HeadNumAlternatives, TailNumAlternatives...> {
  static constexpr std::size_t value =
      (HeadNumAlternatives + 1) *
      NumCasesOfSwitch<TailNumAlternatives...>::value;
};

template <>
struct NumCasesOfSwitch<> {
  static constexpr std::size_t value = 1;
};

// A switch statement optimizes better than the table of function pointers.
template <std::size_t EndIndex>
struct VisitIndicesSwitch {
  static_assert(EndIndex <= MaxUnrolledVisitCases,
                "Maximum unrolled switch size exceeded.");

  template <class Op>
  static VisitIndicesResultT<Op, std::size_t> Run(Op&& op, std::size_t i) {
    switch (i) {
      case 0:
        return PickCase<Op, 0, EndIndex>::Run(absl::forward<Op>(op));
      case 1:
        return PickCase<Op, 1, EndIndex>::Run(absl::forward<Op>(op));
      case 2:
        return PickCase<Op, 2, EndIndex>::Run(absl::forward<Op>(op));
      case 3:
        return PickCase<Op, 3, EndIndex>::Run(absl::forward<Op>(op));
      case 4:
        return PickCase<Op, 4, EndIndex>::Run(absl::forward<Op>(op));
      case 5:
        return PickCase<Op, 5, EndIndex>::Run(absl::forward<Op>(op));
      case 6:
        return PickCase<Op, 6, EndIndex>::Run(absl::forward<Op>(op));
      case 7:
        return PickCase<Op, 7, EndIndex>::Run(absl::forward<Op>(op));
      case 8:
        return PickCase<Op, 8, EndIndex>::Run(absl::forward<Op>(op));
      case 9:
        return PickCase<Op, 9, EndIndex>::Run(absl::forward<Op>(op));
      case 10:
        return PickCase<Op, 10, EndIndex>::Run(absl::forward<Op>(op));
      case 11:
        return PickCase<Op, 11, EndIndex>::Run(absl::forward<Op>(op));
      case 12:
        return PickCase<Op, 12, EndIndex>::Run(absl::forward<Op>(op));
      case 13:
        return PickCase<Op, 13, EndIndex>::Run(absl::forward<Op>(op));
      case 14:
        return PickCase<Op, 14, EndIndex>::Run(absl::forward<Op>(op));
      case 15:
        return PickCase<Op, 15, EndIndex>::Run(absl::forward<Op>(op));
      case 16:
        return PickCase<Op, 16, EndIndex>::Run(absl::forward<Op>(op));
      case 17:
        return PickCase<Op, 17, EndIndex>::Run(absl::forward<Op>(op));
      case 18:
        return PickCase<Op, 18, EndIndex>::Run(absl::forward<Op>(op));
      case 19:
        return PickCase<Op, 19, EndIndex>::Run(absl::forward<Op>(op));
      case 20:
        return PickCase<Op, 20, EndIndex>::Run(absl::forward<Op>(op));
      case 21:
        return PickCase<Op, 21, EndIndex>::Run(absl::forward<Op>(op));
      case 22:
        return PickCase<Op, 22, EndIndex>::Run(absl::forward<Op>(op));
      case 23:
        return PickCase<Op, 23, EndIndex>::Run(absl::forward<Op>(op));
      case 24:
        return PickCase<Op, 24, EndIndex>::Run(absl::forward<Op>(op));
      case 25:
        return PickCase<Op, 25, EndIndex>::Run(absl::forward<Op>(op));
      case 26:
        return PickCase<Op, 26, EndIndex>::Run(absl::forward<Op>(op));
      case 27:
        return PickCase<Op, 27, EndIndex>::Run(absl::forward<Op>(op));
      case 28:
        return PickCase<Op, 28, EndIndex>::Run(absl::forward<Op>(op));
      case 29:
        return PickCase<Op, 29, EndIndex>::Run(absl::forward<Op>(op));
      case 30:
        return PickCase<Op, 30, EndIndex>::Run(absl::forward<Op>(op));
      case 31:
        return PickCase<Op, 31, EndIndex>::Run(absl::forward<Op>(op));
      case 32:
        return PickCase<Op, 32, EndIndex>::Run(absl::forward<Op>(op));
      default:
        ABSL_ASSERT(i == variant_npos);
        return absl::base_internal::Invoke(absl::forward<Op>(op), NPos());
    }
  }
};

template <std::size_t... EndIndices>
struct VisitIndicesFallback {
  template <class Op, class... SizeT>
  static VisitIndicesResultT<Op, SizeT...> Run(Op&& op, SizeT... indices) {
    return AccessSimpleArray(
        MakeVisitationMatrix<VisitIndicesResultT<Op, SizeT...>, Op,
                             index_sequence<(EndIndices + 1)...>>::Run(),
        (indices + 1)...)(absl::forward<Op>(op));
  }
};

// Take an N-dimensional series of indices and convert them into a single index
// without loss of information. The purpose of this is to be able to convert an
// N-ary visit operation into a single switch statement.
template <std::size_t...>
struct FlattenIndices;

template <std::size_t HeadSize, std::size_t... TailSize>
struct FlattenIndices<HeadSize, TailSize...> {
  template<class... SizeType>
  static constexpr std::size_t Run(std::size_t head, SizeType... tail) {
    return head + HeadSize * FlattenIndices<TailSize...>::Run(tail...);
  }
};

template <>
struct FlattenIndices<> {
  static constexpr std::size_t Run() { return 0; }
};

