// Copyright 2016 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file implements the TimeZoneIf interface using the "zoneinfo"
// data provided by the IANA Time Zone Database (i.e., the only real game
// in town).
//
// TimeZoneInfo represents the history of UTC-offset changes within a time
// zone. Most changes are due to daylight-saving rules, but occasionally
// shifts are made to the time-zone's base offset. The database only attempts
// to be definitive for times since 1970, so be wary of local-time conversions
// before that. Also, rule and zone-boundary changes are made at the whim
// of governments, so the conversion of future times needs to be taken with
// a grain of salt.
//
// For more information see tzfile(5), http://www.iana.org/time-zones, or
// http://en.wikipedia.org/wiki/Zoneinfo.
//
// Note that we assume the proleptic Gregorian calendar and 60-second
// minutes throughout.
#include "time_zone_info.h"
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include "absl/time/internal/cctz/include/cctz/civil_time.h"
#include "time_zone_fixed.h"
#include "time_zone_posix.h"
namespace absl {
namespace time_internal {
namespace cctz {
namespace {
inline bool IsLeap(year_t year) {
return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0);
}
// The number of days in non-leap and leap years respectively.
const std::int_least32_t kDaysPerYear[2] = {365, 366};
// The day offsets of the beginning of each (1-based) month in non-leap and
// leap years respectively (e.g., 335 days before December in a leap year).
const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = {
{-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
{-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366},
};
// We reject leap-second encoded zoneinfo and so assume 60-second minutes.
const std::int_least32_t kSecsPerDay = 24 * 60 * 60;
// 400-year chunks always have 146097 days (20871 weeks).
const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay;
// Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay.
const std::int_least32_t kSecsPerYear[2] = {
365 * kSecsPerDay,
366 * kSecsPerDay,
};
// Single-byte, unsigned numeric values are encoded directly.
inline std::uint_fast8_t Decode8(const char* cp) {
return static_cast<std::uint_fast8_t>(*cp) & 0xff;
}
// Multi-byte, numeric values are encoded using a MSB first,
// twos-complement representation. These helpers decode, from
// the given address, 4-byte and 8-byte values respectively.
// Note: If int_fastXX_t == intXX_t and this machine is not
// twos complement, then there will be at least one input value
// we cannot represent.
std::int_fast32_t Decode32(const char* cp) {
std::uint_fast32_t v = 0;
for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++);
const std::int_fast32_t s32max = 0x7fffffff;
const auto s32maxU = static_cast<std::uint_fast32_t>(s32max);
if (v <= s32maxU) return static_cast<std::int_fast32_t>(v);
return static_cast<std::int_fast32_t>(v - s32maxU - 1) - s32max - 1;
}
std::int_fast64_t Decode64(const char* cp) {
std::uint_fast64_t v = 0;
for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++);
const std::int_fast64_t s64max = 0x7fffffffffffffff;
const auto s64maxU = static_cast<std::uint_fast64_t>(s64max);
if (v <= s64maxU) return static_cast<std::int_fast64_t>(v);
return static_cast<std::int_fast64_t>(v - s64maxU - 1) - s64max - 1;
}
// Generate a year-relative offset for a PosixTransition.
std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday,
const PosixTransition& pt) {
std::int_fast64_t days = 0;
switch (pt.date.fmt) {
case PosixTransition::J: {
days = pt.date.j.day;
if (!leap_year || days < kMonthOffsets[1][3]) days -= 1;
break;
}
case PosixTransition::N: {
days = pt.date.n.day;
break;
}
case PosixTransition::M: {
const bool last_week = (pt.date.m.week == 5);
days = kMonthOffsets[leap_year][pt.date.m.month + last_week];
const std::int_fast64_t weekday = (jan1_weekday + days) % 7;
if (last_week) {
days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1;
} else {
days += (pt.date.m.weekday + 7 - weekday) % 7;
days += (pt.date.m.week - 1) * 7;
}
break;
}
}
return (days * kSecsPerDay) + pt.time.offset;
}
inline time_zone::civil_lookup MakeUnique(const time_point<seconds>& tp) {
time_zone::civil_lookup cl;
cl.kind = time_zone::civil_lookup::UNIQUE;
cl.pre = cl.trans = cl.post = tp;
return cl;
}
inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) {
return MakeUnique(FromUnixSeconds(unix_time));
}
inline time_zone::civil_lookup MakeSkipped(const Transition& tr,
const civil_second& cs) {
time_zone::civil_lookup cl;
cl.kind = time_zone::civil_lookup::SKIPPED;
cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec));
cl.trans = FromUnixSeconds(tr.unix_time);
cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs));
return cl;
}
inline time_zone::civil_lookup MakeRepeated(const Transition& tr,
const civil_second& cs) {
time_zone::civil_lookup cl;
cl.kind = time_zone::civil_lookup::REPEATED;
cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs));
cl.trans = FromUnixSeconds(tr.unix_time);
cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec));
return cl;
}
inline civil_second YearShift(const civil_second& cs, year_t shift) {
return civil_second(cs.year() + shift, cs.month(), cs.day(),
cs.hour(), cs.minute(), cs.second());
}
} // namespace
// What (no leap-seconds) UTC+seconds zoneinfo would look like.
