// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/time/time.h"
#include <chrono> // NOLINT(build/c++11)
#include <cstring>
#include <ctime>
#include <iomanip>
#include <limits>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/time/clock.h"
#include "absl/time/internal/test_util.h"
namespace {
// A gMock matcher to match timespec values. Use this matcher like:
// timespec ts1, ts2;
// EXPECT_THAT(ts1, TimespecMatcher(ts2));
MATCHER_P(TimespecMatcher, ts, "") {
if (ts.tv_sec == arg.tv_sec && ts.tv_nsec == arg.tv_nsec)
return true;
*result_listener << "expected: {" << ts.tv_sec << ", " << ts.tv_nsec << "} ";
*result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_nsec << "}";
return false;
}
// A gMock matcher to match timeval values. Use this matcher like:
// timeval tv1, tv2;
// EXPECT_THAT(tv1, TimevalMatcher(tv2));
MATCHER_P(TimevalMatcher, tv, "") {
if (tv.tv_sec == arg.tv_sec && tv.tv_usec == arg.tv_usec)
return true;
*result_listener << "expected: {" << tv.tv_sec << ", " << tv.tv_usec << "} ";
*result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_usec << "}";
return false;
}
TEST(Time, ConstExpr) {
constexpr absl::Time t0 = absl::UnixEpoch();
static_assert(t0 == absl::Time(), "UnixEpoch");
constexpr absl::Time t1 = absl::InfiniteFuture();
static_assert(t1 != absl::Time(), "InfiniteFuture");
constexpr absl::Time t2 = absl::InfinitePast();
static_assert(t2 != absl::Time(), "InfinitePast");
constexpr absl::Time t3 = absl::FromUnixNanos(0);
static_assert(t3 == absl::Time(), "FromUnixNanos");
constexpr absl::Time t4 = absl::FromUnixMicros(0);
static_assert(t4 == absl::Time(), "FromUnixMicros");
constexpr absl::Time t5 = absl::FromUnixMillis(0);
static_assert(t5 == absl::Time(), "FromUnixMillis");
constexpr absl::Time t6 = absl::FromUnixSeconds(0);
static_assert(t6 == absl::Time(), "FromUnixSeconds");
constexpr absl::Time t7 = absl::FromTimeT(0);
static_assert(t7 == absl::Time(), "FromTimeT");
}
TEST(Time, ValueSemantics) {
absl::Time a; // Default construction
absl::Time b = a; // Copy construction
EXPECT_EQ(a, b);
absl::Time c(a); // Copy construction (again)
EXPECT_EQ(a, b);
EXPECT_EQ(a, c);
EXPECT_EQ(b, c);
b = c; // Assignment
EXPECT_EQ(a, b);
EXPECT_EQ(a, c);
EXPECT_EQ(b, c);
}
TEST(Time, UnixEpoch) {
absl::Time::Breakdown bd = absl::UnixEpoch().In(absl::UTCTimeZone());
ABSL_INTERNAL_EXPECT_TIME(bd, 1970, 1, 1, 0, 0, 0, 0, false);
EXPECT_EQ(absl::ZeroDuration(), bd.subsecond);
EXPECT_EQ(4, bd.weekday); // Thursday
}
TEST(Time, Breakdown) {
absl::TimeZone tz = absl::time_internal::LoadTimeZone("America/New_York");
absl::Time t = absl::UnixEpoch();
// The Unix epoch as seen in NYC.
absl::Time::Breakdown bd = t.In(tz);
ABSL_INTERNAL_EXPECT_TIME(bd, 1969, 12, 31, 19, 0, 0, -18000, false);
EXPECT_EQ(absl::ZeroDuration(), bd.subsecond);
EXPECT_EQ(3, bd.weekday); // Wednesday
// Just before the epoch.
t -= absl::Nanoseconds(1);
bd = t.In(tz);
ABSL_INTERNAL_EXPECT_TIME(bd, 1969, 12, 31, 18, 59, 59, -18000, false);
EXPECT_EQ(absl::Nanoseconds(999999999), bd.subsecond);
EXPECT_EQ(3, bd.weekday); // Wednesday
// Some time later.
t += absl::Hours(24) * 2735;
t += absl::Hours(18) + absl::Minutes(30) + absl::Seconds(15) +
absl::Nanoseconds(9);
bd = t.In(tz);
ABSL_INTERNAL_EXPECT_TIME(bd, 1977, 6, 28, 14, 30, 15, -14400, true);
EXPECT_EQ(8, bd.subsecond / absl::Nanoseconds(1));
EXPECT_EQ(2, bd.weekday); // Tuesday
}
TEST(Time, AdditiveOperators) {
const absl::Duration d = absl::Nanoseconds(1);
const absl::Time t0;
const absl::Time t1 = t0 + d;
EXPECT_EQ(d, t1 - t0);
EXPECT_EQ(-d, t0 - t1);
EXPECT_EQ(t0, t1 - d);
absl::Time t(t0);
EXPECT_EQ(t0, t);
t += d;
EXPECT_EQ(t0 + d, t);
EXPECT_EQ(d, t - t0);
t -= d;
EXPECT_EQ(t0, t);
// Tests overflow between subseconds and seconds.