// Take a single "flattened" index (flattened by FlattenIndices) and determine
// the value of the index of one of the logically represented dimensions.
template <std::size_t I, std::size_t IndexToGet, std::size_t HeadSize,
          std::size_t... TailSize>
struct UnflattenIndex {
  static constexpr std::size_t value =
      UnflattenIndex<I / HeadSize, IndexToGet - 1, TailSize...>::value;
};

template <std::size_t I, std::size_t HeadSize, std::size_t... TailSize>
struct UnflattenIndex<I, 0, HeadSize, TailSize...> {
  static constexpr std::size_t value = (I % HeadSize);
};

// The backend for converting an N-ary visit operation into a unary visit.
template <class IndexSequence, std::size_t... EndIndices>
struct VisitIndicesVariadicImpl;

template <std::size_t... N, std::size_t... EndIndices>
struct VisitIndicesVariadicImpl<absl::index_sequence<N...>, EndIndices...> {
  // A type that can take an N-ary function object and converts it to a unary
  // function object that takes a single, flattened index, and "unflattens" it
  // into its individual dimensions when forwarding to the wrapped object.
  template <class Op>
  struct FlattenedOp {
    template <std::size_t I>
    VisitIndicesResultT<Op, decltype(EndIndices)...> operator()(
        SizeT<I> /*index*/) && {
      return base_internal::Invoke(
          absl::forward<Op>(op),
          SizeT<UnflattenIndex<I, N, (EndIndices + 1)...>::value -
                std::size_t{1}>()...);
    }

    Op&& op;
  };

  template <class Op, class... SizeType>
  static VisitIndicesResultT<Op, decltype(EndIndices)...> Run(
      Op&& op, SizeType... i) {
    return VisitIndicesSwitch<NumCasesOfSwitch<EndIndices...>::value>::Run(
        FlattenedOp<Op>{absl::forward<Op>(op)},
        FlattenIndices<(EndIndices + std::size_t{1})...>::Run(
            (i + std::size_t{1})...));
  }
};

template <std::size_t... EndIndices>
struct VisitIndicesVariadic
    : VisitIndicesVariadicImpl<absl::make_index_sequence<sizeof...(EndIndices)>,
                               EndIndices...> {};

// This implementation will flatten N-ary visit operations into a single switch
// statement when the number of cases would be less than our maximum specified
// switch-statement size.
// TODO(calabrese)
//   Based on benchmarks, determine whether the function table approach actually
//   does optimize better than a chain of switch statements and possibly update
//   the implementation accordingly. Also consider increasing the maximum switch
//   size.
template <std::size_t... EndIndices>
struct VisitIndices
    : absl::conditional_t<(NumCasesOfSwitch<EndIndices...>::value <=
                           MaxUnrolledVisitCases),
                          VisitIndicesVariadic<EndIndices...>,
                          VisitIndicesFallback<EndIndices...>> {};

template <std::size_t EndIndex>
struct VisitIndices<EndIndex>
    : absl::conditional_t<(EndIndex <= MaxUnrolledVisitCases),
                          VisitIndicesSwitch<EndIndex>,
                          VisitIndicesFallback<EndIndex>> {};

// Suppress bogus warning on MSVC: MSVC complains that the `reinterpret_cast`
// below is returning the address of a temporary or local object.
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4172)
#endif  // _MSC_VER

// TODO(calabrese) std::launder
// TODO(calabrese) constexpr
// NOTE: DO NOT REMOVE the `inline` keyword as it is necessary to work around a
// MSVC bug. See https://github.com/abseil/abseil-cpp/issues/129 for details.
template <class Self, std::size_t I>
inline VariantAccessResult<I, Self> AccessUnion(Self&& self, SizeT<I> /*i*/) {
  return reinterpret_cast<VariantAccessResult<I, Self>>(self);
}

#ifdef _MSC_VER
#pragma warning(pop)
#endif  // _MSC_VER

template <class T>
void DeducedDestroy(T& self) {  // NOLINT
  self.~T();
}

// NOTE: This type exists as a single entity for variant and its bases to
// befriend. It contains helper functionality that manipulates the state of the
// variant, such as the implementation of things like assignment and emplace
// operations.
struct VariantCoreAccess {
  template <class VariantType>
  static typename VariantType::Variant& Derived(VariantType& self) {  // NOLINT
    return static_cast<typename VariantType::Variant&>(self);
  }

  template <class VariantType>
  static const typename VariantType::Variant& Derived(
      const VariantType& self) {  // NOLINT
    return static_cast<const typename VariantType::Variant&>(self);
  }

  template <class VariantType>
  static void Destroy(VariantType& self) {  // NOLINT
    Derived(self).destroy();
    self.index_ = absl::variant_npos;
  }

  template <class Variant>
  static void SetIndex(Variant& self, std::size_t i) {  // NOLINT
    self.index_ = i;
  }

  template <class Variant>
  static void InitFrom(Variant& self, Variant&& other) {  // NOLINT
    VisitIndices<absl::variant_size<Variant>::value>::Run(
        InitFromVisitor<Variant, Variant&&>{&self,
                                            std::forward<Variant>(other)},
        other.index());
    self.index_ = other.index();
  }

  // Access a variant alternative, assuming the index is correct.
  template <std::size_t I, class Variant>
  static VariantAccessResult<I, Variant> Access(Variant&& self) {
    // This cast instead of invocation of AccessUnion with an rvalue is a
    // workaround for msvc. Without this there is a runtime failure when dealing
    // with rvalues.
    // TODO(calabrese) Reduce test case and find a simpler workaround.
    return static_cast<VariantAccessResult<I, Variant>>(
        variant_internal::AccessUnion(self.state_, SizeT<I>()));
  }