bool TimeZoneInfo::ResetToBuiltinUTC(const seconds& offset) {
transition_types_.resize(1);
TransitionType& tt(transition_types_.back());
tt.utc_offset = static_cast<std::int_least32_t>(offset.count());
tt.is_dst = false;
tt.abbr_index = 0;
// We temporarily add some redundant, contemporary (2013 through 2023)
// transitions for performance reasons. See TimeZoneInfo::LocalTime().
// TODO: Fix the performance issue and remove the extra transitions.
transitions_.clear();
transitions_.reserve(12);
for (const std::int_fast64_t unix_time : {
-(1LL << 59), // BIG_BANG
1356998400LL, // 2013-01-01T00:00:00+00:00
1388534400LL, // 2014-01-01T00:00:00+00:00
1420070400LL, // 2015-01-01T00:00:00+00:00
1451606400LL, // 2016-01-01T00:00:00+00:00
1483228800LL, // 2017-01-01T00:00:00+00:00
1514764800LL, // 2018-01-01T00:00:00+00:00
1546300800LL, // 2019-01-01T00:00:00+00:00
1577836800LL, // 2020-01-01T00:00:00+00:00
1609459200LL, // 2021-01-01T00:00:00+00:00
1640995200LL, // 2022-01-01T00:00:00+00:00
1672531200LL, // 2023-01-01T00:00:00+00:00
2147483647LL, // 2^31 - 1
}) {
Transition& tr(*transitions_.emplace(transitions_.end()));
tr.unix_time = unix_time;
tr.type_index = 0;
tr.civil_sec = LocalTime(tr.unix_time, tt).cs;
tr.prev_civil_sec = tr.civil_sec - 1;
}
default_transition_type_ = 0;
abbreviations_ = FixedOffsetToAbbr(offset);
abbreviations_.append(1, '\0'); // add NUL
future_spec_.clear(); // never needed for a fixed-offset zone
extended_ = false;
tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
transitions_.shrink_to_fit();
return true;
}
// Builds the in-memory header using the raw bytes from the file.
bool TimeZoneInfo::Header::Build(const tzhead& tzh) {
std::int_fast32_t v;
if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false;
timecnt = static_cast<std::size_t>(v);
if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false;
typecnt = static_cast<std::size_t>(v);
if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false;
charcnt = static_cast<std::size_t>(v);
if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false;
leapcnt = static_cast<std::size_t>(v);
if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false;
ttisstdcnt = static_cast<std::size_t>(v);
if ((v = Decode32(tzh.tzh_ttisgmtcnt)) < 0) return false;
ttisgmtcnt = static_cast<std::size_t>(v);
return true;
}
// How many bytes of data are associated with this header. The result
// depends upon whether this is a section with 4-byte or 8-byte times.
std::size_t TimeZoneInfo::Header::DataLength(std::size_t time_len) const {
std::size_t len = 0;
len += (time_len + 1) * timecnt; // unix_time + type_index
len += (4 + 1 + 1) * typecnt; // utc_offset + is_dst + abbr_index
len += 1 * charcnt; // abbreviations
len += (time_len + 4) * leapcnt; // leap-time + TAI-UTC
len += 1 * ttisstdcnt; // UTC/local indicators
len += 1 * ttisgmtcnt; // standard/wall indicators
return len;
}
// Check that the TransitionType has the expected offset/is_dst/abbreviation.