t = absl::UnixEpoch();
t += absl::Milliseconds(500);
EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t);
t += absl::Milliseconds(600);
EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(1100), t);
t -= absl::Milliseconds(600);
EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t);
t -= absl::Milliseconds(500);
EXPECT_EQ(absl::UnixEpoch(), t);
}
TEST(Time, RelationalOperators) {
constexpr absl::Time t1 = absl::FromUnixNanos(0);
constexpr absl::Time t2 = absl::FromUnixNanos(1);
constexpr absl::Time t3 = absl::FromUnixNanos(2);
static_assert(absl::Time() == t1, "");
static_assert(t1 == t1, "");
static_assert(t2 == t2, "");
static_assert(t3 == t3, "");
static_assert(t1 < t2, "");
static_assert(t2 < t3, "");
static_assert(t1 < t3, "");
static_assert(t1 <= t1, "");
static_assert(t1 <= t2, "");
static_assert(t2 <= t2, "");
static_assert(t2 <= t3, "");
static_assert(t3 <= t3, "");
static_assert(t1 <= t3, "");
static_assert(t2 > t1, "");
static_assert(t3 > t2, "");
static_assert(t3 > t1, "");
static_assert(t2 >= t2, "");
static_assert(t2 >= t1, "");
static_assert(t3 >= t3, "");
static_assert(t3 >= t2, "");
static_assert(t1 >= t1, "");
static_assert(t3 >= t1, "");
}
TEST(Time, Infinity) {
constexpr absl::Time ifuture = absl::InfiniteFuture();
constexpr absl::Time ipast = absl::InfinitePast();
static_assert(ifuture == ifuture, "");
static_assert(ipast == ipast, "");
static_assert(ipast < ifuture, "");
static_assert(ifuture > ipast, "");
// Arithmetic saturates
EXPECT_EQ(ifuture, ifuture + absl::Seconds(1));
EXPECT_EQ(ifuture, ifuture - absl::Seconds(1));
EXPECT_EQ(ipast, ipast + absl::Seconds(1));
EXPECT_EQ(ipast, ipast - absl::Seconds(1));
EXPECT_EQ(absl::InfiniteDuration(), ifuture - ifuture);
EXPECT_EQ(absl::InfiniteDuration(), ifuture - ipast);
EXPECT_EQ(-absl::InfiniteDuration(), ipast - ifuture);
EXPECT_EQ(-absl::InfiniteDuration(), ipast - ipast);
constexpr absl::Time t = absl::UnixEpoch(); // Any finite time.
static_assert(t < ifuture, "");
static_assert(t > ipast, "");
}
TEST(Time, FloorConversion) {
#define TEST_FLOOR_CONVERSION(TO, FROM) \
EXPECT_EQ(1, TO(FROM(1001))); \
EXPECT_EQ(1, TO(FROM(1000))); \
EXPECT_EQ(0, TO(FROM(999))); \
EXPECT_EQ(0, TO(FROM(1))); \
EXPECT_EQ(0, TO(FROM(0))); \
EXPECT_EQ(-1, TO(FROM(-1))); \
EXPECT_EQ(-1, TO(FROM(-999))); \
EXPECT_EQ(-1, TO(FROM(-1000))); \
EXPECT_EQ(-2, TO(FROM(-1001)));
TEST_FLOOR_CONVERSION(absl::ToUnixMicros, absl::FromUnixNanos);
TEST_FLOOR_CONVERSION(absl::ToUnixMillis, absl::FromUnixMicros);
TEST_FLOOR_CONVERSION(absl::ToUnixSeconds, absl::FromUnixMillis);
TEST_FLOOR_CONVERSION(absl::ToTimeT, absl::FromUnixMillis);
#undef TEST_FLOOR_CONVERSION
// Tests ToUnixNanos.
EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(3) / 2));
EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1)));
EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1) / 2));
EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(0)));
EXPECT_EQ(-1,
absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1) / 2));
EXPECT_EQ(-1, absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1)));
EXPECT_EQ(-2,
absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(3) / 2));
// Tests ToUniversal, which uses a different epoch than the tests above.
EXPECT_EQ(1,
absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(101)));
EXPECT_EQ(1,
absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(100)));
EXPECT_EQ(0,
absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(99)));
EXPECT_EQ(0,
absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(1)));
EXPECT_EQ(0,
absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(0)));
EXPECT_EQ(-1,
absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-1)));
EXPECT_EQ(-1,
absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-99)));
EXPECT_EQ(
-1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-100)));
EXPECT_EQ(
-2, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-101)));
// Tests ToTimespec()/TimeFromTimespec()
const struct {
absl::Time t;
timespec ts;
} to_ts[] = {
{absl::FromUnixSeconds(1) + absl::Nanoseconds(1), {1, 1}},
{absl::FromUnixSeconds(1) + absl::Nanoseconds(1) / 2, {1, 0}},
{absl::FromUnixSeconds(1) + absl::Nanoseconds(0), {1, 0}},
{absl::FromUnixSeconds(0) + absl::Nanoseconds(0), {0, 0}},
{absl::FromUnixSeconds(0) - absl::Nanoseconds(1) / 2, {-1, 999999999}},
{absl::FromUnixSeconds(0) - absl::Nanoseconds(1), {-1, 999999999}},
{absl::FromUnixSeconds(-1) + absl::Nanoseconds(1), {-1, 1}},
{absl::FromUnixSeconds(-1) + absl::Nanoseconds(1) / 2, {-1, 0}},
{absl::FromUnixSeconds(-1) + absl::Nanoseconds(0), {-1, 0}},
{absl::FromUnixSeconds(-1) - absl::Nanoseconds(1) / 2, {-2, 999999999}},
};
for (const auto& test : to_ts) {
EXPECT_THAT(absl::ToTimespec(test.t), TimespecMatcher(test.ts));
}
const struct {
timespec ts;
absl::Time t;
} from_ts[] = {
{{1, 1}, absl::FromUnixSeconds(1) + absl::Nanoseconds(1)},
{{1, 0}, absl::FromUnixSeconds(1) + absl::Nanoseconds(0)},
{{0, 0}, absl::FromUnixSeconds(0) + absl::Nanoseconds(0)},
{{0, -1}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)},
{{-1, 999999999}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)},
{{-1, 1}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(1)},
{{-1, 0}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(0)},
{{-1, -1}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)},
{{-2, 999999999}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)},
};
for (const auto& test : from_ts) {
EXPECT_EQ(test.t, absl::TimeFromTimespec(test.ts));
}
// Tests ToTimeval()/TimeFromTimeval() (same as timespec above)
const struct {
absl::Time t;
timeval tv;
} to_tv[] = {
{absl::FromUnixSeconds(1) + absl::Microseconds(1), {1, 1}},
{absl::FromUnixSeconds(1) + absl::Microseconds(1) / 2, {1, 0}},
{absl::FromUnixSeconds(1) + absl::Microseconds(0), {1, 0}},
{absl::FromUnixSeconds(0) + absl::Microseconds(0), {0, 0}},
{absl::FromUnixSeconds(0) - absl::Microseconds(1) / 2, {-1, 999999}},
{absl::FromUnixSeconds(0) - absl::Microseconds(1), {-1, 999999}},
{absl::FromUnixSeconds(-1) + absl::Microseconds(1), {-1, 1}},
{absl::FromUnixSeconds(-1) + absl::Microseconds(1) / 2, {-1, 0}},
{absl::FromUnixSeconds(-1) + absl::Microseconds(0), {-1, 0}},
{absl::FromUnixSeconds(-1) - absl::Microseconds(1) / 2, {-2, 999999}},
};
for (const auto& test : to_tv) {
EXPECT_THAT(ToTimeval(test.t), TimevalMatcher(test.tv));
}
const struct {
timeval tv;
absl::Time t;
} from_tv[] = {
{{1, 1}, absl::FromUnixSeconds(1) + absl::Microseconds(1)},
{{1, 0}, absl::FromUnixSeconds(1) + absl::Microseconds(0)},
{{0, 0}, absl::FromUnixSeconds(0) + absl::Microseconds(0)},
{{0, -1}, absl::FromUnixSeconds(0) - absl::Microseconds(1)},
{{-1, 999999}, absl::FromUnixSeconds(0) - absl::Microseconds(1)},
{{-1, 1}, absl::FromUnixSeconds(-1) + absl::Microseconds(1)},
{{-1, 0}, absl::FromUnixSeconds(-1) + absl::Microseconds(0)},
{{-1, -1}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)},
{{-2, 999999}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)},
};
for (const auto& test : from_tv) {
EXPECT_EQ(test.t, absl::TimeFromTimeval(test.tv));
}
// Tests flooring near negative infinity.