  // Access a variant alternative, throwing if the index is incorrect.
  template <std::size_t I, class Variant>
  static VariantAccessResult<I, Variant> CheckedAccess(Variant&& self) {
    if (ABSL_PREDICT_FALSE(self.index_ != I)) {
      TypedThrowBadVariantAccess<VariantAccessResult<I, Variant>>();
    }

    return Access<I>(absl::forward<Variant>(self));
  }

  // The implementation of the move-assignment operation for a variant.
  template <class VType>
  struct MoveAssignVisitor {
    using DerivedType = typename VType::Variant;
    template <std::size_t NewIndex>
    void operator()(SizeT<NewIndex> /*new_i*/) const {
      if (left->index_ == NewIndex) {
        Access<NewIndex>(*left) = std::move(Access<NewIndex>(*right));
      } else {
        Derived(*left).template emplace<NewIndex>(
            std::move(Access<NewIndex>(*right)));
      }
    }

    void operator()(SizeT<absl::variant_npos> /*new_i*/) const {
      Destroy(*left);
    }

    VType* left;
    VType* right;
  };

  template <class VType>
  static MoveAssignVisitor<VType> MakeMoveAssignVisitor(VType* left,
                                                        VType* other) {
    return {left, other};
  }

  // The implementation of the assignment operation for a variant.
  template <class VType>
  struct CopyAssignVisitor {
    using DerivedType = typename VType::Variant;
    template <std::size_t NewIndex>
    void operator()(SizeT<NewIndex> /*new_i*/) const {
      using New =
          typename absl::variant_alternative<NewIndex, DerivedType>::type;

      if (left->index_ == NewIndex) {
        Access<NewIndex>(*left) = Access<NewIndex>(*right);
      } else if (std::is_nothrow_copy_constructible<New>::value ||
                 !std::is_nothrow_move_constructible<New>::value) {
        Derived(*left).template emplace<NewIndex>(Access<NewIndex>(*right));
      } else {
        Derived(*left) = DerivedType(Derived(*right));
      }
    }

    void operator()(SizeT<absl::variant_npos> /*new_i*/) const {
      Destroy(*left);
    }

    VType* left;
    const VType* right;
  };

  template <class VType>
  static CopyAssignVisitor<VType> MakeCopyAssignVisitor(VType* left,
                                                        const VType& other) {
    return {left, &other};
  }

  // The implementation of conversion-assignment operations for variant.
  template <class Left, class QualifiedNew>
  struct ConversionAssignVisitor {
    using NewIndex =
        variant_internal::IndexOfConstructedType<Left, QualifiedNew>;

    void operator()(SizeT<NewIndex::value> /*old_i*/
                    ) const {
      Access<NewIndex::value>(*left) = absl::forward<QualifiedNew>(other);
    }

    template <std::size_t OldIndex>
    void operator()(SizeT<OldIndex> /*old_i*/
                    ) const {
      using New =
          typename absl::variant_alternative<NewIndex::value, Left>::type;
      if (std::is_nothrow_constructible<New, QualifiedNew>::value ||
          !std::is_nothrow_move_constructible<New>::value) {
        left->template emplace<NewIndex::value>(
            absl::forward<QualifiedNew>(other));
      } else {
        // the standard says "equivalent to
        // operator=(variant(std::forward<T>(t)))", but we use `emplace` here
        // because the variant's move assignment operator could be deleted.
        left->template emplace<NewIndex::value>(
            New(absl::forward<QualifiedNew>(other)));
      }
    }

    Left* left;
    QualifiedNew&& other;
  };

  template <class Left, class QualifiedNew>
  static ConversionAssignVisitor<Left, QualifiedNew>
  MakeConversionAssignVisitor(Left* left, QualifiedNew&& qual) {
    return {left, absl::forward<QualifiedNew>(qual)};
  }

  // Backend for operations for `emplace()` which destructs `*self` then
  // construct a new alternative with `Args...`.
  template <std::size_t NewIndex, class Self, class... Args>
  static typename absl::variant_alternative<NewIndex, Self>::type& Replace(
      Self* self, Args&&... args) {
    Destroy(*self);
    using New = typename absl::variant_alternative<NewIndex, Self>::type;
    New* const result = ::new (static_cast<void*>(&self->state_))
        New(absl::forward<Args>(args)...);
    self->index_ = NewIndex;
    return *result;
  }

  template <class LeftVariant, class QualifiedRightVariant>
  struct InitFromVisitor {
    template <std::size_t NewIndex>
    void operator()(SizeT<NewIndex> /*new_i*/) const {
      using Alternative =
          typename variant_alternative<NewIndex, LeftVariant>::type;
      ::new (static_cast<void*>(&left->state_)) Alternative(
          Access<NewIndex>(std::forward<QualifiedRightVariant>(right)));
    }

    void operator()(SizeT<absl::variant_npos> /*new_i*/) const {
      // This space intentionally left blank.
    }
    LeftVariant* left;
    QualifiedRightVariant&& right;
  };
};

template <class Expected, class... T>
struct IndexOfImpl;

template <class Expected>
struct IndexOfImpl<Expected> {
  using IndexFromEnd = SizeT<0>;
  using MatchedIndexFromEnd = IndexFromEnd;
  using MultipleMatches = std::false_type;
};

template <class Expected, class Head, class... Tail>
struct IndexOfImpl<Expected, Head, Tail...> : IndexOfImpl<Expected, Tail...> {
  using IndexFromEnd =
      SizeT<IndexOfImpl<Expected, Tail...>::IndexFromEnd::value + 1>;
};

template <class Expected, class... Tail>
struct IndexOfImpl<Expected, Expected, Tail...>
    : IndexOfImpl<Expected, Tail...> {
  using IndexFromEnd =
      SizeT<IndexOfImpl<Expected, Tail...>::IndexFromEnd::value + 1>;
  using MatchedIndexFromEnd = IndexFromEnd;
  using MultipleMatches = std::integral_constant<
      bool, IndexOfImpl<Expected, Tail...>::MatchedIndexFromEnd::value != 0>;
};

template <class Expected, class... Types>
struct IndexOfMeta {
  using Results = IndexOfImpl<Expected, Types...>;
  static_assert(!Results::MultipleMatches::value,
                "Attempted to access a variant by specifying a type that "
                "matches more than one alternative.");
  static_assert(Results::MatchedIndexFromEnd::value != 0,
                "Attempted to access a variant by specifying a type that does "
                "not match any alternative.");
  using type = SizeT<sizeof...(Types) - Results::MatchedIndexFromEnd::value>;
};

template <class Expected, class... Types>
using IndexOf = typename IndexOfMeta<Expected, Types...>::type;

template <class Variant, class T, std::size_t CurrIndex>
struct UnambiguousIndexOfImpl;

