about summary refs log blame commit diff
path: root/absl/synchronization/mutex.cc
blob: 76bd307a4d415245d089e2e42d8b2b81469ab9a4 (plain) (tree)
1
2
3
4
5
6
7
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589





                                                                   
                                                   






                                                                           






























                                           
                                        




                                               

                                      
                                     




























































                                                                                  

                                                      


               



                                                                           































                                                                               
                                           






                                             
                                            









































































                                                                           




                                                                  


                                          







                            













                                                              
  
 







                                                                       
























                                                                               
                                     








                                                                                

                                                                      









                                                                    
                                                  








































                                                                            

                                                                              



















                                                                                

                                                                      



























                                                                               



















                                                                              











































































































































































































































































                                                                                











                                                     
                                                         





















































































































































































                                                                                








                                                                             

































































































































































































                                                                               
                                                            























































































































































































































































































































































































































































































                                                                                
                                                                              
















































































































































































                                                                              

                                                                     




                                                                            



                                                                     






                                                                               
                                               
                       



                                                                             



                                                                           


                                            
                       
                                          


                                                      

                               












































                                                                                

                                                                          
















                                                                           

                                                                         

 

                                                                         











                                                                            
                                  





































                                                                               

                                                                  









































                                                                             

                                                                    


















































                                                                                
                                                                               






























































































































































































































































































































































































































































































































































































                                                                                 
                                         



























                                                                           
                                              




                           
                                          


                            
                                         

























                                                                               
                                              




                                                                
                                          




























































                                                                               
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/synchronization/mutex.h"

#ifdef _WIN32
#include <windows.h>
#ifdef ERROR
#undef ERROR
#endif
#else
#include <fcntl.h>
#include <pthread.h>
#include <sched.h>
#include <sys/time.h>
#endif

#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#include <algorithm>
#include <atomic>
#include <cinttypes>
#include <thread>  // NOLINT(build/c++11)

#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/atomic_hook.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/hide_ptr.h"
#include "absl/base/internal/low_level_alloc.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/internal/sysinfo.h"
#include "absl/base/internal/thread_identity.h"
#include "absl/base/port.h"
#include "absl/debugging/stacktrace.h"
#include "absl/debugging/symbolize.h"
#include "absl/synchronization/internal/graphcycles.h"
#include "absl/synchronization/internal/per_thread_sem.h"
#include "absl/time/time.h"

using absl::base_internal::CurrentThreadIdentityIfPresent;
using absl::base_internal::PerThreadSynch;
using absl::base_internal::ThreadIdentity;
using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
using absl::synchronization_internal::GraphCycles;
using absl::synchronization_internal::GraphId;
using absl::synchronization_internal::InvalidGraphId;
using absl::synchronization_internal::KernelTimeout;
using absl::synchronization_internal::PerThreadSem;

extern "C" {
ABSL_ATTRIBUTE_WEAK void AbslInternalMutexYield() { std::this_thread::yield(); }
}  // extern "C"

namespace absl {

namespace {

#if defined(THREAD_SANITIZER)
constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
#else
constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
#endif

ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
    kDeadlockDetectionDefault);
ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);

// ------------------------------------------ spinlock support

// Make sure read-only globals used in the Mutex code are contained on the
// same cacheline and cacheline aligned to eliminate any false sharing with
// other globals from this and other modules.
static struct MutexGlobals {
  MutexGlobals() {
    // Find machine-specific data needed for Delay() and
    // TryAcquireWithSpinning(). This runs in the global constructor
    // sequence, and before that zeros are safe values.
    num_cpus = absl::base_internal::NumCPUs();
    spinloop_iterations = num_cpus > 1 ? 1500 : 0;
  }
  int num_cpus;
  int spinloop_iterations;
  // Pad this struct to a full cacheline to prevent false sharing.
  char padding[ABSL_CACHELINE_SIZE - 2 * sizeof(int)];
} ABSL_CACHELINE_ALIGNED mutex_globals;
static_assert(
    sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE,
    "MutexGlobals must occupy an entire cacheline to prevent false sharing");

ABSL_CONST_INIT absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
    submit_profile_data;
ABSL_CONST_INIT absl::base_internal::AtomicHook<
    void (*)(const char *msg, const void *obj, int64_t wait_cycles)> mutex_tracer;
ABSL_CONST_INIT absl::base_internal::AtomicHook<
    void (*)(const char *msg, const void *cv)> cond_var_tracer;
ABSL_CONST_INIT absl::base_internal::AtomicHook<
    bool (*)(const void *pc, char *out, int out_size)>
    symbolizer(absl::Symbolize);

}  // namespace

static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
                                          bool locking, bool trylock,
                                          bool read_lock);

void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) {
  submit_profile_data.Store(fn);
}

void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
                                    int64_t wait_cycles)) {
  mutex_tracer.Store(fn);
}

void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) {
  cond_var_tracer.Store(fn);
}

void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) {
  symbolizer.Store(fn);
}

// spinlock delay on iteration c.  Returns new c.
namespace {
  enum DelayMode { AGGRESSIVE, GENTLE };
};
static int Delay(int32_t c, DelayMode mode) {
  // If this a uniprocessor, only yield/sleep.  Otherwise, if the mode is
  // aggressive then spin many times before yielding.  If the mode is
  // gentle then spin only a few times before yielding.  Aggressive spinning is
  // used to ensure that an Unlock() call, which  must get the spin lock for
  // any thread to make progress gets it without undue delay.
  int32_t limit = (mutex_globals.num_cpus > 1) ?
      ((mode == AGGRESSIVE) ? 5000 : 250) : 0;
  if (c < limit) {
    c++;               // spin
  } else {
    ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0);
    if (c == limit) {  // yield once
      AbslInternalMutexYield();
      c++;
    } else {           // then wait
      absl::SleepFor(absl::Microseconds(10));
      c = 0;
    }
    ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0);
  }
  return (c);
}

// --------------------------Generic atomic ops
// Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
// "*pv | bits" if necessary.  Wait until (*pv & wait_until_clear)==0
// before making any change.
// This is used to set flags in mutex and condition variable words.
static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
                          intptr_t wait_until_clear) {
  intptr_t v;
  do {
    v = pv->load(std::memory_order_relaxed);
  } while ((v & bits) != bits &&
           ((v & wait_until_clear) != 0 ||
            !pv->compare_exchange_weak(v, v | bits,
                                       std::memory_order_release,
                                       std::memory_order_relaxed)));
}

// Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to
// "*pv & ~bits" if necessary.  Wait until (*pv & wait_until_clear)==0
// before making any change.
// This is used to unset flags in mutex and condition variable words.
static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits,
                            intptr_t wait_until_clear) {
  intptr_t v;
  do {
    v = pv->load(std::memory_order_relaxed);
  } while ((v & bits) != 0 &&
           ((v & wait_until_clear) != 0 ||
            !pv->compare_exchange_weak(v, v & ~bits,
                                       std::memory_order_release,
                                       std::memory_order_relaxed)));
}

//------------------------------------------------------------------

// Data for doing deadlock detection.
static absl::base_internal::SpinLock deadlock_graph_mu(
    absl::base_internal::kLinkerInitialized);