const int64_t min_plus_1 = std::numeric_limits<int64_t>::min() + 1;
EXPECT_EQ(min_plus_1, absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1)));
EXPECT_EQ(std::numeric_limits<int64_t>::min(),
absl::ToUnixSeconds(
absl::FromUnixSeconds(min_plus_1) - absl::Nanoseconds(1) / 2));
// Tests flooring near positive infinity.
EXPECT_EQ(std::numeric_limits<int64_t>::max(),
absl::ToUnixSeconds(absl::FromUnixSeconds(
std::numeric_limits<int64_t>::max()) + absl::Nanoseconds(1) / 2));
EXPECT_EQ(std::numeric_limits<int64_t>::max(),
absl::ToUnixSeconds(
absl::FromUnixSeconds(std::numeric_limits<int64_t>::max())));
EXPECT_EQ(std::numeric_limits<int64_t>::max() - 1,
absl::ToUnixSeconds(absl::FromUnixSeconds(
std::numeric_limits<int64_t>::max()) - absl::Nanoseconds(1) / 2));
}
TEST(Time, RoundtripConversion) {
#define TEST_CONVERSION_ROUND_TRIP(SOURCE, FROM, TO, MATCHER) \
EXPECT_THAT(TO(FROM(SOURCE)), MATCHER(SOURCE))
// FromUnixNanos() and ToUnixNanos()
int64_t now_ns = absl::GetCurrentTimeNanos();
TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixNanos, absl::ToUnixNanos,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixNanos, absl::ToUnixNanos,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixNanos, absl::ToUnixNanos,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(now_ns, absl::FromUnixNanos, absl::ToUnixNanos,
testing::Eq)
<< now_ns;
// FromUnixMicros() and ToUnixMicros()
int64_t now_us = absl::GetCurrentTimeNanos() / 1000;
TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMicros, absl::ToUnixMicros,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMicros, absl::ToUnixMicros,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMicros, absl::ToUnixMicros,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(now_us, absl::FromUnixMicros, absl::ToUnixMicros,
testing::Eq)
<< now_us;
// FromUnixMillis() and ToUnixMillis()
int64_t now_ms = absl::GetCurrentTimeNanos() / 1000000;
TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMillis, absl::ToUnixMillis,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMillis, absl::ToUnixMillis,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMillis, absl::ToUnixMillis,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(now_ms, absl::FromUnixMillis, absl::ToUnixMillis,
testing::Eq)
<< now_ms;
// FromUnixSeconds() and ToUnixSeconds()
int64_t now_s = std::time(nullptr);
TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixSeconds, absl::ToUnixSeconds,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixSeconds, absl::ToUnixSeconds,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixSeconds, absl::ToUnixSeconds,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(now_s, absl::FromUnixSeconds, absl::ToUnixSeconds,
testing::Eq)
<< now_s;
// FromTimeT() and ToTimeT()
time_t now_time_t = std::time(nullptr);
TEST_CONVERSION_ROUND_TRIP(-1, absl::FromTimeT, absl::ToTimeT, testing::Eq);
TEST_CONVERSION_ROUND_TRIP(0, absl::FromTimeT, absl::ToTimeT, testing::Eq);
TEST_CONVERSION_ROUND_TRIP(1, absl::FromTimeT, absl::ToTimeT, testing::Eq);
TEST_CONVERSION_ROUND_TRIP(now_time_t, absl::FromTimeT, absl::ToTimeT,
testing::Eq)
<< now_time_t;
// TimeFromTimeval() and ToTimeval()
timeval tv;
tv.tv_sec = -1;
tv.tv_usec = 0;
TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
TimevalMatcher);
tv.tv_sec = -1;
tv.tv_usec = 999999;
TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
TimevalMatcher);
tv.tv_sec = 0;
tv.tv_usec = 0;
TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
TimevalMatcher);
tv.tv_sec = 0;
tv.tv_usec = 1;
TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
TimevalMatcher);
tv.tv_sec = 1;
tv.tv_usec = 0;
TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
TimevalMatcher);
// TimeFromTimespec() and ToTimespec()
timespec ts;
ts.tv_sec = -1;
ts.tv_nsec = 0;
TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
TimespecMatcher);
ts.tv_sec = -1;
ts.tv_nsec = 999999999;
TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
TimespecMatcher);
ts.tv_sec = 0;
ts.tv_nsec = 0;
TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
TimespecMatcher);
ts.tv_sec = 0;
ts.tv_nsec = 1;
TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
TimespecMatcher);
ts.tv_sec = 1;
ts.tv_nsec = 0;
TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
TimespecMatcher);
// FromUDate() and ToUDate()
double now_ud = absl::GetCurrentTimeNanos() / 1000000;
TEST_CONVERSION_ROUND_TRIP(-1.5, absl::FromUDate, absl::ToUDate,
testing::DoubleEq);
TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUDate, absl::ToUDate,
testing::DoubleEq);
TEST_CONVERSION_ROUND_TRIP(-0.5, absl::FromUDate, absl::ToUDate,
testing::DoubleEq);
TEST_CONVERSION_ROUND_TRIP(0, absl::FromUDate, absl::ToUDate,
testing::DoubleEq);
TEST_CONVERSION_ROUND_TRIP(0.5, absl::FromUDate, absl::ToUDate,
testing::DoubleEq);