// Terminating case encountered once we've checked all of the alternatives
template <class T, std::size_t CurrIndex>
struct UnambiguousIndexOfImpl<variant<>, T, CurrIndex> : SizeT<CurrIndex> {};

// Case where T is not Head
template <class Head, class... Tail, class T, std::size_t CurrIndex>
struct UnambiguousIndexOfImpl<variant<Head, Tail...>, T, CurrIndex>
    : UnambiguousIndexOfImpl<variant<Tail...>, T, CurrIndex + 1>::type {};

// Case where T is Head
template <class Head, class... Tail, std::size_t CurrIndex>
struct UnambiguousIndexOfImpl<variant<Head, Tail...>, Head, CurrIndex>
    : SizeT<UnambiguousIndexOfImpl<variant<Tail...>, Head, 0>::value ==
                    sizeof...(Tail)
                ? CurrIndex
                : CurrIndex + sizeof...(Tail) + 1> {};

template <class Variant, class T>
struct UnambiguousIndexOf;

struct NoMatch {
  struct type {};
};

template <class... Alts, class T>
struct UnambiguousIndexOf<variant<Alts...>, T>
    : std::conditional<UnambiguousIndexOfImpl<variant<Alts...>, T, 0>::value !=
                           sizeof...(Alts),
                       UnambiguousIndexOfImpl<variant<Alts...>, T, 0>,
                       NoMatch>::type::type {};

template <class T, std::size_t /*Dummy*/>
using UnambiguousTypeOfImpl = T;

template <class Variant, class T>
using UnambiguousTypeOfT =
    UnambiguousTypeOfImpl<T, UnambiguousIndexOf<Variant, T>::value>;

template <class H, class... T>
class VariantStateBase;

// This is an implementation of the "imaginary function" that is described in
// [variant.ctor]
// It is used in order to determine which alternative to construct during
// initialization from some type T.
template <class Variant, std::size_t I = 0>
struct ImaginaryFun;

template <std::size_t I>
struct ImaginaryFun<variant<>, I> {
  static void Run() = delete;
};

template <class H, class... T, std::size_t I>
struct ImaginaryFun<variant<H, T...>, I> : ImaginaryFun<variant<T...>, I + 1> {
  using ImaginaryFun<variant<T...>, I + 1>::Run;

  // NOTE: const& and && are used instead of by-value due to lack of guaranteed
  // move elision of C++17. This may have other minor differences, but tests
  // pass.
  static SizeT<I> Run(const H&);
  static SizeT<I> Run(H&&);
};

// The following metafunctions are used in constructor and assignment
// constraints.
template <class Self, class T>
struct IsNeitherSelfNorInPlace : std::true_type {};

template <class Self>
struct IsNeitherSelfNorInPlace<Self, Self> : std::false_type {};

template <class Self, class T>
struct IsNeitherSelfNorInPlace<Self, in_place_type_t<T>> : std::false_type {};

template <class Self, std::size_t I>
struct IsNeitherSelfNorInPlace<Self, in_place_index_t<I>> : std::false_type {};

template <class Variant, class T, class = void>
struct ConversionIsPossibleImpl : std::false_type {};

template <class Variant, class T>
struct ConversionIsPossibleImpl<
    Variant, T, void_t<decltype(ImaginaryFun<Variant>::Run(std::declval<T>()))>>
    : std::true_type {};

template <class Variant, class T>
struct ConversionIsPossible : ConversionIsPossibleImpl<Variant, T>::type {};

template <class Variant, class T>
struct IndexOfConstructedType<
    Variant, T, void_t<decltype(ImaginaryFun<Variant>::Run(std::declval<T>()))>>
    : decltype(ImaginaryFun<Variant>::Run(std::declval<T>())) {};

template <std::size_t... Is>
struct ContainsVariantNPos
    : absl::negation<std::is_same<  // NOLINT
          absl::integer_sequence<bool, 0 <= Is...>,
          absl::integer_sequence<bool, Is != absl::variant_npos...>>> {};

template <class Op, class... QualifiedVariants>
using RawVisitResult =
    absl::result_of_t<Op(VariantAccessResult<0, QualifiedVariants>...)>;

// NOTE: The spec requires that all return-paths yield the same type and is not
// SFINAE-friendly, so we can deduce the return type by examining the first
// result. If it's not callable, then we get an error, but are compliant and
// fast to compile.
// TODO(calabrese) Possibly rewrite in a way that yields better compile errors
// at the cost of longer compile-times.
template <class Op, class... QualifiedVariants>
struct VisitResultImpl {
  using type =
      absl::result_of_t<Op(VariantAccessResult<0, QualifiedVariants>...)>;
};