// graph used to detect deadlocks.
static GraphCycles *deadlock_graph GUARDED_BY(deadlock_graph_mu)
    PT_GUARDED_BY(deadlock_graph_mu);

//------------------------------------------------------------------
// An event mechanism for debugging mutex use.
// It also allows mutexes to be given names for those who can't handle
// addresses, and instead like to give their data structures names like
// "Henry", "Fido", or "Rupert IV, King of Yondavia".

namespace {  // to prevent name pollution
enum {       // Mutex and CondVar events passed as "ev" to PostSynchEvent
             // Mutex events
  SYNCH_EV_TRYLOCK_SUCCESS,
  SYNCH_EV_TRYLOCK_FAILED,
  SYNCH_EV_READERTRYLOCK_SUCCESS,
  SYNCH_EV_READERTRYLOCK_FAILED,
  SYNCH_EV_LOCK,
  SYNCH_EV_LOCK_RETURNING,
  SYNCH_EV_READERLOCK,
  SYNCH_EV_READERLOCK_RETURNING,
  SYNCH_EV_UNLOCK,
  SYNCH_EV_READERUNLOCK,

  // CondVar events
  SYNCH_EV_WAIT,
  SYNCH_EV_WAIT_RETURNING,
  SYNCH_EV_SIGNAL,
  SYNCH_EV_SIGNALALL,
};

enum {                    // Event flags
  SYNCH_F_R = 0x01,       // reader event
  SYNCH_F_LCK = 0x02,     // PostSynchEvent called with mutex held
  SYNCH_F_TRY = 0x04,     // TryLock or ReaderTryLock
  SYNCH_F_UNLOCK = 0x08,  // Unlock or ReaderUnlock

  SYNCH_F_LCK_W = SYNCH_F_LCK,
  SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
};
}  // anonymous namespace

// Properties of the events.
static const struct {
  int flags;
  const char *msg;
} event_properties[] = {
    {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "},
    {0, "TryLock failed "},
    {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "},
    {0, "ReaderTryLock failed "},
    {0, "Lock blocking "},
    {SYNCH_F_LCK_W, "Lock returning "},
    {0, "ReaderLock blocking "},
    {SYNCH_F_LCK_R, "ReaderLock returning "},
    {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "},
    {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "},
    {0, "Wait on "},
    {0, "Wait unblocked "},
    {0, "Signal on "},
    {0, "SignalAll on "},
};

static absl::base_internal::SpinLock synch_event_mu(
    absl::base_internal::kLinkerInitialized);
// protects synch_event

// Hash table size; should be prime > 2.
// Can't be too small, as it's used for deadlock detection information.
static const uint32_t kNSynchEvent = 1031;

static struct SynchEvent {     // this is a trivial hash table for the events
  // struct is freed when refcount reaches 0
  int refcount GUARDED_BY(synch_event_mu);

  // buckets have linear, 0-terminated  chains
  SynchEvent *next GUARDED_BY(synch_event_mu);

  // Constant after initialization
  uintptr_t masked_addr;  // object at this address is called "name"

  // No explicit synchronization used.  Instead we assume that the
  // client who enables/disables invariants/logging on a Mutex does so
  // while the Mutex is not being concurrently accessed by others.
  void (*invariant)(void *arg);  // called on each event
  void *arg;            // first arg to (*invariant)()
  bool log;             // logging turned on

  // Constant after initialization
  char name[1];         // actually longer---null-terminated std::string
} *synch_event[kNSynchEvent] GUARDED_BY(synch_event_mu);

// Ensure that the object at "addr" has a SynchEvent struct associated with it,
// set "bits" in the word there (waiting until lockbit is clear before doing
// so), and return a refcounted reference that will remain valid until
// UnrefSynchEvent() is called.  If a new SynchEvent is allocated,
// the string name is copied into it.
// When used with a mutex, the caller should also ensure that kMuEvent
// is set in the mutex word, and similarly for condition variables and kCVEvent.
static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr,
                                    const char *name, intptr_t bits,
                                    intptr_t lockbit) {
  uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
  SynchEvent *e;
  // first look for existing SynchEvent struct..
  synch_event_mu.Lock();
  for (e = synch_event[h];
       e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
       e = e->next) {
  }
  if (e == nullptr) {  // no SynchEvent struct found; make one.
    if (name == nullptr) {
      name = "";
    }
    size_t l = strlen(name);
    e = reinterpret_cast<SynchEvent *>(
        base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
    e->refcount = 2;    // one for return value, one for linked list
    e->masked_addr = base_internal::HidePtr(addr);
    e->invariant = nullptr;
    e->arg = nullptr;
    e->log = false;
    strcpy(e->name, name);  // NOLINT(runtime/printf)
    e->next = synch_event[h];
    AtomicSetBits(addr, bits, lockbit);
    synch_event[h] = e;
  } else {
    e->refcount++;      // for return value
  }
  synch_event_mu.Unlock();
  return e;
}

// Deallocate the SynchEvent *e, whose refcount has fallen to zero.
static void DeleteSynchEvent(SynchEvent *e) {
  base_internal::LowLevelAlloc::Free(e);
}

// Decrement the reference count of *e, or do nothing if e==null.
static void UnrefSynchEvent(SynchEvent *e) {
  if (e != nullptr) {
    synch_event_mu.Lock();
    bool del = (--(e->refcount) == 0);
    synch_event_mu.Unlock();
    if (del) {
      DeleteSynchEvent(e);
    }
  }
}

// Forget the mapping from the object (Mutex or CondVar) at address addr
// to SynchEvent object, and clear "bits" in its word (waiting until lockbit
// is clear before doing so).
static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits,
                             intptr_t lockbit) {
  uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
  SynchEvent **pe;
  SynchEvent *e;
  synch_event_mu.Lock();
  for (pe = &synch_event[h];
       (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr);
       pe = &e->next) {
  }
  bool del = false;
  if (e != nullptr) {
    *pe = e->next;
    del = (--(e->refcount) == 0);
  }
  AtomicClearBits(addr, bits, lockbit);
  synch_event_mu.Unlock();
  if (del) {
    DeleteSynchEvent(e);
  }
}

// Return a refcounted reference to the SynchEvent of the object at address
// "addr", if any.  The pointer returned is valid until the UnrefSynchEvent() is
// called.
static SynchEvent *GetSynchEvent(const void *addr) {
  uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
  SynchEvent *e;
  synch_event_mu.Lock();
  for (e = synch_event[h];
       e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
       e = e->next) {
  }
  if (e != nullptr) {
    e->refcount++;
  }
  synch_event_mu.Unlock();
  return e;
}