TEST_CONVERSION_ROUND_TRIP(1, absl::FromUDate, absl::ToUDate,
testing::DoubleEq);
TEST_CONVERSION_ROUND_TRIP(1.5, absl::FromUDate, absl::ToUDate,
testing::DoubleEq);
TEST_CONVERSION_ROUND_TRIP(now_ud, absl::FromUDate, absl::ToUDate,
testing::DoubleEq)
<< std::fixed << std::setprecision(17) << now_ud;
// FromUniversal() and ToUniversal()
int64_t now_uni = ((719162LL * (24 * 60 * 60)) * (1000 * 1000 * 10)) +
(absl::GetCurrentTimeNanos() / 100);
TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUniversal, absl::ToUniversal,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(0, absl::FromUniversal, absl::ToUniversal,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(1, absl::FromUniversal, absl::ToUniversal,
testing::Eq);
TEST_CONVERSION_ROUND_TRIP(now_uni, absl::FromUniversal, absl::ToUniversal,
testing::Eq)
<< now_uni;
#undef TEST_CONVERSION_ROUND_TRIP
}
template <typename Duration>
std::chrono::system_clock::time_point MakeChronoUnixTime(const Duration& d) {
return std::chrono::system_clock::from_time_t(0) + d;
}
TEST(Time, FromChrono) {
EXPECT_EQ(absl::FromTimeT(-1),
absl::FromChrono(std::chrono::system_clock::from_time_t(-1)));
EXPECT_EQ(absl::FromTimeT(0),
absl::FromChrono(std::chrono::system_clock::from_time_t(0)));
EXPECT_EQ(absl::FromTimeT(1),
absl::FromChrono(std::chrono::system_clock::from_time_t(1)));
EXPECT_EQ(
absl::FromUnixMillis(-1),
absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(-1))));
EXPECT_EQ(absl::FromUnixMillis(0),
absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(0))));
EXPECT_EQ(absl::FromUnixMillis(1),
absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(1))));
// Chrono doesn't define exactly its range and precision (neither does
// absl::Time), so let's simply test +/- ~100 years to make sure things work.
const auto century_sec = 60 * 60 * 24 * 365 * int64_t{100};
const auto century = std::chrono::seconds(century_sec);
const auto chrono_future = MakeChronoUnixTime(century);
const auto chrono_past = MakeChronoUnixTime(-century);
EXPECT_EQ(absl::FromUnixSeconds(century_sec),
absl::FromChrono(chrono_future));
EXPECT_EQ(absl::FromUnixSeconds(-century_sec), absl::FromChrono(chrono_past));
// Roundtrip them both back to chrono.
EXPECT_EQ(chrono_future,
absl::ToChronoTime(absl::FromUnixSeconds(century_sec)));
EXPECT_EQ(chrono_past,
absl::ToChronoTime(absl::FromUnixSeconds(-century_sec)));
}
TEST(Time, ToChronoTime) {
EXPECT_EQ(std::chrono::system_clock::from_time_t(-1),
absl::ToChronoTime(absl::FromTimeT(-1)));
EXPECT_EQ(std::chrono::system_clock::from_time_t(0),
absl::ToChronoTime(absl::FromTimeT(0)));
EXPECT_EQ(std::chrono::system_clock::from_time_t(1),
absl::ToChronoTime(absl::FromTimeT(1)));
EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(-1)),
absl::ToChronoTime(absl::FromUnixMillis(-1)));
EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(0)),
absl::ToChronoTime(absl::FromUnixMillis(0)));
EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(1)),
absl::ToChronoTime(absl::FromUnixMillis(1)));
// Time before the Unix epoch should floor, not trunc.
const auto tick = absl::Nanoseconds(1) / 4;
EXPECT_EQ(std::chrono::system_clock::from_time_t(0) -
std::chrono::system_clock::duration(1),
absl::ToChronoTime(absl::UnixEpoch() - tick));
}
TEST(Time, ConvertDateTime) {
const absl::TimeZone utc = absl::UTCTimeZone();
const absl::TimeZone goog =
absl::time_internal::LoadTimeZone("America/Los_Angeles");
const absl::TimeZone nyc =
absl::time_internal::LoadTimeZone("America/New_York");
const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)";
// A simple case of normalization.
absl::TimeConversion oct32 = ConvertDateTime(2013, 10, 32, 8, 30, 0, goog);
EXPECT_TRUE(oct32.normalized);
EXPECT_EQ(absl::TimeConversion::UNIQUE, oct32.kind);
absl::TimeConversion nov01 = ConvertDateTime(2013, 11, 1, 8, 30, 0, goog);
EXPECT_FALSE(nov01.normalized);
EXPECT_EQ(absl::TimeConversion::UNIQUE, nov01.kind);
EXPECT_EQ(oct32.pre, nov01.pre);
EXPECT_EQ("Fri, 1 Nov 2013 08:30:00 -0700 (PDT)",
absl::FormatTime(fmt, nov01.pre, goog));
// A Spring DST transition, when there is a gap in civil time
// and we prefer the later of the possible interpretations of a
// non-existent time.
absl::TimeConversion mar13 = ConvertDateTime(2011, 3, 13, 2, 15, 0, nyc);
EXPECT_FALSE(mar13.normalized);
EXPECT_EQ(absl::TimeConversion::SKIPPED, mar13.kind);
EXPECT_EQ("Sun, 13 Mar 2011 03:15:00 -0400 (EDT)",
absl::FormatTime(fmt, mar13.pre, nyc));
EXPECT_EQ("Sun, 13 Mar 2011 03:00:00 -0400 (EDT)",
absl::FormatTime(fmt, mar13.trans, nyc));
EXPECT_EQ("Sun, 13 Mar 2011 01:15:00 -0500 (EST)",
absl::FormatTime(fmt, mar13.post, nyc));
EXPECT_EQ(mar13.pre, absl::FromDateTime(2011, 3, 13, 2, 15, 0, nyc));
// A Fall DST transition, when civil times are repeated and
// we prefer the earlier of the possible interpretations of an
// ambiguous time.