// Done in two steps intentionally so that we don't cause substitution to fail.
template <class Op, class... QualifiedVariants>
using VisitResult = typename VisitResultImpl<Op, QualifiedVariants...>::type;

template <class Op, class... QualifiedVariants>
struct PerformVisitation {
  using ReturnType = VisitResult<Op, QualifiedVariants...>;

  template <std::size_t... Is>
  constexpr ReturnType operator()(SizeT<Is>... indices) const {
    return Run(typename ContainsVariantNPos<Is...>::type{},
               absl::index_sequence_for<QualifiedVariants...>(), indices...);
  }

  template <std::size_t... TupIs, std::size_t... Is>
  constexpr ReturnType Run(std::false_type /*has_valueless*/,
                           index_sequence<TupIs...>, SizeT<Is>...) const {
    return absl::base_internal::Invoke(
        absl::forward<Op>(op),
        VariantCoreAccess::Access<Is>(
            absl::forward<QualifiedVariants>(std::get<TupIs>(variant_tup)))...);
  }

  template <std::size_t... TupIs, std::size_t... Is>
  [[noreturn]] ReturnType Run(std::true_type /*has_valueless*/,
                              index_sequence<TupIs...>, SizeT<Is>...) const {
    absl::variant_internal::ThrowBadVariantAccess();
  }

  // TODO(calabrese) Avoid using a tuple, which causes lots of instantiations
  // Attempts using lambda variadic captures fail on current GCC.
  std::tuple<QualifiedVariants&&...> variant_tup;
  Op&& op;
};

template <class... T>
union Union;

// We want to allow for variant<> to be trivial. For that, we need the default
// constructor to be trivial, which means we can't define it ourselves.
// Instead, we use a non-default constructor that takes NoopConstructorTag
// that doesn't affect the triviality of the types.
struct NoopConstructorTag {};

template <std::size_t I>
struct EmplaceTag {};

template <>
union Union<> {
  constexpr explicit Union(NoopConstructorTag) noexcept {}
};

// Suppress bogus warning on MSVC: MSVC complains that Union<T...> has a defined
// deleted destructor from the `std::is_destructible` check below.
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4624)
#endif  // _MSC_VER

template <class Head, class... Tail>
union Union<Head, Tail...> {
  using TailUnion = Union<Tail...>;

  explicit constexpr Union(NoopConstructorTag /*tag*/) noexcept
      : tail(NoopConstructorTag()) {}

  template <class... P>
  explicit constexpr Union(EmplaceTag<0>, P&&... args)
      : head(absl::forward<P>(args)...) {}

  template <std::size_t I, class... P>
  explicit constexpr Union(EmplaceTag<I>, P&&... args)
      : tail(EmplaceTag<I - 1>{}, absl::forward<P>(args)...) {}

  Head head;
  TailUnion tail;
};

#ifdef _MSC_VER
#pragma warning(pop)
#endif  // _MSC_VER

// TODO(calabrese) Just contain a Union in this union (certain configs fail).
template <class... T>
union DestructibleUnionImpl;

template <>
union DestructibleUnionImpl<> {
  constexpr explicit DestructibleUnionImpl(NoopConstructorTag) noexcept {}
};

template <class Head, class... Tail>
union DestructibleUnionImpl<Head, Tail...> {
  using TailUnion = DestructibleUnionImpl<Tail...>;

  explicit constexpr DestructibleUnionImpl(NoopConstructorTag /*tag*/) noexcept
      : tail(NoopConstructorTag()) {}

  template <class... P>
  explicit constexpr DestructibleUnionImpl(EmplaceTag<0>, P&&... args)
      : head(absl::forward<P>(args)...) {}

  template <std::size_t I, class... P>
  explicit constexpr DestructibleUnionImpl(EmplaceTag<I>, P&&... args)
      : tail(EmplaceTag<I - 1>{}, absl::forward<P>(args)...) {}

  ~DestructibleUnionImpl() {}

  Head head;
  TailUnion tail;
};

// This union type is destructible even if one or more T are not trivially
// destructible. In the case that all T are trivially destructible, then so is
// this resultant type.
template <class... T>
using DestructibleUnion =
    absl::conditional_t<std::is_destructible<Union<T...>>::value, Union<T...>,
                        DestructibleUnionImpl<T...>>;

// Deepest base, containing the actual union and the discriminator
template <class H, class... T>
class VariantStateBase {
 protected:
  using Variant = variant<H, T...>;

  template <class LazyH = H,
            class ConstructibleH = absl::enable_if_t<
                std::is_default_constructible<LazyH>::value, LazyH>>
  constexpr VariantStateBase() noexcept(
      std::is_nothrow_default_constructible<ConstructibleH>::value)
      : state_(EmplaceTag<0>()), index_(0) {}

  template <std::size_t I, class... P>
  explicit constexpr VariantStateBase(EmplaceTag<I> tag, P&&... args)
      : state_(tag, absl::forward<P>(args)...), index_(I) {}

  explicit constexpr VariantStateBase(NoopConstructorTag)
      : state_(NoopConstructorTag()), index_(variant_npos) {}

  void destroy() {}  // Does nothing (shadowed in child if non-trivial)

  DestructibleUnion<H, T...> state_;
  std::size_t index_;
};

using absl::internal::identity;