void TimeZoneInfo::CheckTransition(const std::string& name,
const TransitionType& tt,
std::int_fast32_t offset, bool is_dst,
const std::string& abbr) const {
if (tt.utc_offset != offset || tt.is_dst != is_dst ||
&abbreviations_[tt.abbr_index] != abbr) {
std::clog << name << ": Transition"
<< " offset=" << tt.utc_offset << "/"
<< (tt.is_dst ? "DST" : "STD")
<< "/abbr=" << &abbreviations_[tt.abbr_index]
<< " does not match POSIX spec '" << future_spec_ << "'\n";
}
}
// zic(8) can generate no-op transitions when a zone changes rules at an
// instant when there is actually no discontinuity. So we check whether
// two transitions have equivalent types (same offset/is_dst/abbr).
bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index,
std::uint_fast8_t tt2_index) const {
if (tt1_index == tt2_index) return true;
const TransitionType& tt1(transition_types_[tt1_index]);
const TransitionType& tt2(transition_types_[tt2_index]);
if (tt1.is_dst != tt2.is_dst) return false;
if (tt1.utc_offset != tt2.utc_offset) return false;
if (tt1.abbr_index != tt2.abbr_index) return false;
return true;
}
// Use the POSIX-TZ-environment-variable-style std::string to handle times
// in years after the last transition stored in the zoneinfo data.
void TimeZoneInfo::ExtendTransitions(const std::string& name,
const Header& hdr) {
extended_ = false;
bool extending = !future_spec_.empty();
PosixTimeZone posix;
if (extending && !ParsePosixSpec(future_spec_, &posix)) {
std::clog << name << ": Failed to parse '" << future_spec_ << "'\n";
extending = false;
}
if (extending && posix.dst_abbr.empty()) { // std only
// The future specification should match the last/default transition,
// and that means that handling the future will fall out naturally.
std::uint_fast8_t index = default_transition_type_;
if (hdr.timecnt != 0) index = transitions_[hdr.timecnt - 1].type_index;
const TransitionType& tt(transition_types_[index]);
CheckTransition(name, tt, posix.std_offset, false, posix.std_abbr);
extending = false;
}
if (extending && hdr.timecnt < 2) {
std::clog << name << ": Too few transitions for POSIX spec\n";
extending = false;
}
if (!extending) {
// Ensure that there is always a transition in the second half of the
// time line (the BIG_BANG transition is in the first half) so that the
// signed difference between a civil_second and the civil_second of its
// previous transition is always representable, without overflow.
const Transition& last(transitions_.back());
if (last.unix_time < 0) {
const std::uint_fast8_t type_index = last.type_index;
Transition& tr(*transitions_.emplace(transitions_.end()));
tr.unix_time = 2147483647; // 2038-01-19T03:14:07+00:00
tr.type_index = type_index;
}
return; // last transition wins
}
// Extend the transitions for an additional 400 years using the
// future specification. Years beyond those can be handled by
// mapping back to a cycle-equivalent year within that range.
// zic(8) should probably do this so that we don't have to.
// TODO: Reduce the extension by the number of compatible
// transitions already in place.
transitions_.reserve(hdr.timecnt + 400 * 2 + 1);
transitions_.resize(hdr.timecnt + 400 * 2);
extended_ = true;
// The future specification should match the last two transitions,
// and those transitions should have different is_dst flags. Note
// that nothing says the UTC offset used by the is_dst transition
// must be greater than that used by the !is_dst transition. (See
// Europe/Dublin, for example.)
const Transition* tr0 = &transitions_[hdr.timecnt - 1];
const Transition* tr1 = &transitions_[hdr.timecnt - 2];
const TransitionType* tt0 = &transition_types_[tr0->type_index];
const TransitionType* tt1 = &transition_types_[tr1->type_index];
const TransitionType& dst(tt0->is_dst ? *tt0 : *tt1);
const TransitionType& std(tt0->is_dst ? *tt1 : *tt0);
CheckTransition(name, dst, posix.dst_offset, true, posix.dst_abbr);
CheckTransition(name, std, posix.std_offset, false, posix.std_abbr);
// Add the transitions to tr1 and back to tr0 for each extra year.
last_year_ = LocalTime(tr0->unix_time, *tt0).cs.year();
bool leap_year = IsLeap(last_year_);
const civil_day jan1(last_year_, 1, 1);
std::int_fast64_t jan1_time = civil_second(jan1) - civil_second();
int jan1_weekday = (static_cast<int>(get_weekday(jan1)) + 1) % 7;
Transition* tr = &transitions_[hdr.timecnt]; // next trans to fill
if (LocalTime(tr1->unix_time, *tt1).cs.year() != last_year_) {
// Add a single extra transition to align to a calendar year.