absl::TimeConversion nov06 = ConvertDateTime(2011, 11, 6, 1, 15, 0, nyc);
EXPECT_FALSE(nov06.normalized);
EXPECT_EQ(absl::TimeConversion::REPEATED, nov06.kind);
EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0400 (EDT)",
absl::FormatTime(fmt, nov06.pre, nyc));
EXPECT_EQ("Sun, 6 Nov 2011 01:00:00 -0500 (EST)",
absl::FormatTime(fmt, nov06.trans, nyc));
EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0500 (EST)",
absl::FormatTime(fmt, nov06.post, nyc));
EXPECT_EQ(nov06.pre, absl::FromDateTime(2011, 11, 6, 1, 15, 0, nyc));
// Check that (time_t) -1 is handled correctly.
absl::TimeConversion minus1 = ConvertDateTime(1969, 12, 31, 18, 59, 59, nyc);
EXPECT_FALSE(minus1.normalized);
EXPECT_EQ(absl::TimeConversion::UNIQUE, minus1.kind);
EXPECT_EQ(-1, absl::ToTimeT(minus1.pre));
EXPECT_EQ("Wed, 31 Dec 1969 18:59:59 -0500 (EST)",
absl::FormatTime(fmt, minus1.pre, nyc));
EXPECT_EQ("Wed, 31 Dec 1969 23:59:59 +0000 (UTC)",
absl::FormatTime(fmt, minus1.pre, utc));
}
// FromDateTime(year, mon, day, hour, min, sec, UTCTimeZone()) has
// a specialized fastpath implementation which we exercise here.
TEST(Time, FromDateTimeUTC) {
const absl::TimeZone utc = absl::UTCTimeZone();
const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)";
const int kMax = std::numeric_limits<int>::max();
const int kMin = std::numeric_limits<int>::min();
absl::Time t;
// 292091940881 is the last positive year to use the fastpath.
t = absl::FromDateTime(292091940881, kMax, kMax, kMax, kMax, kMax, utc);
EXPECT_EQ("Fri, 25 Nov 292277026596 12:21:07 +0000 (UTC)",
absl::FormatTime(fmt, t, utc));
t = absl::FromDateTime(292091940882, kMax, kMax, kMax, kMax, kMax, utc);
EXPECT_EQ("infinite-future", absl::FormatTime(fmt, t, utc)); // no overflow
t = absl::FromDateTime(
std::numeric_limits<int64_t>::max(), kMax, kMax, kMax, kMax, kMax, utc);
EXPECT_EQ("infinite-future", absl::FormatTime(fmt, t, utc)); // no overflow
// -292091936940 is the last negative year to use the fastpath.
t = absl::FromDateTime(-292091936940, kMin, kMin, kMin, kMin, kMin, utc);
EXPECT_EQ("Fri, 1 Nov -292277022657 10:37:52 +0000 (UTC)",
absl::FormatTime(fmt, t, utc));
t = absl::FromDateTime(-292091936941, kMin, kMin, kMin, kMin, kMin, utc);
EXPECT_EQ("infinite-past", absl::FormatTime(fmt, t, utc)); // no underflow
t = absl::FromDateTime(
std::numeric_limits<int64_t>::min(), kMin, kMin, kMin, kMin, kMin, utc);
EXPECT_EQ("infinite-past", absl::FormatTime(fmt, t, utc)); // no overflow
// Check that we're counting leap years correctly.
t = absl::FromDateTime(1900, 2, 28, 23, 59, 59, utc);
EXPECT_EQ("Wed, 28 Feb 1900 23:59:59 +0000 (UTC)",
absl::FormatTime(fmt, t, utc));
t = absl::FromDateTime(1900, 3, 1, 0, 0, 0, utc);
EXPECT_EQ("Thu, 1 Mar 1900 00:00:00 +0000 (UTC)",
absl::FormatTime(fmt, t, utc));
t = absl::FromDateTime(2000, 2, 29, 23, 59, 59, utc);
EXPECT_EQ("Tue, 29 Feb 2000 23:59:59 +0000 (UTC)",
absl::FormatTime(fmt, t, utc));
t = absl::FromDateTime(2000, 3, 1, 0, 0, 0, utc);
EXPECT_EQ("Wed, 1 Mar 2000 00:00:00 +0000 (UTC)",
absl::FormatTime(fmt, t, utc));
// Check normalization.
const std::string ymdhms = "%Y-%m-%d %H:%M:%S";
t = absl::FromDateTime(2015, 1, 1, 0, 0, 60, utc);
EXPECT_EQ("2015-01-01 00:01:00", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, 1, 1, 0, 60, 0, utc);
EXPECT_EQ("2015-01-01 01:00:00", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, 1, 1, 24, 0, 0, utc);
EXPECT_EQ("2015-01-02 00:00:00", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, 1, 32, 0, 0, 0, utc);
EXPECT_EQ("2015-02-01 00:00:00", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, 13, 1, 0, 0, 0, utc);
EXPECT_EQ("2016-01-01 00:00:00", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, 13, 32, 60, 60, 60, utc);
EXPECT_EQ("2016-02-03 13:01:00", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, 1, 1, 0, 0, -1, utc);
EXPECT_EQ("2014-12-31 23:59:59", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, 1, 1, 0, -1, 0, utc);
EXPECT_EQ("2014-12-31 23:59:00", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, 1, 1, -1, 0, 0, utc);
EXPECT_EQ("2014-12-31 23:00:00", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, 1, -1, 0, 0, 0, utc);
EXPECT_EQ("2014-12-30 00:00:00", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, -1, 1, 0, 0, 0, utc);
EXPECT_EQ("2014-11-01 00:00:00", absl::FormatTime(ymdhms, t, utc));
t = absl::FromDateTime(2015, -1, -1, -1, -1, -1, utc);
EXPECT_EQ("2014-10-29 22:58:59", absl::FormatTime(ymdhms, t, utc));
}
TEST(Time, ToTM) {
const absl::TimeZone utc = absl::UTCTimeZone();
// Compares the results of ToTM() to gmtime_r() for lots of times over the
// course of a few days.