// OverloadSet::Overload() is a unary function which is overloaded to
// take any of the element types of the variant, by reference-to-const.
// The return type of the overload on T is identity<T>, so that you
// can statically determine which overload was called.
//
// Overload() is not defined, so it can only be called in unevaluated
// contexts.
template <typename... Ts>
struct OverloadSet;

template <typename T, typename... Ts>
struct OverloadSet<T, Ts...> : OverloadSet<Ts...> {
  using Base = OverloadSet<Ts...>;
  static identity<T> Overload(const T&);
  using Base::Overload;
};

template <>
struct OverloadSet<> {
  // For any case not handled above.
  static void Overload(...);
};

template <class T>
using LessThanResult = decltype(std::declval<T>() < std::declval<T>());

template <class T>
using GreaterThanResult = decltype(std::declval<T>() > std::declval<T>());

template <class T>
using LessThanOrEqualResult = decltype(std::declval<T>() <= std::declval<T>());

template <class T>
using GreaterThanOrEqualResult =
    decltype(std::declval<T>() >= std::declval<T>());

template <class T>
using EqualResult = decltype(std::declval<T>() == std::declval<T>());

template <class T>
using NotEqualResult = decltype(std::declval<T>() != std::declval<T>());

using type_traits_internal::is_detected_convertible;

template <class... T>
using RequireAllHaveEqualT = absl::enable_if_t<
    absl::conjunction<is_detected_convertible<bool, EqualResult, T>...>::value,
    bool>;

template <class... T>
using RequireAllHaveNotEqualT =
    absl::enable_if_t<absl::conjunction<is_detected_convertible<
                          bool, NotEqualResult, T>...>::value,
                      bool>;

template <class... T>
using RequireAllHaveLessThanT =
    absl::enable_if_t<absl::conjunction<is_detected_convertible<
                          bool, LessThanResult, T>...>::value,
                      bool>;

template <class... T>
using RequireAllHaveLessThanOrEqualT =
    absl::enable_if_t<absl::conjunction<is_detected_convertible<
                          bool, LessThanOrEqualResult, T>...>::value,
                      bool>;

template <class... T>
using RequireAllHaveGreaterThanOrEqualT =
    absl::enable_if_t<absl::conjunction<is_detected_convertible<
                          bool, GreaterThanOrEqualResult, T>...>::value,
                      bool>;

template <class... T>
using RequireAllHaveGreaterThanT =
    absl::enable_if_t<absl::conjunction<is_detected_convertible<
                          bool, GreaterThanResult, T>...>::value,
                      bool>;

// Helper template containing implementations details of variant that can't go
// in the private section. For convenience, this takes the variant type as a
// single template parameter.
template <typename T>
struct VariantHelper;

template <typename... Ts>
struct VariantHelper<variant<Ts...>> {
  // Type metafunction which returns the element type selected if
  // OverloadSet::Overload() is well-formed when called with argument type U.
  template <typename U>
  using BestMatch = decltype(
      variant_internal::OverloadSet<Ts...>::Overload(std::declval<U>()));

  // Type metafunction which returns true if OverloadSet::Overload() is
  // well-formed when called with argument type U.
  // CanAccept can't be just an alias because there is a MSVC bug on parameter
  // pack expansion involving decltype.
  template <typename U>
  struct CanAccept :
      std::integral_constant<bool, !std::is_void<BestMatch<U>>::value> {};

  // Type metafunction which returns true if Other is an instantiation of
  // variant, and variants's converting constructor from Other will be
  // well-formed. We will use this to remove constructors that would be
  // ill-formed from the overload set.
  template <typename Other>
  struct CanConvertFrom;

  template <typename... Us>
  struct CanConvertFrom<variant<Us...>>
      : public absl::conjunction<CanAccept<Us>...> {};
};

// A type with nontrivial copy ctor and trivial move ctor.
struct TrivialMoveOnly {
  TrivialMoveOnly(TrivialMoveOnly&&) = default;
};

// Trait class to detect whether a type is trivially move constructible.
// A union's defaulted copy/move constructor is deleted if any variant member's
// copy/move constructor is nontrivial.
template <typename T>
struct IsTriviallyMoveConstructible:
  std::is_move_constructible<Union<T, TrivialMoveOnly>> {};

// To guarantee triviality of all special-member functions that can be trivial,
// we use a chain of conditional bases for each one.
// The order of inheritance of bases from child to base are logically:
//
// variant
// VariantCopyAssignBase
// VariantMoveAssignBase
// VariantCopyBase
// VariantMoveBase
// VariantStateBaseDestructor
// VariantStateBase
//
// Note that there is a separate branch at each base that is dependent on
// whether or not that corresponding special-member-function can be trivial in
// the resultant variant type.

template <class... T>
class VariantStateBaseDestructorNontrivial;

template <class... T>
class VariantMoveBaseNontrivial;

template <class... T>
class VariantCopyBaseNontrivial;

template <class... T>
class VariantMoveAssignBaseNontrivial;

template <class... T>
class VariantCopyAssignBaseNontrivial;

// Base that is dependent on whether or not the destructor can be trivial.
template <class... T>
using VariantStateBaseDestructor =
    absl::conditional_t<std::is_destructible<Union<T...>>::value,
                        VariantStateBase<T...>,
                        VariantStateBaseDestructorNontrivial<T...>>;

// Base that is dependent on whether or not the move-constructor can be
// implicitly generated by the compiler (trivial or deleted).
// Previously we were using `std::is_move_constructible<Union<T...>>` to check
// whether all Ts have trivial move constructor, but it ran into a GCC bug:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84866
// So we have to use a different approach (i.e. `HasTrivialMoveConstructor`) to
// work around the bug.
template <class... T>
using VariantMoveBase = absl::conditional_t<
    absl::disjunction<
        absl::negation<absl::conjunction<std::is_move_constructible<T>...>>,
        absl::conjunction<IsTriviallyMoveConstructible<T>...>>::value,
    VariantStateBaseDestructor<T...>, VariantMoveBaseNontrivial<T...>>;

// Base that is dependent on whether or not the copy-constructor can be trivial.
template <class... T>
using VariantCopyBase = absl::conditional_t<
    absl::disjunction<
        absl::negation<absl::conjunction<std::is_copy_constructible<T>...>>,
        std::is_copy_constructible<Union<T...>>>::value,
    VariantMoveBase<T...>, VariantCopyBaseNontrivial<T...>>;