// Called when an event "ev" occurs on a Mutex of CondVar "obj"
// if event recording is on
static void PostSynchEvent(void *obj, int ev) {
  SynchEvent *e = GetSynchEvent(obj);
  // logging is on if event recording is on and either there's no event struct,
  // or it explicitly says to log
  if (e == nullptr || e->log) {
    void *pcs[40];
    int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
    // A buffer with enough space for the ASCII for all the PCs, even on a
    // 64-bit machine.
    char buffer[ABSL_ARRAYSIZE(pcs) * 24];
    int pos = snprintf(buffer, sizeof (buffer), " @");
    for (int i = 0; i != n; i++) {
      pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]);
    }
    ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
                 (e == nullptr ? "" : e->name), buffer);
  }
  const int flags = event_properties[ev].flags;
  if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) {
    // Calling the invariant as is causes problems under ThreadSanitizer.
    // We are currently inside of Mutex Lock/Unlock and are ignoring all
    // memory accesses and synchronization. If the invariant transitively
    // synchronizes something else and we ignore the synchronization, we will
    // get false positive race reports later.
    // Reuse EvalConditionAnnotated to properly call into user code.
    struct local {
      static bool pred(SynchEvent *ev) {
        (*ev->invariant)(ev->arg);
        return false;
      }
    };
    Condition cond(&local::pred, e);
    Mutex *mu = static_cast<Mutex *>(obj);
    const bool locking = (flags & SYNCH_F_UNLOCK) == 0;
    const bool trylock = (flags & SYNCH_F_TRY) != 0;
    const bool read_lock = (flags & SYNCH_F_R) != 0;
    EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock);
  }
  UnrefSynchEvent(e);
}

//------------------------------------------------------------------

// The SynchWaitParams struct encapsulates the way in which a thread is waiting:
// whether it has a timeout, the condition, exclusive/shared, and whether a
// condition variable wait has an associated Mutex (as opposed to another
// type of lock).  It also points to the PerThreadSynch struct of its thread.
// cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
//
// This structure is held on the stack rather than directly in
// PerThreadSynch because a thread can be waiting on multiple Mutexes if,
// while waiting on one Mutex, the implementation calls a client callback
// (such as a Condition function) that acquires another Mutex. We don't
// strictly need to allow this, but programmers become confused if we do not
// allow them to use functions such a LOG() within Condition functions.  The
// PerThreadSynch struct points at the most recent SynchWaitParams struct when
// the thread is on a Mutex's waiter queue.
struct SynchWaitParams {
  SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg,
                  KernelTimeout timeout_arg, Mutex *cvmu_arg,
                  PerThreadSynch *thread_arg,
                  std::atomic<intptr_t> *cv_word_arg)
      : how(how_arg),
        cond(cond_arg),
        timeout(timeout_arg),
        cvmu(cvmu_arg),
        thread(thread_arg),
        cv_word(cv_word_arg),
        contention_start_cycles(base_internal::CycleClock::Now()) {}

  const Mutex::MuHow how;  // How this thread needs to wait.
  const Condition *cond;  // The condition that this thread is waiting for.
                          // In Mutex, this field is set to zero if a timeout
                          // expires.
  KernelTimeout timeout;  // timeout expiry---absolute time
                          // In Mutex, this field is set to zero if a timeout
                          // expires.
  Mutex *const cvmu;      // used for transfer from cond var to mutex
  PerThreadSynch *const thread;  // thread that is waiting

  // If not null, thread should be enqueued on the CondVar whose state
  // word is cv_word instead of queueing normally on the Mutex.
  std::atomic<intptr_t> *cv_word;

  int64_t contention_start_cycles;  // Time (in cycles) when this thread started
                                  // to contend for the mutex.
};

struct SynchLocksHeld {
  int n;              // number of valid entries in locks[]
  bool overflow;      // true iff we overflowed the array at some point
  struct {
    Mutex *mu;        // lock acquired
    int32_t count;      // times acquired
    GraphId id;       // deadlock_graph id of acquired lock
  } locks[40];
  // If a thread overfills the array during deadlock detection, we
  // continue, discarding information as needed.  If no overflow has
  // taken place, we can provide more error checking, such as
  // detecting when a thread releases a lock it does not hold.
};

// A sentinel value in lists that is not 0.
// A 0 value is used to mean "not on a list".
static PerThreadSynch *const kPerThreadSynchNull =
  reinterpret_cast<PerThreadSynch *>(1);

static SynchLocksHeld *LocksHeldAlloc() {
  SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>(
      base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
  ret->n = 0;
  ret->overflow = false;
  return ret;
}

// Return the PerThreadSynch-struct for this thread.
static PerThreadSynch *Synch_GetPerThread() {
  ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity();
  return &identity->per_thread_synch;
}

static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) {
  if (mu) {
    ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
  }
  PerThreadSynch *w = Synch_GetPerThread();
  if (mu) {
    ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
  }
  return w;
}

static SynchLocksHeld *Synch_GetAllLocks() {
  PerThreadSynch *s = Synch_GetPerThread();
  if (s->all_locks == nullptr) {
    s->all_locks = LocksHeldAlloc();  // Freed by ReclaimThreadIdentity.
  }
  return s->all_locks;
}

// Post on "w"'s associated PerThreadSem.
inline void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) {
  if (mu) {
    ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
  }
  PerThreadSem::Post(w->thread_identity());
  if (mu) {
    ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
  }
}

// Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) {
  if (mu) {
    ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
  }
  assert(w == Synch_GetPerThread());
  static_cast<void>(w);
  bool res = PerThreadSem::Wait(t);
  if (mu) {
    ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
  }
  return res;
}

// We're in a fatal signal handler that hopes to use Mutex and to get
// lucky by not deadlocking.  We try to improve its chances of success
// by effectively disabling some of the consistency checks.  This will
// prevent certain ABSL_RAW_CHECK() statements from being triggered when
// re-rentry is detected.  The ABSL_RAW_CHECK() statements are those in the
// Mutex code checking that the "waitp" field has not been reused.
void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
  // Fix the per-thread state only if it exists.
  ThreadIdentity *identity = CurrentThreadIdentityIfPresent();
  if (identity != nullptr) {
    identity->per_thread_synch.suppress_fatal_errors = true;
  }
  // Don't do deadlock detection when we are already failing.
  synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
                                 std::memory_order_release);
}

// --------------------------time support

// Return the current time plus the timeout.  Use the same clock as
// PerThreadSem::Wait() for consistency.  Unfortunately, we don't have
// such a choice when a deadline is given directly.
static absl::Time DeadlineFromTimeout(absl::Duration timeout) {
#ifndef _WIN32
  struct timeval tv;
  gettimeofday(&tv, nullptr);
  return absl::TimeFromTimeval(tv) + timeout;
#else
  return absl::Now() + timeout;
#endif
}

// --------------------------Mutexes

// In the layout below, the msb of the bottom byte is currently unused.  Also,
// the following constraints were considered in choosing the layout:
//  o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
//    0xcd) are illegal: reader and writer lock both held.
//  o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
//    bit-twiddling trick in Mutex::Unlock().
//  o kMuWriter / kMuReader == kMuWrWait / kMuWait,
//    to enable the bit-twiddling trick in CheckForMutexCorruption().
static const intptr_t kMuReader      = 0x0001L;  // a reader holds the lock
static const intptr_t kMuDesig       = 0x0002L;  // there's a designated waker
static const intptr_t kMuWait        = 0x0004L;  // threads are waiting
static const intptr_t kMuWriter      = 0x0008L;  // a writer holds the lock
static const intptr_t kMuEvent       = 0x0010L;  // record this mutex's events
// INVARIANT1:  there's a thread that was blocked on the mutex, is
// no longer, yet has not yet acquired the mutex.  If there's a
// designated waker, all threads can avoid taking the slow path in
// unlock because the designated waker will subsequently acquire
// the lock and wake someone.  To maintain INVARIANT1 the bit is
// set when a thread is unblocked(INV1a), and threads that were
// unblocked reset the bit when they either acquire or re-block
// (INV1b).
static const intptr_t kMuWrWait      = 0x0020L;  // runnable writer is waiting
                                                 // for a reader
static const intptr_t kMuSpin        = 0x0040L;  // spinlock protects wait list
static const intptr_t kMuLow         = 0x00ffL;  // mask all mutex bits
static const intptr_t kMuHigh        = ~kMuLow;  // mask pointer/reader count