const absl::Time start = absl::FromDateTime(2014, 1, 2, 3, 4, 5, utc);
const absl::Time end = absl::FromDateTime(2014, 1, 5, 3, 4, 5, utc);
for (absl::Time t = start; t < end; t += absl::Seconds(30)) {
const struct tm tm_bt = ToTM(t, utc);
const time_t tt = absl::ToTimeT(t);
struct tm tm_lc;
#ifdef _WIN32
gmtime_s(&tm_lc, &tt);
#else
gmtime_r(&tt, &tm_lc);
#endif
EXPECT_EQ(tm_lc.tm_year, tm_bt.tm_year);
EXPECT_EQ(tm_lc.tm_mon, tm_bt.tm_mon);
EXPECT_EQ(tm_lc.tm_mday, tm_bt.tm_mday);
EXPECT_EQ(tm_lc.tm_hour, tm_bt.tm_hour);
EXPECT_EQ(tm_lc.tm_min, tm_bt.tm_min);
EXPECT_EQ(tm_lc.tm_sec, tm_bt.tm_sec);
EXPECT_EQ(tm_lc.tm_wday, tm_bt.tm_wday);
EXPECT_EQ(tm_lc.tm_yday, tm_bt.tm_yday);
EXPECT_EQ(tm_lc.tm_isdst, tm_bt.tm_isdst);
ASSERT_FALSE(HasFailure());
}
// Checks that the tm_isdst field is correct when in standard time.
const absl::TimeZone nyc =
absl::time_internal::LoadTimeZone("America/New_York");
absl::Time t = absl::FromDateTime(2014, 3, 1, 0, 0, 0, nyc);
struct tm tm = ToTM(t, nyc);
EXPECT_FALSE(tm.tm_isdst);
// Checks that the tm_isdst field is correct when in daylight time.
t = absl::FromDateTime(2014, 4, 1, 0, 0, 0, nyc);
tm = ToTM(t, nyc);
EXPECT_TRUE(tm.tm_isdst);
// Checks overflow.
tm = ToTM(absl::InfiniteFuture(), nyc);
EXPECT_EQ(std::numeric_limits<int>::max() - 1900, tm.tm_year);
EXPECT_EQ(11, tm.tm_mon);
EXPECT_EQ(31, tm.tm_mday);
EXPECT_EQ(23, tm.tm_hour);
EXPECT_EQ(59, tm.tm_min);
EXPECT_EQ(59, tm.tm_sec);
EXPECT_EQ(4, tm.tm_wday);
EXPECT_EQ(364, tm.tm_yday);
EXPECT_FALSE(tm.tm_isdst);
// Checks underflow.
tm = ToTM(absl::InfinitePast(), nyc);
EXPECT_EQ(std::numeric_limits<int>::min(), tm.tm_year);
EXPECT_EQ(0, tm.tm_mon);
EXPECT_EQ(1, tm.tm_mday);
EXPECT_EQ(0, tm.tm_hour);
EXPECT_EQ(0, tm.tm_min);
EXPECT_EQ(0, tm.tm_sec);
EXPECT_EQ(0, tm.tm_wday);
EXPECT_EQ(0, tm.tm_yday);
EXPECT_FALSE(tm.tm_isdst);
}
TEST(Time, FromTM) {
const absl::TimeZone nyc =
absl::time_internal::LoadTimeZone("America/New_York");
// Verifies that tm_isdst doesn't affect anything when the time is unique.
struct tm tm;
std::memset(&tm, 0, sizeof(tm));
tm.tm_year = 2014 - 1900;
tm.tm_mon = 6 - 1;
tm.tm_mday = 28;
tm.tm_hour = 1;
tm.tm_min = 2;
tm.tm_sec = 3;
tm.tm_isdst = -1;
absl::Time t = FromTM(tm, nyc);
EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST
tm.tm_isdst = 0;
t = FromTM(tm, nyc);
EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST
tm.tm_isdst = 1;
t = FromTM(tm, nyc);
EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST
// Adjusts tm to refer to an ambiguous time.
tm.tm_year = 2014 - 1900;
tm.tm_mon = 11 - 1;
tm.tm_mday = 2;
tm.tm_hour = 1;
tm.tm_min = 30;
tm.tm_sec = 42;
tm.tm_isdst = -1;
t = FromTM(tm, nyc);
EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST
tm.tm_isdst = 0;
t = FromTM(tm, nyc);
EXPECT_EQ("2014-11-02T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD
tm.tm_isdst = 1;
t = FromTM(tm, nyc);
EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST
// Adjusts tm to refer to a skipped time.
tm.tm_year = 2014 - 1900;
tm.tm_mon = 3 - 1;
tm.tm_mday = 9;
tm.tm_hour = 2;
tm.tm_min = 30;
tm.tm_sec = 42;
tm.tm_isdst = -1;
t = FromTM(tm, nyc);
EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST
tm.tm_isdst = 0;
t = FromTM(tm, nyc);
EXPECT_EQ("2014-03-09T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD
tm.tm_isdst = 1;
t = FromTM(tm, nyc);
EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST
}
TEST(Time, TMRoundTrip) {
const absl::TimeZone nyc =
absl::time_internal::LoadTimeZone("America/New_York");
// Test round-tripping across a skipped transition
absl::Time start = absl::FromDateTime(2014, 3, 9, 0, 0, 0, nyc);
absl::Time end = absl::FromDateTime(2014, 3, 9, 4, 0, 0, nyc);
for (absl::Time t = start; t < end; t += absl::Minutes(1)) {
struct tm tm = ToTM(t, nyc);
absl::Time rt = FromTM(tm, nyc);
EXPECT_EQ(rt, t);
}
// Test round-tripping across an ambiguous transition
start = absl::FromDateTime(2014, 11, 2, 0, 0, 0, nyc);
end = absl::FromDateTime(2014, 11, 2, 4, 0, 0, nyc);
for (absl::Time t = start; t < end; t += absl::Minutes(1)) {
struct tm tm = ToTM(t, nyc);
absl::Time rt = FromTM(tm, nyc);
EXPECT_EQ(rt, t);
}
// Test round-tripping of unique instants crossing a day boundary
start = absl::FromDateTime(2014, 6, 27, 22, 0, 0, nyc);
end = absl::FromDateTime(2014, 6, 28, 4, 0, 0, nyc);
for (absl::Time t = start; t < end; t += absl::Minutes(1)) {
struct tm tm = ToTM(t, nyc);
absl::Time rt = FromTM(tm, nyc);
EXPECT_EQ(rt, t);
}
}
TEST(Time, Range) {
// The API's documented range is +/- 100 billion years.