transitions_.resize(transitions_.size() + 1);
assert(tr == &transitions_[hdr.timecnt]); // no reallocation
const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start);
std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1);
tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset;
tr++->type_index = tr1->type_index;
tr0 = &transitions_[hdr.timecnt];
tr1 = &transitions_[hdr.timecnt - 1];
tt0 = &transition_types_[tr0->type_index];
tt1 = &transition_types_[tr1->type_index];
}
const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start);
const PosixTransition& pt0(tt0->is_dst ? posix.dst_start : posix.dst_end);
for (const year_t limit = last_year_ + 400; last_year_ < limit;) {
last_year_ += 1; // an additional year of generated transitions
jan1_time += kSecsPerYear[leap_year];
jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7;
leap_year = !leap_year && IsLeap(last_year_);
std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1);
tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset;
tr++->type_index = tr1->type_index;
std::int_fast64_t tr0_offset = TransOffset(leap_year, jan1_weekday, pt0);
tr->unix_time = jan1_time + tr0_offset - tt1->utc_offset;
tr++->type_index = tr0->type_index;
}
assert(tr == &transitions_[0] + transitions_.size());
}
bool TimeZoneInfo::Load(const std::string& name, ZoneInfoSource* zip) {
// Read and validate the header.
tzhead tzh;
if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh))
return false;
if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
return false;
Header hdr;
if (!hdr.Build(tzh))
return false;
std::size_t time_len = 4;
if (tzh.tzh_version[0] != '\0') {
// Skip the 4-byte data.
if (zip->Skip(hdr.DataLength(time_len)) != 0)
return false;
// Read and validate the header for the 8-byte data.
if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh))
return false;
if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
return false;
if (tzh.tzh_version[0] == '\0')
return false;
if (!hdr.Build(tzh))
return false;
time_len = 8;
}
if (hdr.typecnt == 0)
return false;
if (hdr.leapcnt != 0) {
// This code assumes 60-second minutes so we do not want
// the leap-second encoded zoneinfo. We could reverse the
// compensation, but the "right" encoding is rarely used
// so currently we simply reject such data.
return false;
}
if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt)
return false;
if (hdr.ttisgmtcnt != 0 && hdr.ttisgmtcnt != hdr.typecnt)
return false;
// Read the data into a local buffer.
std::size_t len = hdr.DataLength(time_len);
std::vector<char> tbuf(len);
if (zip->Read(tbuf.data(), len) != len)
return false;
const char* bp = tbuf.data();
// Decode and validate the transitions.
transitions_.reserve(hdr.timecnt + 2); // We might add a couple.
transitions_.resize(hdr.timecnt);
for (std::size_t i = 0; i != hdr.timecnt; ++i) {
transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp);
bp += time_len;
if (i != 0) {
// Check that the transitions are ordered by time (as zic guarantees).
if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i]))
return false; // out of order
}
}
bool seen_type_0 = false;
for (std::size_t i = 0; i != hdr.timecnt; ++i) {
transitions_[i].type_index = Decode8(bp++);
if (transitions_[i].type_index >= hdr.typecnt)
return false;
if (transitions_[i].type_index == 0)
seen_type_0 = true;
}
// Decode and validate the transition types.
transition_types_.resize(hdr.typecnt);
for (std::size_t i = 0; i != hdr.typecnt; ++i) {
transition_types_[i].utc_offset =
static_cast<std::int_least32_t>(Decode32(bp));
if (transition_types_[i].utc_offset >= kSecsPerDay ||
transition_types_[i].utc_offset <= -kSecsPerDay)
return false;
bp += 4;
transition_types_[i].is_dst = (Decode8(bp++) != 0);
transition_types_[i].abbr_index = Decode8(bp++);
if (transition_types_[i].abbr_index >= hdr.charcnt)
return false;
}
// Determine the before-first-transition type.
default_transition_type_ = 0;
if (seen_type_0 && hdr.timecnt != 0) {
std::uint_fast8_t index = 0;
if (transition_types_[0].is_dst) {
index = transitions_[0].type_index;
while (index != 0 && transition_types_[index].is_dst)
--index;
}
while (index != hdr.typecnt && transition_types_[index].is_dst)
++index;
if (index != hdr.typecnt)
default_transition_type_ = index;
}
// Copy all the abbreviations.
abbreviations_.assign(bp, hdr.charcnt);
bp += hdr.charcnt;
// Skip the unused portions. We've already dispensed with leap-second
// encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when
// interpreting a POSIX spec that does not include start/end rules, and
// that isn't the case here (see "zic -p").