// Hack to make constant values available to gdb pretty printer
enum {
  kGdbMuSpin = kMuSpin,
  kGdbMuEvent = kMuEvent,
  kGdbMuWait = kMuWait,
  kGdbMuWriter = kMuWriter,
  kGdbMuDesig = kMuDesig,
  kGdbMuWrWait = kMuWrWait,
  kGdbMuReader = kMuReader,
  kGdbMuLow = kMuLow,
};

// kMuWrWait implies kMuWait.
// kMuReader and kMuWriter are mutually exclusive.
// If kMuReader is zero, there are no readers.
// Otherwise, if kMuWait is zero, the high order bits contain a count of the
// number of readers.  Otherwise, the reader count is held in
// PerThreadSynch::readers of the most recently queued waiter, again in the
// bits above kMuLow.
static const intptr_t kMuOne = 0x0100;  // a count of one reader

// flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
static const int kMuHasBlocked = 0x01;  // already blocked (MUST == 1)
static const int kMuIsCond = 0x02;      // conditional waiter (CV or Condition)

static_assert(PerThreadSynch::kAlignment > kMuLow,
              "PerThreadSynch::kAlignment must be greater than kMuLow");

// This struct contains various bitmasks to be used in
// acquiring and releasing a mutex in a particular mode.
struct MuHowS {
  // if all the bits in fast_need_zero are zero, the lock can be acquired by
  // adding fast_add and oring fast_or.  The bit kMuDesig should be reset iff
  // this is the designated waker.
  intptr_t fast_need_zero;
  intptr_t fast_or;
  intptr_t fast_add;

  intptr_t slow_need_zero;  // fast_need_zero with events (e.g. logging)

  intptr_t slow_inc_need_zero;  // if all the bits in slow_inc_need_zero are
                                // zero a reader can acquire a read share by
                                // setting the reader bit and incrementing
                                // the reader count (in last waiter since
                                // we're now slow-path).  kMuWrWait be may
                                // be ignored if we already waited once.
};

static const MuHowS kSharedS = {
    // shared or read lock
    kMuWriter | kMuWait | kMuEvent,   // fast_need_zero
    kMuReader,                        // fast_or
    kMuOne,                           // fast_add
    kMuWriter | kMuWait,              // slow_need_zero
    kMuSpin | kMuWriter | kMuWrWait,  // slow_inc_need_zero
};
static const MuHowS kExclusiveS = {
    // exclusive or write lock
    kMuWriter | kMuReader | kMuEvent,  // fast_need_zero
    kMuWriter,                         // fast_or
    0,                                 // fast_add
    kMuWriter | kMuReader,             // slow_need_zero
    ~static_cast<intptr_t>(0),         // slow_inc_need_zero
};
static const Mutex::MuHow kShared = &kSharedS;        // shared lock
static const Mutex::MuHow kExclusive = &kExclusiveS;  // exclusive lock

#ifdef NDEBUG
static constexpr bool kDebugMode = false;
#else
static constexpr bool kDebugMode = true;
#endif

#ifdef THREAD_SANITIZER
static unsigned TsanFlags(Mutex::MuHow how) {
  return how == kShared ? __tsan_mutex_read_lock : 0;
}
#endif

static bool DebugOnlyIsExiting() {
  return false;
}

Mutex::~Mutex() {
  intptr_t v = mu_.load(std::memory_order_relaxed);
  if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) {
    ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin);
  }
  if (kDebugMode) {
    this->ForgetDeadlockInfo();
  }
  ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static);
}

void Mutex::EnableDebugLog(const char *name) {
  SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
  e->log = true;
  UnrefSynchEvent(e);
}

void EnableMutexInvariantDebugging(bool enabled) {
  synch_check_invariants.store(enabled, std::memory_order_release);
}

void Mutex::EnableInvariantDebugging(void (*invariant)(void *),
                                     void *arg) {
  if (synch_check_invariants.load(std::memory_order_acquire) &&
      invariant != nullptr) {
    SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
    e->invariant = invariant;
    e->arg = arg;
    UnrefSynchEvent(e);
  }
}

void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
  synch_deadlock_detection.store(mode, std::memory_order_release);
}

// Return true iff threads x and y are waiting on the same condition for the
// same type of lock.  Requires that x and y be waiting on the same Mutex
// queue.
static bool MuSameCondition(PerThreadSynch *x, PerThreadSynch *y) {
  return x->waitp->how == y->waitp->how &&
         Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
}

// Given the contents of a mutex word containing a PerThreadSynch pointer,
// return the pointer.
static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) {
  return reinterpret_cast<PerThreadSynch *>(v & kMuHigh);
}

// The next several routines maintain the per-thread next and skip fields
// used in the Mutex waiter queue.
// The queue is a circular singly-linked list, of which the "head" is the
// last element, and head->next if the first element.
// The skip field has the invariant:
//   For thread x, x->skip is one of:
//     - invalid (iff x is not in a Mutex wait queue),
//     - null, or
//     - a pointer to a distinct thread waiting later in the same Mutex queue
//       such that all threads in [x, x->skip] have the same condition and
//       lock type (MuSameCondition() is true for all pairs in [x, x->skip]).
// In addition, if x->skip is  valid, (x->may_skip || x->skip == null)
//
// By the spec of MuSameCondition(), it is not necessary when removing the
// first runnable thread y from the front a Mutex queue to adjust the skip
// field of another thread x because if x->skip==y, x->skip must (have) become
// invalid before y is removed.  The function TryRemove can remove a specified
// thread from an arbitrary position in the queue whether runnable or not, so
// it fixes up skip fields that would otherwise be left dangling.
// The statement
//     if (x->may_skip && MuSameCondition(x, x->next)) { x->skip = x->next; }
// maintains the invariant provided x is not the last waiter in a Mutex queue
// The statement
//          if (x->skip != null) { x->skip = x->skip->skip; }
// maintains the invariant.