// Base that is dependent on whether or not the move-assign can be trivial.
template <class... T>
using VariantMoveAssignBase = absl::conditional_t<
    absl::disjunction<absl::conjunction<absl::is_move_assignable<Union<T...>>,
                                        std::is_move_constructible<Union<T...>>,
                                        std::is_destructible<Union<T...>>>,
                      absl::negation<absl::conjunction<
                          std::is_move_constructible<T>...,
                          absl::is_move_assignable<T>...>>>::value,
    VariantCopyBase<T...>, VariantMoveAssignBaseNontrivial<T...>>;

// Base that is dependent on whether or not the copy-assign can be trivial.
template <class... T>
using VariantCopyAssignBase = absl::conditional_t<
    absl::disjunction<absl::conjunction<absl::is_copy_assignable<Union<T...>>,
                                        std::is_copy_constructible<Union<T...>>,
                                        std::is_destructible<Union<T...>>>,
                      absl::negation<absl::conjunction<
                          std::is_copy_constructible<T>...,
                          absl::is_copy_assignable<T>...>>>::value,
    VariantMoveAssignBase<T...>, VariantCopyAssignBaseNontrivial<T...>>;

template <class... T>
using VariantBase = VariantCopyAssignBase<T...>;

template <class... T>
class VariantStateBaseDestructorNontrivial : protected VariantStateBase<T...> {
 private:
  using Base = VariantStateBase<T...>;

 protected:
  using Base::Base;

  VariantStateBaseDestructorNontrivial() = default;
  VariantStateBaseDestructorNontrivial(VariantStateBaseDestructorNontrivial&&) =
      default;
  VariantStateBaseDestructorNontrivial(
      const VariantStateBaseDestructorNontrivial&) = default;
  VariantStateBaseDestructorNontrivial& operator=(
      VariantStateBaseDestructorNontrivial&&) = default;
  VariantStateBaseDestructorNontrivial& operator=(
      const VariantStateBaseDestructorNontrivial&) = default;

  struct Destroyer {
    template <std::size_t I>
    void operator()(SizeT<I> i) const {
      using Alternative =
          typename absl::variant_alternative<I, variant<T...>>::type;
      variant_internal::AccessUnion(self->state_, i).~Alternative();
    }

    void operator()(SizeT<absl::variant_npos> /*i*/) const {
      // This space intentionally left blank
    }

    VariantStateBaseDestructorNontrivial* self;
  };

  void destroy() { VisitIndices<sizeof...(T)>::Run(Destroyer{this}, index_); }

  ~VariantStateBaseDestructorNontrivial() { destroy(); }

 protected:
  using Base::index_;
  using Base::state_;
};

template <class... T>
class VariantMoveBaseNontrivial : protected VariantStateBaseDestructor<T...> {
 private:
  using Base = VariantStateBaseDestructor<T...>;

 protected:
  using Base::Base;

  struct Construct {
    template <std::size_t I>
    void operator()(SizeT<I> i) const {
      using Alternative =
          typename absl::variant_alternative<I, variant<T...>>::type;
      ::new (static_cast<void*>(&self->state_)) Alternative(
          variant_internal::AccessUnion(absl::move(other->state_), i));
    }

    void operator()(SizeT<absl::variant_npos> /*i*/) const {}

    VariantMoveBaseNontrivial* self;
    VariantMoveBaseNontrivial* other;
  };

  VariantMoveBaseNontrivial() = default;
  VariantMoveBaseNontrivial(VariantMoveBaseNontrivial&& other) noexcept(
      absl::conjunction<std::is_nothrow_move_constructible<T>...>::value)
      : Base(NoopConstructorTag()) {
    VisitIndices<sizeof...(T)>::Run(Construct{this, &other}, other.index_);
    index_ = other.index_;
  }

  VariantMoveBaseNontrivial(VariantMoveBaseNontrivial const&) = default;

  VariantMoveBaseNontrivial& operator=(VariantMoveBaseNontrivial&&) = default;
  VariantMoveBaseNontrivial& operator=(VariantMoveBaseNontrivial const&) =
      default;

 protected:
  using Base::index_;
  using Base::state_;
};

template <class... T>
class VariantCopyBaseNontrivial : protected VariantMoveBase<T...> {
 private:
  using Base = VariantMoveBase<T...>;

 protected:
  using Base::Base;

  VariantCopyBaseNontrivial() = default;
  VariantCopyBaseNontrivial(VariantCopyBaseNontrivial&&) = default;

  struct Construct {
    template <std::size_t I>
    void operator()(SizeT<I> i) const {
      using Alternative =
          typename absl::variant_alternative<I, variant<T...>>::type;
      ::new (static_cast<void*>(&self->state_))
          Alternative(variant_internal::AccessUnion(other->state_, i));
    }

    void operator()(SizeT<absl::variant_npos> /*i*/) const {}

    VariantCopyBaseNontrivial* self;
    const VariantCopyBaseNontrivial* other;
  };

  VariantCopyBaseNontrivial(VariantCopyBaseNontrivial const& other)
      : Base(NoopConstructorTag()) {
    VisitIndices<sizeof...(T)>::Run(Construct{this, &other}, other.index_);
    index_ = other.index_;
  }

  VariantCopyBaseNontrivial& operator=(VariantCopyBaseNontrivial&&) = default;
  VariantCopyBaseNontrivial& operator=(VariantCopyBaseNontrivial const&) =
      default;

 protected:
  using Base::index_;
  using Base::state_;
};

template <class... T>
class VariantMoveAssignBaseNontrivial : protected VariantCopyBase<T...> {
  friend struct VariantCoreAccess;

 private:
  using Base = VariantCopyBase<T...>;

 protected:
  using Base::Base;