const absl::Duration range = absl::Hours(24) * 365.2425 * 100000000000;
// Arithmetic and comparison still works at +/-range around base values.
absl::Time bases[2] = {absl::UnixEpoch(), absl::Now()};
for (const auto base : bases) {
absl::Time bottom = base - range;
EXPECT_GT(bottom, bottom - absl::Nanoseconds(1));
EXPECT_LT(bottom, bottom + absl::Nanoseconds(1));
absl::Time top = base + range;
EXPECT_GT(top, top - absl::Nanoseconds(1));
EXPECT_LT(top, top + absl::Nanoseconds(1));
absl::Duration full_range = 2 * range;
EXPECT_EQ(full_range, top - bottom);
EXPECT_EQ(-full_range, bottom - top);
}
}
TEST(Time, Limits) {
// It is an implementation detail that Time().rep_ == ZeroDuration(),
// and that the resolution of a Duration is 1/4 of a nanosecond.
const absl::Time zero;
const absl::Time max =
zero + absl::Seconds(std::numeric_limits<int64_t>::max()) +
absl::Nanoseconds(999999999) + absl::Nanoseconds(3) / 4;
const absl::Time min =
zero + absl::Seconds(std::numeric_limits<int64_t>::min());
// Some simple max/min bounds checks.
EXPECT_LT(max, absl::InfiniteFuture());
EXPECT_GT(min, absl::InfinitePast());
EXPECT_LT(zero, max);
EXPECT_GT(zero, min);
EXPECT_GE(absl::UnixEpoch(), min);
EXPECT_LT(absl::UnixEpoch(), max);
// Check sign of Time differences.
EXPECT_LT(absl::ZeroDuration(), max - zero);
EXPECT_LT(absl::ZeroDuration(),
zero - absl::Nanoseconds(1) / 4 - min); // avoid zero - min
// Arithmetic works at max - 0.25ns and min + 0.25ns.
EXPECT_GT(max, max - absl::Nanoseconds(1) / 4);
EXPECT_LT(min, min + absl::Nanoseconds(1) / 4);
}
TEST(Time, ConversionSaturation) {
const absl::TimeZone utc = absl::UTCTimeZone();
absl::Time t;
const auto max_time_t = std::numeric_limits<time_t>::max();
const auto min_time_t = std::numeric_limits<time_t>::min();
time_t tt = max_time_t - 1;
t = absl::FromTimeT(tt);
tt = absl::ToTimeT(t);
EXPECT_EQ(max_time_t - 1, tt);
t += absl::Seconds(1);
tt = absl::ToTimeT(t);
EXPECT_EQ(max_time_t, tt);
t += absl::Seconds(1); // no effect
tt = absl::ToTimeT(t);
EXPECT_EQ(max_time_t, tt);
tt = min_time_t + 1;
t = absl::FromTimeT(tt);
tt = absl::ToTimeT(t);
EXPECT_EQ(min_time_t + 1, tt);
t -= absl::Seconds(1);
tt = absl::ToTimeT(t);
EXPECT_EQ(min_time_t, tt);
t -= absl::Seconds(1); // no effect
tt = absl::ToTimeT(t);
EXPECT_EQ(min_time_t, tt);
const auto max_timeval_sec =
std::numeric_limits<decltype(timeval::tv_sec)>::max();
const auto min_timeval_sec =
std::numeric_limits<decltype(timeval::tv_sec)>::min();
timeval tv;
tv.tv_sec = max_timeval_sec;
tv.tv_usec = 999998;
t = absl::TimeFromTimeval(tv);
tv = ToTimeval(t);
EXPECT_EQ(max_timeval_sec, tv.tv_sec);
EXPECT_EQ(999998, tv.tv_usec);
t += absl::Microseconds(1);
tv = ToTimeval(t);
EXPECT_EQ(max_timeval_sec, tv.tv_sec);
EXPECT_EQ(999999, tv.tv_usec);
t += absl::Microseconds(1); // no effect
tv = ToTimeval(t);
EXPECT_EQ(max_timeval_sec, tv.tv_sec);
EXPECT_EQ(999999, tv.tv_usec);
tv.tv_sec = min_timeval_sec;
tv.tv_usec = 1;
t = absl::TimeFromTimeval(tv);
tv = ToTimeval(t);
EXPECT_EQ(min_timeval_sec, tv.tv_sec);
EXPECT_EQ(1, tv.tv_usec);
t -= absl::Microseconds(1);
tv = ToTimeval(t);
EXPECT_EQ(min_timeval_sec, tv.tv_sec);
EXPECT_EQ(0, tv.tv_usec);
t -= absl::Microseconds(1); // no effect
tv = ToTimeval(t);
EXPECT_EQ(min_timeval_sec, tv.tv_sec);
EXPECT_EQ(0, tv.tv_usec);
const auto max_timespec_sec =
std::numeric_limits<decltype(timespec::tv_sec)>::max();
const auto min_timespec_sec =
std::numeric_limits<decltype(timespec::tv_sec)>::min();
timespec ts;
ts.tv_sec = max_timespec_sec;
ts.tv_nsec = 999999998;
t = absl::TimeFromTimespec(ts);
ts = absl::ToTimespec(t);
EXPECT_EQ(max_timespec_sec, ts.tv_sec);
EXPECT_EQ(999999998, ts.tv_nsec);
t += absl::Nanoseconds(1);
ts = absl::ToTimespec(t);
EXPECT_EQ(max_timespec_sec, ts.tv_sec);
EXPECT_EQ(999999999, ts.tv_nsec);
t += absl::Nanoseconds(1); // no effect
ts = absl::ToTimespec(t);
EXPECT_EQ(max_timespec_sec, ts.tv_sec);
EXPECT_EQ(999999999, ts.tv_nsec);
ts.tv_sec = min_timespec_sec;
ts.tv_nsec = 1;
t = absl::TimeFromTimespec(ts);
ts = absl::ToTimespec(t);
EXPECT_EQ(min_timespec_sec, ts.tv_sec);
EXPECT_EQ(1, ts.tv_nsec);
t -= absl::Nanoseconds(1);
ts = absl::ToTimespec(t);
EXPECT_EQ(min_timespec_sec, ts.tv_sec);
EXPECT_EQ(0, ts.tv_nsec);
t -= absl::Nanoseconds(1); // no effect
ts = absl::ToTimespec(t);
EXPECT_EQ(min_timespec_sec, ts.tv_sec);
EXPECT_EQ(0, ts.tv_nsec);
// Checks how Time::In() saturates on infinities.