// Returns the last thread y in a mutex waiter queue such that all threads in
// [x, y] inclusive share the same condition.  Sets skip fields of some threads
// in that range to optimize future evaluation of Skip() on x values in
// the range.  Requires thread x is in a mutex waiter queue.
// The locking is unusual.  Skip() is called under these conditions:
//   - spinlock is held in call from Enqueue(), with maybe_unlocking == false
//   - Mutex is held in call from UnlockSlow() by last unlocker, with
//     maybe_unlocking == true
//   - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
//     UnlockSlow()) and TryRemove()
// These cases are mutually exclusive, so Skip() never runs concurrently
// with itself on the same Mutex.   The skip chain is used in these other places
// that cannot occur concurrently:
//   - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
//   - Dequeue() (with spinlock and Mutex held)
//   - UnlockSlow() (with spinlock and Mutex held)
// A more complex case is Enqueue()
//   - Enqueue() (with spinlock held and maybe_unlocking == false)
//               This is the first case in which Skip is called, above.
//   - Enqueue() (without spinlock held; but queue is empty and being freshly
//                formed)
//   - Enqueue() (with spinlock held and maybe_unlocking == true)
// The first case has mutual exclusion, and the second isolation through
// working on an otherwise unreachable data structure.
// In the last case, Enqueue() is required to change no skip/next pointers
// except those in the added node and the former "head" node.  This implies
// that the new node is added after head, and so must be the new head or the
// new front of the queue.
static PerThreadSynch *Skip(PerThreadSynch *x) {
  PerThreadSynch *x0 = nullptr;
  PerThreadSynch *x1 = x;
  PerThreadSynch *x2 = x->skip;
  if (x2 != nullptr) {
    // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
    // such that   x1 == x0->skip && x2 == x1->skip
    while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
      x0->skip = x2;      // short-circuit skip from x0 to x2
    }
    x->skip = x1;         // short-circuit skip from x to result
  }
  return x1;
}

// "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
// The latter is going to be removed out of order, because of a timeout.
// Check whether "ancestor" has a skip field pointing to "to_be_removed",
// and fix it if it does.
static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) {
  if (ancestor->skip == to_be_removed) {  // ancestor->skip left dangling
    if (to_be_removed->skip != nullptr) {
      ancestor->skip = to_be_removed->skip;  // can skip past to_be_removed
    } else if (ancestor->next != to_be_removed) {  // they are not adjacent
      ancestor->skip = ancestor->next;             // can skip one past ancestor
    } else {
      ancestor->skip = nullptr;  // can't skip at all
    }
  }
}

static void CondVarEnqueue(SynchWaitParams *waitp);

// Enqueue thread "waitp->thread" on a waiter queue.
// Called with mutex spinlock held if head != nullptr
// If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
// idempotent; it alters no state associated with the existing (empty)
// queue.
//
// If waitp->cv_word == nullptr, queue the thread at either the front or
// the end (according to its priority) of the circular mutex waiter queue whose
// head is "head", and return the new head.  mu is the previous mutex state,
// which contains the reader count (perhaps adjusted for the operation in
// progress) if the list was empty and a read lock held, and the holder hint if
// the list was empty and a write lock held.  (flags & kMuIsCond) indicates
// whether this thread was transferred from a CondVar or is waiting for a
// non-trivial condition.  In this case, Enqueue() never returns nullptr
//
// If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
// returned. This mechanism is used by CondVar to queue a thread on the
// condition variable queue instead of the mutex queue in implementing Wait().
// In this case, Enqueue() can return nullptr (if head==nullptr).
static PerThreadSynch *Enqueue(PerThreadSynch *head,
                               SynchWaitParams *waitp, intptr_t mu, int flags) {
  // If we have been given a cv_word, call CondVarEnqueue() and return
  // the previous head of the Mutex waiter queue.
  if (waitp->cv_word != nullptr) {
    CondVarEnqueue(waitp);
    return head;
  }

  PerThreadSynch *s = waitp->thread;
  ABSL_RAW_CHECK(
      s->waitp == nullptr ||    // normal case
          s->waitp == waitp ||  // Fer()---transfer from condition variable
          s->suppress_fatal_errors,
      "detected illegal recursion into Mutex code");
  s->waitp = waitp;
  s->skip = nullptr;             // maintain skip invariant (see above)
  s->may_skip = true;            // always true on entering queue
  s->wake = false;               // not being woken
  s->cond_waiter = ((flags & kMuIsCond) != 0);
  if (head == nullptr) {         // s is the only waiter
    s->next = s;                 // it's the only entry in the cycle
    s->readers = mu;             // reader count is from mu word
    s->maybe_unlocking = false;  // no one is searching an empty list
    head = s;                    // s is new head
  } else {
    PerThreadSynch *enqueue_after = nullptr;  // we'll put s after this element
#ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
    int64_t now_cycles = base_internal::CycleClock::Now();
    if (s->next_priority_read_cycles < now_cycles) {
      // Every so often, update our idea of the thread's priority.
      // pthread_getschedparam() is 5% of the block/wakeup time;
      // base_internal::CycleClock::Now() is 0.5%.
      int policy;
      struct sched_param param;
      const int err = pthread_getschedparam(pthread_self(), &policy, &param);
      if (err != 0) {
        ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err);
      } else {
        s->priority = param.sched_priority;
        s->next_priority_read_cycles =
            now_cycles +
            static_cast<int64_t>(base_internal::CycleClock::Frequency());
      }
    }
    if (s->priority > head->priority) {  // s's priority is above head's
      // try to put s in priority-fifo order, or failing that at the front.
      if (!head->maybe_unlocking) {
        // No unlocker can be scanning the queue, so we can insert between
        // skip-chains, and within a skip-chain if it has the same condition as
        // s.  We insert in priority-fifo order, examining the end of every
        // skip-chain, plus every element with the same condition as s.
        PerThreadSynch *advance_to = head;    // next value of enqueue_after
        PerThreadSynch *cur;                  // successor of enqueue_after
        do {
          enqueue_after = advance_to;
          cur = enqueue_after->next;  // this advance ensures progress
          advance_to = Skip(cur);   // normally, advance to end of skip chain
                                    // (side-effect: optimizes skip chain)
          if (advance_to != cur && s->priority > advance_to->priority &&
              MuSameCondition(s, cur)) {
            // but this skip chain is not a singleton, s has higher priority
            // than its tail and has the same condition as the chain,
            // so we can insert within the skip-chain
            advance_to = cur;         // advance by just one
          }
        } while (s->priority <= advance_to->priority);
              // termination guaranteed because s->priority > head->priority
              // and head is the end of a skip chain
      } else if (waitp->how == kExclusive &&
                 Condition::GuaranteedEqual(waitp->cond, nullptr)) {
        // An unlocker could be scanning the queue, but we know it will recheck
        // the queue front for writers that have no condition, which is what s
        // is, so an insert at front is safe.
        enqueue_after = head;       // add after head, at front
      }
    }
#endif
    if (enqueue_after != nullptr) {
      s->next = enqueue_after->next;
      enqueue_after->next = s;