  VariantMoveAssignBaseNontrivial() = default;
  VariantMoveAssignBaseNontrivial(VariantMoveAssignBaseNontrivial&&) = default;
  VariantMoveAssignBaseNontrivial(const VariantMoveAssignBaseNontrivial&) =
      default;
  VariantMoveAssignBaseNontrivial& operator=(
      VariantMoveAssignBaseNontrivial const&) = default;

    VariantMoveAssignBaseNontrivial&
    operator=(VariantMoveAssignBaseNontrivial&& other) noexcept(
        absl::conjunction<std::is_nothrow_move_constructible<T>...,
                          std::is_nothrow_move_assignable<T>...>::value) {
      VisitIndices<sizeof...(T)>::Run(
          VariantCoreAccess::MakeMoveAssignVisitor(this, &other), other.index_);
      return *this;
    }

 protected:
  using Base::index_;
  using Base::state_;
};

template <class... T>
class VariantCopyAssignBaseNontrivial : protected VariantMoveAssignBase<T...> {
  friend struct VariantCoreAccess;

 private:
  using Base = VariantMoveAssignBase<T...>;

 protected:
  using Base::Base;

  VariantCopyAssignBaseNontrivial() = default;
  VariantCopyAssignBaseNontrivial(VariantCopyAssignBaseNontrivial&&) = default;
  VariantCopyAssignBaseNontrivial(const VariantCopyAssignBaseNontrivial&) =
      default;
  VariantCopyAssignBaseNontrivial& operator=(
      VariantCopyAssignBaseNontrivial&&) = default;

    VariantCopyAssignBaseNontrivial& operator=(
        const VariantCopyAssignBaseNontrivial& other) {
      VisitIndices<sizeof...(T)>::Run(
          VariantCoreAccess::MakeCopyAssignVisitor(this, other), other.index_);
      return *this;
    }

 protected:
  using Base::index_;
  using Base::state_;
};

////////////////////////////////////////
// Visitors for Comparison Operations //
////////////////////////////////////////

template <class... Types>
struct EqualsOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return true;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) == VariantCoreAccess::Access<I>(*w);
  }
};

template <class... Types>
struct NotEqualsOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return false;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) != VariantCoreAccess::Access<I>(*w);
  }
};

template <class... Types>
struct LessThanOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return false;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) < VariantCoreAccess::Access<I>(*w);
  }
};

template <class... Types>
struct GreaterThanOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return false;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) > VariantCoreAccess::Access<I>(*w);
  }
};

template <class... Types>
struct LessThanOrEqualsOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return true;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) <= VariantCoreAccess::Access<I>(*w);
  }
};

template <class... Types>
struct GreaterThanOrEqualsOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return true;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) >= VariantCoreAccess::Access<I>(*w);
  }
};

// Precondition: v.index() == w.index();
template <class... Types>
struct SwapSameIndex {
  variant<Types...>* v;
  variant<Types...>* w;
  template <std::size_t I>
  void operator()(SizeT<I>) const {
    using std::swap;
    swap(VariantCoreAccess::Access<I>(*v), VariantCoreAccess::Access<I>(*w));
  }

  void operator()(SizeT<variant_npos>) const {}
};

// TODO(calabrese) do this from a different namespace for proper adl usage
template <class... Types>
struct Swap {
  variant<Types...>* v;
  variant<Types...>* w;

  void generic_swap() const {
    variant<Types...> tmp(std::move(*w));
    VariantCoreAccess::Destroy(*w);
    VariantCoreAccess::InitFrom(*w, std::move(*v));
    VariantCoreAccess::Destroy(*v);
    VariantCoreAccess::InitFrom(*v, std::move(tmp));
  }

  void operator()(SizeT<absl::variant_npos> /*w_i*/) const {
    if (!v->valueless_by_exception()) {
      generic_swap();
    }
  }

  template <std::size_t Wi>
  void operator()(SizeT<Wi> /*w_i*/) {
    if (v->index() == Wi) {
      VisitIndices<sizeof...(Types)>::Run(SwapSameIndex<Types...>{v, w}, Wi);
    } else {
      generic_swap();
    }
  }
};

template <typename Variant, typename = void, typename... Ts>
struct VariantHashBase {
  VariantHashBase() = delete;
  VariantHashBase(const VariantHashBase&) = delete;
  VariantHashBase(VariantHashBase&&) = delete;
  VariantHashBase& operator=(const VariantHashBase&) = delete;
  VariantHashBase& operator=(VariantHashBase&&) = delete;
};

struct VariantHashVisitor {
  template <typename T>
  size_t operator()(const T& t) {
    return std::hash<T>{}(t);
  }
};

template <typename Variant, typename... Ts>
struct VariantHashBase<Variant,
                       absl::enable_if_t<absl::conjunction<
                           type_traits_internal::IsHashEnabled<Ts>...>::value>,
                       Ts...> {
  using argument_type = Variant;
  using result_type = size_t;
  size_t operator()(const Variant& var) const {
    if (var.valueless_by_exception()) {
      return 239799884;
    }
    size_t result = VisitIndices<variant_size<Variant>::value>::Run(
        PerformVisitation<VariantHashVisitor, const Variant&>{
            std::forward_as_tuple(var), VariantHashVisitor{}},
        var.index());
    // Combine the index and the hash result in order to distinguish
    // std::variant<int, int> holding the same value as different alternative.
    return result ^ var.index();
  }
};

}  // namespace variant_internal
}  // namespace absl

#endif  // !defined(ABSL_HAVE_STD_VARIANT)
#endif  // ABSL_TYPES_variant_internal_H_