bp += (8 + 4) * hdr.leapcnt; // leap-time + TAI-UTC
bp += 1 * hdr.ttisstdcnt; // UTC/local indicators
bp += 1 * hdr.ttisgmtcnt; // standard/wall indicators
assert(bp == tbuf.data() + tbuf.size());
future_spec_.clear();
if (tzh.tzh_version[0] != '\0') {
// Snarf up the NL-enclosed future POSIX spec. Note
// that version '3' files utilize an extended format.
auto get_char = [](ZoneInfoSource* zip) -> int {
unsigned char ch; // all non-EOF results are positive
return (zip->Read(&ch, 1) == 1) ? ch : EOF;
};
if (get_char(zip) != '\n')
return false;
for (int c = get_char(zip); c != '\n'; c = get_char(zip)) {
if (c == EOF)
return false;
future_spec_.push_back(static_cast<char>(c));
}
}
// We don't check for EOF so that we're forwards compatible.
// If we did not find version information during the standard loading
// process (as of tzh_version '3' that is unsupported), then ask the
// ZoneInfoSource for any out-of-bound version std::string it may be privy to.
if (version_.empty()) {
version_ = zip->Version();
}
// Trim redundant transitions. zic may have added these to work around
// differences between the glibc and reference implementations (see
// zic.c:dontmerge) and the Qt library (see zic.c:WORK_AROUND_QTBUG_53071).
// For us, they just get in the way when we do future_spec_ extension.
while (hdr.timecnt > 1) {
if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index,
transitions_[hdr.timecnt - 2].type_index)) {
break;
}
hdr.timecnt -= 1;
}
transitions_.resize(hdr.timecnt);
// Ensure that there is always a transition in the first half of the
// time line (the second half is handled in ExtendTransitions()) so that
// the signed difference between a civil_second and the civil_second of
// its previous transition is always representable, without overflow.
// A contemporary zic will usually have already done this for us.
if (transitions_.empty() || transitions_.front().unix_time >= 0) {
Transition& tr(*transitions_.emplace(transitions_.begin()));
tr.unix_time = -(1LL << 59); // see tz/zic.c "BIG_BANG"
tr.type_index = default_transition_type_;
hdr.timecnt += 1;
}
// Extend the transitions using the future specification.
ExtendTransitions(name, hdr);
// Compute the local civil time for each transition and the preceding
// second. These will be used for reverse conversions in MakeTime().
const TransitionType* ttp = &transition_types_[default_transition_type_];
for (std::size_t i = 0; i != transitions_.size(); ++i) {
Transition& tr(transitions_[i]);
tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1;
ttp = &transition_types_[tr.type_index];
tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs;
if (i != 0) {
// Check that the transitions are ordered by civil time. Essentially
// this means that an offset change cannot cross another such change.
// No one does this in practice, and we depend on it in MakeTime().
if (!Transition::ByCivilTime()(transitions_[i - 1], tr))
return false; // out of order
}
}
// Compute the maximum/minimum civil times that can be converted to a
// time_point<seconds> for each of the zone's transition types.
for (auto& tt : transition_types_) {
tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
}
transitions_.shrink_to_fit();
return true;
}
namespace {
// fopen(3) adaptor.
inline FILE* FOpen(const char* path, const char* mode) {
#if defined(_MSC_VER)
FILE* fp;
if (fopen_s(&fp, path, mode) != 0) fp = nullptr;
return fp;
#else
return fopen(path, mode); // TODO: Enable the close-on-exec flag.
#endif
}
// A stdio(3)-backed implementation of ZoneInfoSource.
class FileZoneInfoSource : public ZoneInfoSource {
public:
static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
std::size_t Read(void* ptr, std::size_t size) override {
size = std::min(size, len_);
std::size_t nread = fread(ptr, 1, size, fp_.get());
len_ -= nread;
return nread;
}
int Skip(std::size_t offset) override {
offset = std::min(offset, len_);
int rc = fseek(fp_.get(), static_cast<long>(offset), SEEK_CUR);
if (rc == 0) len_ -= offset;
return rc;
}
std::string Version() const override {
// TODO: It would nice if the zoneinfo data included the tzdb version.
return std::string();
}
protected:
explicit FileZoneInfoSource(
FILE* fp, std::size_t len = std::numeric_limits<std::size_t>::max())
: fp_(fp, fclose), len_(len) {}
private:
std::unique_ptr<FILE, int(*)(FILE*)> fp_;
std::size_t len_;
};
std::unique_ptr<ZoneInfoSource> FileZoneInfoSource::Open(
const std::string& name) {
// Use of the "file:" prefix is intended for testing purposes only.