      // enqueue_after can be: head, Skip(...), or cur.
      // The first two imply enqueue_after->skip == nullptr, and
      // the last is used only if MuSameCondition(s, cur).
      // We require this because clearing enqueue_after->skip
      // is impossible; enqueue_after's predecessors might also
      // incorrectly skip over s if we were to allow other
      // insertion points.
      ABSL_RAW_CHECK(
          enqueue_after->skip == nullptr || MuSameCondition(enqueue_after, s),
          "Mutex Enqueue failure");

      if (enqueue_after != head && enqueue_after->may_skip &&
          MuSameCondition(enqueue_after, enqueue_after->next)) {
        // enqueue_after can skip to its new successor, s
        enqueue_after->skip = enqueue_after->next;
      }
      if (MuSameCondition(s, s->next)) {  // s->may_skip is known to be true
        s->skip = s->next;                // s may skip to its successor
      }
    } else {   // enqueue not done any other way, so
               // we're inserting s at the back
      // s will become new head; copy data from head into it
      s->next = head->next;        // add s after head
      head->next = s;
      s->readers = head->readers;  // reader count is from previous head
      s->maybe_unlocking = head->maybe_unlocking;  // same for unlock hint
      if (head->may_skip && MuSameCondition(head, s)) {
        // head now has successor; may skip
        head->skip = s;
      }
      head = s;  // s is new head
    }
  }
  s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
  return head;
}

// Dequeue the successor pw->next of thread pw from the Mutex waiter queue
// whose last element is head.  The new head element is returned, or null
// if the list is made empty.
// Dequeue is called with both spinlock and Mutex held.
static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) {
  PerThreadSynch *w = pw->next;
  pw->next = w->next;         // snip w out of list
  if (head == w) {            // we removed the head
    head = (pw == w) ? nullptr : pw;  // either emptied list, or pw is new head
  } else if (pw != head && MuSameCondition(pw, pw->next)) {
    // pw can skip to its new successor
    if (pw->next->skip !=
        nullptr) {  // either skip to its successors skip target
      pw->skip = pw->next->skip;
    } else {                   // or to pw's successor
      pw->skip = pw->next;
    }
  }
  return head;
}

// Traverse the elements [ pw->next, h] of the circular list whose last element
// is head.
// Remove all elements with wake==true and place them in the
// singly-linked list wake_list in the order found.   Assumes that
// there is only one such element if the element has how == kExclusive.
// Return the new head.
static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head,
                                          PerThreadSynch *pw,
                                          PerThreadSynch **wake_tail) {
  PerThreadSynch *orig_h = head;
  PerThreadSynch *w = pw->next;
  bool skipped = false;
  do {
    if (w->wake) {                    // remove this element
      ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
      // we're removing pw's successor so either pw->skip is zero or we should
      // already have removed pw since if pw->skip!=null, pw has the same
      // condition as w.
      head = Dequeue(head, pw);
      w->next = *wake_tail;           // keep list terminated
      *wake_tail = w;                 // add w to wake_list;
      wake_tail = &w->next;           // next addition to end
      if (w->waitp->how == kExclusive) {  // wake at most 1 writer
        break;
      }
    } else {                // not waking this one; skip
      pw = Skip(w);       // skip as much as possible
      skipped = true;
    }
    w = pw->next;
    // We want to stop processing after we've considered the original head,
    // orig_h.  We can't test for w==orig_h in the loop because w may skip over
    // it; we are guaranteed only that w's predecessor will not skip over
    // orig_h.  When we've considered orig_h, either we've processed it and
    // removed it (so orig_h != head), or we considered it and skipped it (so
    // skipped==true && pw == head because skipping from head always skips by
    // just one, leaving pw pointing at head).  So we want to
    // continue the loop with the negation of that expression.
  } while (orig_h == head && (pw != head || !skipped));
  return head;
}

// Try to remove thread s from the list of waiters on this mutex.
// Does nothing if s is not on the waiter list.
void Mutex::TryRemove(PerThreadSynch *s) {
  intptr_t v = mu_.load(std::memory_order_relaxed);
  // acquire spinlock & lock
  if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
      mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
                                  std::memory_order_acquire,
                                  std::memory_order_relaxed)) {
    PerThreadSynch *h = GetPerThreadSynch(v);
    if (h != nullptr) {
      PerThreadSynch *pw = h;   // pw is w's predecessor
      PerThreadSynch *w;
      if ((w = pw->next) != s) {  // search for thread,
        do {                      // processing at least one element
          if (!MuSameCondition(s, w)) {  // seeking different condition
            pw = Skip(w);                // so skip all that won't match
            // we don't have to worry about dangling skip fields
            // in the threads we skipped; none can point to s
            // because their condition differs from s
          } else {          // seeking same condition
            FixSkip(w, s);  // fix up any skip pointer from w to s
            pw = w;
          }
          // don't search further if we found the thread, or we're about to
          // process the first thread again.
        } while ((w = pw->next) != s && pw != h);
      }
      if (w == s) {                 // found thread; remove it
        // pw->skip may be non-zero here; the loop above ensured that
        // no ancestor of s can skip to s, so removal is safe anyway.
        h = Dequeue(h, pw);
        s->next = nullptr;
        s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
      }
    }
    intptr_t nv;
    do {                        // release spinlock and lock
      v = mu_.load(std::memory_order_relaxed);
      nv = v & (kMuDesig | kMuEvent);
      if (h != nullptr) {
        nv |= kMuWait | reinterpret_cast<intptr_t>(h);
        h->readers = 0;            // we hold writer lock
        h->maybe_unlocking = false;  // finished unlocking
      }
    } while (!mu_.compare_exchange_weak(v, nv,
                                        std::memory_order_release,
                                        std::memory_order_relaxed));
  }
}

// Wait until thread "s", which must be the current thread, is removed from the
// this mutex's waiter queue.  If "s->waitp->timeout" has a timeout, wake up
// if the wait extends past the absolute time specified, even if "s" is still
// on the mutex queue.  In this case, remove "s" from the queue and return
// true, otherwise return false.
ABSL_XRAY_LOG_ARGS(1) void Mutex::Block(PerThreadSynch *s) {
  while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
    if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
      // After a timeout, we go into a spin loop until we remove ourselves
      // from the queue, or someone else removes us.  We can't be sure to be
      // able to remove ourselves in a single lock acquisition because this
      // mutex may be held, and the holder has the right to read the centre
      // of the waiter queue without holding the spinlock.
      this->TryRemove(s);
      int c = 0;
      while (s->next != nullptr) {
        c = Delay(c, GENTLE);
        this->TryRemove(s);
      }
      if (kDebugMode) {
        // This ensures that we test the case that TryRemove() is called when s
        // is not on the queue.
        this->TryRemove(s);
      }
      s->waitp->timeout = KernelTimeout::Never();      // timeout is satisfied
      s->waitp->cond = nullptr;  // condition no longer relevant for wakeups
    }
  }
  ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
                 "detected illegal recursion in Mutex code");
  s->waitp = nullptr;
}

// Wake thread w, and return the next thread in the list.
PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) {
  PerThreadSynch *next = w->next;
  w->next = nullptr;
  w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
  IncrementSynchSem(this, w);

  return next;
}

static GraphId GetGraphIdLocked(Mutex *mu)
    EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
  if (!deadlock_graph) {  // (re)create the deadlock graph.
    deadlock_graph =
        new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
            GraphCycles;
  }
  return deadlock_graph->GetId(mu);
}

static GraphId GetGraphId(Mutex *mu) LOCKS_EXCLUDED(deadlock_graph_mu) {
  deadlock_graph_mu.Lock();
  GraphId id = GetGraphIdLocked(mu);
  deadlock_graph_mu.Unlock();
  return id;
}