absl::Time::Breakdown bd = absl::InfiniteFuture().In(utc);
ABSL_INTERNAL_EXPECT_TIME(bd, std::numeric_limits<int64_t>::max(), 12, 31, 23,
59, 59, 0, false);
EXPECT_EQ(absl::InfiniteDuration(), bd.subsecond);
EXPECT_EQ(4, bd.weekday); // Thursday
EXPECT_EQ(365, bd.yearday);
EXPECT_STREQ("-00", bd.zone_abbr); // artifact of absl::Time::In()
bd = absl::InfinitePast().In(utc);
ABSL_INTERNAL_EXPECT_TIME(bd, std::numeric_limits<int64_t>::min(), 1, 1, 0, 0,
0, 0, false);
EXPECT_EQ(-absl::InfiniteDuration(), bd.subsecond);
EXPECT_EQ(7, bd.weekday); // Sunday
EXPECT_EQ(1, bd.yearday);
EXPECT_STREQ("-00", bd.zone_abbr); // artifact of absl::Time::In()
// Approach the maximal Time value from below.
t = absl::FromDateTime(292277026596, 12, 4, 15, 30, 6, utc);
EXPECT_EQ("292277026596-12-04T15:30:06+00:00",
absl::FormatTime(absl::RFC3339_full, t, utc));
t = absl::FromDateTime(292277026596, 12, 4, 15, 30, 7, utc);
EXPECT_EQ("292277026596-12-04T15:30:07+00:00",
absl::FormatTime(absl::RFC3339_full, t, utc));
EXPECT_EQ(
absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()), t);
// Checks that we can also get the maximal Time value for a far-east zone.
const absl::TimeZone plus14 = absl::FixedTimeZone(14 * 60 * 60);
t = absl::FromDateTime(292277026596, 12, 5, 5, 30, 7, plus14);
EXPECT_EQ("292277026596-12-05T05:30:07+14:00",
absl::FormatTime(absl::RFC3339_full, t, plus14));
EXPECT_EQ(
absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()), t);
// One second later should push us to infinity.
t = absl::FromDateTime(292277026596, 12, 4, 15, 30, 8, utc);
EXPECT_EQ("infinite-future", absl::FormatTime(absl::RFC3339_full, t, utc));
// Approach the minimal Time value from above.
t = absl::FromDateTime(-292277022657, 1, 27, 8, 29, 53, utc);
EXPECT_EQ("-292277022657-01-27T08:29:53+00:00",
absl::FormatTime(absl::RFC3339_full, t, utc));
t = absl::FromDateTime(-292277022657, 1, 27, 8, 29, 52, utc);
EXPECT_EQ("-292277022657-01-27T08:29:52+00:00",
absl::FormatTime(absl::RFC3339_full, t, utc));
EXPECT_EQ(
absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()), t);
// Checks that we can also get the minimal Time value for a far-west zone.
const absl::TimeZone minus12 = absl::FixedTimeZone(-12 * 60 * 60);
t = absl::FromDateTime(-292277022657, 1, 26, 20, 29, 52, minus12);
EXPECT_EQ("-292277022657-01-26T20:29:52-12:00",
absl::FormatTime(absl::RFC3339_full, t, minus12));
EXPECT_EQ(
absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()), t);
// One second before should push us to -infinity.
t = absl::FromDateTime(-292277022657, 1, 27, 8, 29, 51, utc);
EXPECT_EQ("infinite-past", absl::FormatTime(absl::RFC3339_full, t, utc));
}
// In zones with POSIX-style recurring rules we use special logic to
// handle conversions in the distant future. Here we check the limits
// of those conversions, particularly with respect to integer overflow.
TEST(Time, ExtendedConversionSaturation) {
const absl::TimeZone syd =
absl::time_internal::LoadTimeZone("Australia/Sydney");
const absl::TimeZone nyc =
absl::time_internal::LoadTimeZone("America/New_York");
const absl::Time max =
absl::FromUnixSeconds(std::numeric_limits<int64_t>::max());
absl::Time::Breakdown bd;
absl::Time t;
// The maximal time converted in each zone.
bd = max.In(syd);
ABSL_INTERNAL_EXPECT_TIME(bd, 292277026596, 12, 5, 2, 30, 7, 39600, true);
t = absl::FromDateTime(292277026596, 12, 5, 2, 30, 7, syd);
EXPECT_EQ(max, t);
bd = max.In(nyc);
ABSL_INTERNAL_EXPECT_TIME(bd, 292277026596, 12, 4, 10, 30, 7, -18000, false);
t = absl::FromDateTime(292277026596, 12, 4, 10, 30, 7, nyc);
EXPECT_EQ(max, t);
// One second later should push us to infinity.
t = absl::FromDateTime(292277026596, 12, 5, 2, 30, 8, syd);
EXPECT_EQ(absl::InfiniteFuture(), t);
t = absl::FromDateTime(292277026596, 12, 4, 10, 30, 8, nyc);
EXPECT_EQ(absl::InfiniteFuture(), t);
// And we should stick there.
t = absl::FromDateTime(292277026596, 12, 5, 2, 30, 9, syd);
EXPECT_EQ(absl::InfiniteFuture(), t);
t = absl::FromDateTime(292277026596, 12, 4, 10, 30, 9, nyc);
EXPECT_EQ(absl::InfiniteFuture(), t);
// All the way up to a saturated date/time, without overflow.
t = absl::FromDateTime(
std::numeric_limits<int64_t>::max(), 12, 31, 23, 59, 59, syd);
EXPECT_EQ(absl::InfiniteFuture(), t);
t = absl::FromDateTime(
std::numeric_limits<int64_t>::max(), 12, 31, 23, 59, 59, nyc);
EXPECT_EQ(absl::InfiniteFuture(), t);
}
} // namespace