if (name.compare(0, 5, "file:") == 0) return Open(name.substr(5));
// Map the time-zone name to a path name.
std::string path;
if (name.empty() || name[0] != '/') {
const char* tzdir = "/usr/share/zoneinfo";
char* tzdir_env = nullptr;
#if defined(_MSC_VER)
_dupenv_s(&tzdir_env, nullptr, "TZDIR");
#else
tzdir_env = std::getenv("TZDIR");
#endif
if (tzdir_env && *tzdir_env) tzdir = tzdir_env;
path += tzdir;
path += '/';
#if defined(_MSC_VER)
free(tzdir_env);
#endif
}
path += name;
// Open the zoneinfo file.
FILE* fp = FOpen(path.c_str(), "rb");
if (fp == nullptr) return nullptr;
std::size_t length = 0;
if (fseek(fp, 0, SEEK_END) == 0) {
long pos = ftell(fp);
if (pos >= 0) {
length = static_cast<std::size_t>(pos);
}
rewind(fp);
}
return std::unique_ptr<ZoneInfoSource>(new FileZoneInfoSource(fp, length));
}
class AndroidZoneInfoSource : public FileZoneInfoSource {
public:
static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
std::string Version() const override { return version_; }
private:
explicit AndroidZoneInfoSource(FILE* fp, std::size_t len, const char* vers)
: FileZoneInfoSource(fp, len), version_(vers) {}
std::string version_;
};
std::unique_ptr<ZoneInfoSource> AndroidZoneInfoSource::Open(
const std::string& name) {
// Use of the "file:" prefix is intended for testing purposes only.
if (name.compare(0, 5, "file:") == 0) return Open(name.substr(5));
#if defined(__ANDROID__)
// See Android's libc/tzcode/bionic.cpp for additional information.
for (const char* tzdata : {"/data/misc/zoneinfo/current/tzdata",
"/system/usr/share/zoneinfo/tzdata"}) {
std::unique_ptr<FILE, int (*)(FILE*)> fp(FOpen(tzdata, "rb"), fclose);
if (fp.get() == nullptr) continue;
char hbuf[24]; // covers header.zonetab_offset too
if (fread(hbuf, 1, sizeof(hbuf), fp.get()) != sizeof(hbuf)) continue;
if (strncmp(hbuf, "tzdata", 6) != 0) continue;
const char* vers = (hbuf[11] == '\0') ? hbuf + 6 : "";
const std::int_fast32_t index_offset = Decode32(hbuf + 12);
const std::int_fast32_t data_offset = Decode32(hbuf + 16);
if (index_offset < 0 || data_offset < index_offset) continue;
if (fseek(fp.get(), static_cast<long>(index_offset), SEEK_SET) != 0)
continue;
char ebuf[52]; // covers entry.unused too
const std::size_t index_size =
static_cast<std::size_t>(data_offset - index_offset);
const std::size_t zonecnt = index_size / sizeof(ebuf);
if (zonecnt * sizeof(ebuf) != index_size) continue;
for (std::size_t i = 0; i != zonecnt; ++i) {
if (fread(ebuf, 1, sizeof(ebuf), fp.get()) != sizeof(ebuf)) break;
const std::int_fast32_t start = data_offset + Decode32(ebuf + 40);
const std::int_fast32_t length = Decode32(ebuf + 44);
if (start < 0 || length < 0) break;
ebuf[40] = '\0'; // ensure zone name is NUL terminated
if (strcmp(name.c_str(), ebuf) == 0) {
if (fseek(fp.get(), static_cast<long>(start), SEEK_SET) != 0) break;
return std::unique_ptr<ZoneInfoSource>(new AndroidZoneInfoSource(
fp.release(), static_cast<std::size_t>(length), vers));
}
}
}
#endif // __ANDROID__
return nullptr;
}
} // namespace
bool TimeZoneInfo::Load(const std::string& name) {
// We can ensure that the loading of UTC or any other fixed-offset
// zone never fails because the simple, fixed-offset state can be
// internally generated. Note that this depends on our choice to not
// accept leap-second encoded ("right") zoneinfo.
auto offset = seconds::zero();
if (FixedOffsetFromName(name, &offset)) {
return ResetToBuiltinUTC(offset);
}
// Find and use a ZoneInfoSource to load the named zone.
auto zip = cctz_extension::zone_info_source_factory(
name, [](const std::string& name) -> std::unique_ptr<ZoneInfoSource> {
if (auto zip = FileZoneInfoSource::Open(name)) return zip;
if (auto zip = AndroidZoneInfoSource::Open(name)) return zip;
return nullptr;
});
return zip != nullptr && Load(name, zip.get());
}
// BreakTime() translation for a particular transition type.
time_zone::absolute_lookup TimeZoneInfo::LocalTime(
std::int_fast64_t unix_time, const TransitionType& tt) const {
// A civil time in "+offset" looks like (time+offset) in UTC.