// Record a lock acquisition.  This is used in debug mode for deadlock
// detection.  The held_locks pointer points to the relevant data
// structure for each case.
static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
  int n = held_locks->n;
  int i = 0;
  while (i != n && held_locks->locks[i].id != id) {
    i++;
  }
  if (i == n) {
    if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
      held_locks->overflow = true;  // lost some data
    } else {                        // we have room for lock
      held_locks->locks[i].mu = mu;
      held_locks->locks[i].count = 1;
      held_locks->locks[i].id = id;
      held_locks->n = n + 1;
    }
  } else {
    held_locks->locks[i].count++;
  }
}

// Record a lock release.  Each call to LockEnter(mu, id, x) should be
// eventually followed by a call to LockLeave(mu, id, x) by the same thread.
// It does not process the event if is not needed when deadlock detection is
// disabled.
static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
  int n = held_locks->n;
  int i = 0;
  while (i != n && held_locks->locks[i].id != id) {
    i++;
  }
  if (i == n) {
    if (!held_locks->overflow) {
      // The deadlock id may have been reassigned after ForgetDeadlockInfo,
      // but in that case mu should still be present.
      i = 0;
      while (i != n && held_locks->locks[i].mu != mu) {
        i++;
      }
      if (i == n) {  // mu missing means releasing unheld lock
        SynchEvent *mu_events = GetSynchEvent(mu);
        ABSL_RAW_LOG(FATAL,
                     "thread releasing lock it does not hold: %p %s; "
                     ,
                     static_cast<void *>(mu),
                     mu_events == nullptr ? "" : mu_events->name);
      }
    }
  } else if (held_locks->locks[i].count == 1) {
    held_locks->n = n - 1;
    held_locks->locks[i] = held_locks->locks[n - 1];
    held_locks->locks[n - 1].id = InvalidGraphId();
    held_locks->locks[n - 1].mu =
        nullptr;  // clear mu to please the leak detector.
  } else {
    assert(held_locks->locks[i].count > 0);
    held_locks->locks[i].count--;
  }
}

// Call LockEnter() if in debug mode and deadlock detection is enabled.
static inline void DebugOnlyLockEnter(Mutex *mu) {
  if (kDebugMode) {
    if (synch_deadlock_detection.load(std::memory_order_acquire) !=
        OnDeadlockCycle::kIgnore) {
      LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
    }
  }
}

// Call LockEnter() if in debug mode and deadlock detection is enabled.
static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) {
  if (kDebugMode) {
    if (synch_deadlock_detection.load(std::memory_order_acquire) !=
        OnDeadlockCycle::kIgnore) {
      LockEnter(mu, id, Synch_GetAllLocks());
    }
  }
}

// Call LockLeave() if in debug mode and deadlock detection is enabled.
static inline void DebugOnlyLockLeave(Mutex *mu) {
  if (kDebugMode) {
    if (synch_deadlock_detection.load(std::memory_order_acquire) !=
        OnDeadlockCycle::kIgnore) {
      LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
    }
  }
}

static char *StackString(void **pcs, int n, char *buf, int maxlen,
                         bool symbolize) {
  static const int kSymLen = 200;
  char sym[kSymLen];
  int len = 0;
  for (int i = 0; i != n; i++) {
    if (symbolize) {
      if (!symbolizer(pcs[i], sym, kSymLen)) {
        sym[0] = '\0';
      }
      snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n",
               (i == 0 ? "\n" : ""),
               pcs[i], sym);
    } else {
      snprintf(buf + len, maxlen - len, " %p", pcs[i]);
    }
    len += strlen(&buf[len]);
  }
  return buf;
}

static char *CurrentStackString(char *buf, int maxlen, bool symbolize) {
  void *pcs[40];
  return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
                     maxlen, symbolize);
}

namespace {
enum { kMaxDeadlockPathLen = 10 };  // maximum length of a deadlock cycle;
                                    // a path this long would be remarkable
// Buffers required to report a deadlock.
// We do not allocate them on stack to avoid large stack frame.
struct DeadlockReportBuffers {
  char buf[6100];
  GraphId path[kMaxDeadlockPathLen];
};

struct ScopedDeadlockReportBuffers {
  ScopedDeadlockReportBuffers() {
    b = reinterpret_cast<DeadlockReportBuffers *>(
        base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
  }
  ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
  DeadlockReportBuffers *b;
};

// Helper to pass to GraphCycles::UpdateStackTrace.
int GetStack(void** stack, int max_depth) {
  return absl::GetStackTrace(stack, max_depth, 3);
}
}  // anonymous namespace

// Called in debug mode when a thread is about to acquire a lock in a way that
// may block.
static GraphId DeadlockCheck(Mutex *mu) {
  if (synch_deadlock_detection.load(std::memory_order_acquire) ==
      OnDeadlockCycle::kIgnore) {
    return InvalidGraphId();
  }

  SynchLocksHeld *all_locks = Synch_GetAllLocks();

  absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
  const GraphId mu_id = GetGraphIdLocked(mu);

  if (all_locks->n == 0) {
    // There are no other locks held. Return now so that we don't need to
    // call GetSynchEvent(). This way we do not record the stack trace
    // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
    // it can't always be the first lock acquired by a thread.
    return mu_id;
  }

  // We prefer to keep stack traces that show a thread holding and acquiring
  // as many locks as possible.  This increases the chances that a given edge
  // in the acquires-before graph will be represented in the stack traces
  // recorded for the locks.
  deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);

  // For each other mutex already held by this thread:
  for (int i = 0; i != all_locks->n; i++) {
    const GraphId other_node_id = all_locks->locks[i].id;
    const Mutex *other =
        static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id));
    if (other == nullptr) {
      // Ignore stale lock
      continue;
    }

    // Add the acquired-before edge to the graph.
    if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
      ScopedDeadlockReportBuffers scoped_buffers;
      DeadlockReportBuffers *b = scoped_buffers.b;
      static int number_of_reported_deadlocks = 0;
      number_of_reported_deadlocks++;
      // Symbolize only 2 first deadlock report to avoid huge slowdowns.
      bool symbolize = number_of_reported_deadlocks <= 2;
      ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
                   CurrentStackString(b->buf, sizeof (b->buf), symbolize));
      int len = 0;
      for (int j = 0; j != all_locks->n; j++) {
        void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
        if (pr != nullptr) {
          snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr);
          len += static_cast<int>(strlen(&b->buf[len]));
        }
      }
      ABSL_RAW_LOG(ERROR, "Acquiring %p    Mutexes held: %s",
                   static_cast<void *>(mu), b->buf);
      ABSL_RAW_LOG(ERROR, "Cycle: ");
      int path_len = deadlock_graph->FindPath(
          mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path);
      for (int j = 0; j != path_len; j++) {
        GraphId id = b->path[j];
        Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id));
        if (path_mu == nullptr) continue;
        void** stack;
        int depth = deadlock_graph->GetStackTrace(id, &stack);
        snprintf(b->buf, sizeof(b->buf),
                 "mutex@%p stack: ", static_cast<void *>(path_mu));
        StackString(stack, depth, b->buf + strlen(b->buf),
                    static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
                    symbolize);
        ABSL_RAW_LOG(ERROR, "%s", b->buf);
      }
      if (synch_deadlock_detection.load(std::memory_order_acquire) ==
          OnDeadlockCycle::kAbort) {
        deadlock_graph_mu.Unlock();  // avoid deadlock in fatal sighandler
        ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
        return mu_id;
      }
      break;   // report at most one potential deadlock per acquisition
    }
  }