// Note: We perform two additions in the civil_second domain to
// sidestep the chance of overflow in (unix_time + tt.utc_offset).
return {(civil_second() + unix_time) + tt.utc_offset,
tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]};
}
// BreakTime() translation for a particular transition.
time_zone::absolute_lookup TimeZoneInfo::LocalTime(
std::int_fast64_t unix_time, const Transition& tr) const {
const TransitionType& tt = transition_types_[tr.type_index];
// Note: (unix_time - tr.unix_time) will never overflow as we
// have ensured that there is always a "nearby" transition.
return {tr.civil_sec + (unix_time - tr.unix_time), // TODO: Optimize.
tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]};
}
// MakeTime() translation with a conversion-preserving +N * 400-year shift.
time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs,
year_t c4_shift) const {
assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_);
time_zone::civil_lookup cl = MakeTime(cs);
if (c4_shift > seconds::max().count() / kSecsPer400Years) {
cl.pre = cl.trans = cl.post = time_point<seconds>::max();
} else {
const auto offset = seconds(c4_shift * kSecsPer400Years);
const auto limit = time_point<seconds>::max() - offset;
for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) {
if (*tp > limit) {
*tp = time_point<seconds>::max();
} else {
*tp += offset;
}
}
}
return cl;
}
time_zone::absolute_lookup TimeZoneInfo::BreakTime(
const time_point<seconds>& tp) const {
std::int_fast64_t unix_time = ToUnixSeconds(tp);
const std::size_t timecnt = transitions_.size();
assert(timecnt != 0); // We always add a transition.
if (unix_time < transitions_[0].unix_time) {
return LocalTime(unix_time, transition_types_[default_transition_type_]);
}
if (unix_time >= transitions_[timecnt - 1].unix_time) {
// After the last transition. If we extended the transitions using
// future_spec_, shift back to a supported year using the 400-year
// cycle of calendaric equivalence and then compensate accordingly.
if (extended_) {
const std::int_fast64_t diff =
unix_time - transitions_[timecnt - 1].unix_time;
const year_t shift = diff / kSecsPer400Years + 1;
const auto d = seconds(shift * kSecsPer400Years);
time_zone::absolute_lookup al = BreakTime(tp - d);
al.cs = YearShift(al.cs, shift * 400);
return al;
}
return LocalTime(unix_time, transitions_[timecnt - 1]);
}
const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed);
if (0 < hint && hint < timecnt) {
if (transitions_[hint - 1].unix_time <= unix_time) {
if (unix_time < transitions_[hint].unix_time) {
return LocalTime(unix_time, transitions_[hint - 1]);
}
}
}
const Transition target = {unix_time, 0, civil_second(), civil_second()};
const Transition* begin = &transitions_[0];
const Transition* tr = std::upper_bound(begin, begin + timecnt, target,
Transition::ByUnixTime());
local_time_hint_.store(static_cast<std::size_t>(tr - begin),
std::memory_order_relaxed);
return LocalTime(unix_time, *--tr);
}
time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const {
const std::size_t timecnt = transitions_.size();
assert(timecnt != 0); // We always add a transition.
// Find the first transition after our target civil time.
const Transition* tr = nullptr;
const Transition* begin = &transitions_[0];
const Transition* end = begin + timecnt;
if (cs < begin->civil_sec) {
tr = begin;
} else if (cs >= transitions_[timecnt - 1].civil_sec) {
tr = end;
} else {
const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed);
if (0 < hint && hint < timecnt) {
if (transitions_[hint - 1].civil_sec <= cs) {
if (cs < transitions_[hint].civil_sec) {
tr = begin + hint;
}
}
}
if (tr == nullptr) {
const Transition target = {0, 0, cs, civil_second()};
tr = std::upper_bound(begin, end, target, Transition::ByCivilTime());
time_local_hint_.store(static_cast<std::size_t>(tr - begin),
std::memory_order_relaxed);
}
}
if (tr == begin) {
if (tr->prev_civil_sec >= cs) {
// Before first transition, so use the default offset.
const TransitionType& tt(transition_types_[default_transition_type_]);
if (cs < tt.civil_min) return MakeUnique(time_point<seconds>::min());
return MakeUnique(cs - (civil_second() + tt.utc_offset));
}
// tr->prev_civil_sec < cs < tr->civil_sec
return MakeSkipped(*tr, cs);
}
if (tr == end) {
if (cs > (--tr)->prev_civil_sec) {
// After the last transition. If we extended the transitions using
// future_spec_, shift back to a supported year using the 400-year
// cycle of calendaric equivalence and then compensate accordingly.
if (extended_ && cs.year() > last_year_) {
const year_t shift = (cs.year() - last_year_ - 1) / 400 + 1;
return TimeLocal(YearShift(cs, shift * -400), shift);
}
const TransitionType& tt(transition_types_[tr->type_index]);
if (cs > tt.civil_max) return MakeUnique(time_point<seconds>::max());
return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
}
// tr->civil_sec <= cs <= tr->prev_civil_sec
return MakeRepeated(*tr, cs);
}
if (tr->prev_civil_sec < cs) {
// tr->prev_civil_sec < cs < tr->civil_sec
return MakeSkipped(*tr, cs);
}
if (cs <= (--tr)->prev_civil_sec) {
// tr->civil_sec <= cs <= tr->prev_civil_sec
return MakeRepeated(*tr, cs);
}
// In between transitions.
return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
}
std::string TimeZoneInfo::Version() const {
return version_;
}
std::string TimeZoneInfo::Description() const {
std::ostringstream oss;
oss << "#trans=" << transitions_.size();
oss << " #types=" << transition_types_.size();
oss << " spec='" << future_spec_ << "'";
return oss.str();
}
bool TimeZoneInfo::NextTransition(const time_point<seconds>& tp,
time_zone::civil_transition* trans) const {
if (transitions_.empty()) return false;
const Transition* begin = &transitions_[0];
const Transition* end = begin + transitions_.size();
if (begin->unix_time <= -(1LL << 59)) {
// Do not report the BIG_BANG found in recent zoneinfo data as it is
// really a sentinel, not a transition. See tz/zic.c.
++begin;
}
std::int_fast64_t unix_time = ToUnixSeconds(tp);
const Transition target = { unix_time };
const Transition* tr = std::upper_bound(begin, end, target,
Transition::ByUnixTime());
for (; tr != end; ++tr) { // skip no-op transitions
std::uint_fast8_t prev_type_index =
(tr == begin) ? default_transition_type_ : tr[-1].type_index;
if (!EquivTransitions(prev_type_index, tr[0].type_index)) break;
}
// When tr == end we return false, ignoring future_spec_.
if (tr == end) return false;
trans->from = tr->prev_civil_sec + 1;
trans->to = tr->civil_sec;
return true;
}
bool TimeZoneInfo::PrevTransition(const time_point<seconds>& tp,
time_zone::civil_transition* trans) const {
if (transitions_.empty()) return false;
const Transition* begin = &transitions_[0];
const Transition* end = begin + transitions_.size();
if (begin->unix_time <= -(1LL << 59)) {
// Do not report the BIG_BANG found in recent zoneinfo data as it is
// really a sentinel, not a transition. See tz/zic.c.
++begin;
}
std::int_fast64_t unix_time = ToUnixSeconds(tp);
if (FromUnixSeconds(unix_time) != tp) {
if (unix_time == std::numeric_limits<std::int_fast64_t>::max()) {
if (end == begin) return false; // Ignore future_spec_.
trans->from = (--end)->prev_civil_sec + 1;
trans->to = end->civil_sec;
return true;
}
unix_time += 1; // ceils
}
const Transition target = { unix_time };
const Transition* tr = std::lower_bound(begin, end, target,
Transition::ByUnixTime());
for (; tr != begin; --tr) { // skip no-op transitions
std::uint_fast8_t prev_type_index =
(tr - 1 == begin) ? default_transition_type_ : tr[-2].type_index;
if (!EquivTransitions(prev_type_index, tr[-1].type_index)) break;
}
// When tr == end we return the "last" transition, ignoring future_spec_.
if (tr == begin) return false;
trans->from = (--tr)->prev_civil_sec + 1;
trans->to = tr->civil_sec;
return true;
}
} // namespace cctz
} // namespace time_internal
} // namespace absl