  return mu_id;
}

// Invoke DeadlockCheck() iff we're in debug mode and
// deadlock checking has been enabled.
static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) {
  if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
                        OnDeadlockCycle::kIgnore) {
    return DeadlockCheck(mu);
  } else {
    return InvalidGraphId();
  }
}

void Mutex::ForgetDeadlockInfo() {
  if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
                        OnDeadlockCycle::kIgnore) {
    deadlock_graph_mu.Lock();
    if (deadlock_graph != nullptr) {
      deadlock_graph->RemoveNode(this);
    }
    deadlock_graph_mu.Unlock();
  }
}

void Mutex::AssertNotHeld() const {
  // We have the data to allow this check only if in debug mode and deadlock
  // detection is enabled.
  if (kDebugMode &&
      (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
      synch_deadlock_detection.load(std::memory_order_acquire) !=
          OnDeadlockCycle::kIgnore) {
    GraphId id = GetGraphId(const_cast<Mutex *>(this));
    SynchLocksHeld *locks = Synch_GetAllLocks();
    for (int i = 0; i != locks->n; i++) {
      if (locks->locks[i].id == id) {
        SynchEvent *mu_events = GetSynchEvent(this);
        ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
                     static_cast<const void *>(this),
                     (mu_events == nullptr ? "" : mu_events->name));
      }
    }
  }
}

// Attempt to acquire *mu, and return whether successful.  The implementation
// may spin for a short while if the lock cannot be acquired immediately.
static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
  int c = mutex_globals.spinloop_iterations;
  int result = -1;  // result of operation:  0=false, 1=true, -1=unknown

  do {  // do/while somewhat faster on AMD
    intptr_t v = mu->load(std::memory_order_relaxed);
    if ((v & (kMuReader|kMuEvent)) != 0) {  // a reader or tracing -> give up
      result = 0;
    } else if (((v & kMuWriter) == 0) &&  // no holder -> try to acquire
               mu->compare_exchange_strong(v, kMuWriter | v,
                                           std::memory_order_acquire,
                                           std::memory_order_relaxed)) {
      result = 1;
    }
  } while (result == -1 && --c > 0);
  return result == 1;
}

ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
  GraphId id = DebugOnlyDeadlockCheck(this);
  intptr_t v = mu_.load(std::memory_order_relaxed);
  // try fast acquire, then spin loop
  if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 ||
      !mu_.compare_exchange_strong(v, kMuWriter | v,
                                   std::memory_order_acquire,
                                   std::memory_order_relaxed)) {
    // try spin acquire, then slow loop
    if (!TryAcquireWithSpinning(&this->mu_)) {
      this->LockSlow(kExclusive, nullptr, 0);
    }
  }
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
}

ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
  GraphId id = DebugOnlyDeadlockCheck(this);
  intptr_t v = mu_.load(std::memory_order_relaxed);
  // try fast acquire, then slow loop
  if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 ||
      !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
                                   std::memory_order_acquire,
                                   std::memory_order_relaxed)) {
    this->LockSlow(kShared, nullptr, 0);
  }
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
}

void Mutex::LockWhen(const Condition &cond) {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
  GraphId id = DebugOnlyDeadlockCheck(this);
  this->LockSlow(kExclusive, &cond, 0);
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
}

bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) {
  return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
}

bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
  GraphId id = DebugOnlyDeadlockCheck(this);
  bool res = LockSlowWithDeadline(kExclusive, &cond,
                                  KernelTimeout(deadline), 0);
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
  return res;
}

void Mutex::ReaderLockWhen(const Condition &cond) {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
  GraphId id = DebugOnlyDeadlockCheck(this);
  this->LockSlow(kShared, &cond, 0);
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
}

bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond,
                                      absl::Duration timeout) {
  return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
}

bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond,
                                       absl::Time deadline) {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
  GraphId id = DebugOnlyDeadlockCheck(this);
  bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0);
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
  return res;
}

void Mutex::Await(const Condition &cond) {
  if (cond.Eval()) {    // condition already true; nothing to do
    if (kDebugMode) {
      this->AssertReaderHeld();
    }
  } else {              // normal case
    ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()),
                   "condition untrue on return from Await");
  }
}

bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) {
  return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout));
}

bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) {
  if (cond.Eval()) {      // condition already true; nothing to do
    if (kDebugMode) {
      this->AssertReaderHeld();
    }
    return true;
  }

  KernelTimeout t{deadline};
  bool res = this->AwaitCommon(cond, t);
  ABSL_RAW_CHECK(res || t.has_timeout(),
                 "condition untrue on return from Await");
  return res;
}

bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) {
  this->AssertReaderHeld();
  MuHow how =
      (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
  ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
  SynchWaitParams waitp(
      how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
      nullptr /*no cv_word*/);
  int flags = kMuHasBlocked;
  if (!Condition::GuaranteedEqual(&cond, nullptr)) {
    flags |= kMuIsCond;
  }
  this->UnlockSlow(&waitp);
  this->Block(waitp.thread);
  ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
  ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
  this->LockSlowLoop(&waitp, flags);
  bool res = waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
             EvalConditionAnnotated(&cond, this, true, false, how == kShared);
  ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
  return res;
}

ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
  intptr_t v = mu_.load(std::memory_order_relaxed);
  if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 &&  // try fast acquire
      mu_.compare_exchange_strong(v, kMuWriter | v,
                                  std::memory_order_acquire,
                                  std::memory_order_relaxed)) {
    DebugOnlyLockEnter(this);
    ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
    return true;
  }
  if ((v & kMuEvent) != 0) {              // we're recording events
    if ((v & kExclusive->slow_need_zero) == 0 &&  // try fast acquire
        mu_.compare_exchange_strong(
            v, (kExclusive->fast_or | v) + kExclusive->fast_add,
            std::memory_order_acquire, std::memory_order_relaxed)) {
      DebugOnlyLockEnter(this);
      PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
      ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
      return true;
    } else {
      PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
    }
  }
  ABSL_TSAN_MUTEX_POST_LOCK(
      this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
  return false;
}

ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() {
  ABSL_TSAN_MUTEX_PRE_LOCK(this,
                           __tsan_mutex_read_lock | __tsan_mutex_try_lock);
  intptr_t v = mu_.load(std::memory_order_relaxed);
  // The while-loops (here and below) iterate only if the mutex word keeps
  // changing (typically because the reader count changes) under the CAS.  We
  // limit the number of attempts to avoid having to think about livelock.
  int loop_limit = 5;
  while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) {
    if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
                                    std::memory_order_acquire,
                                    std::memory_order_relaxed)) {
      DebugOnlyLockEnter(this);
      ABSL_TSAN_MUTEX_POST_LOCK(
          this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
      return true;
    }
    loop_limit--;
    v = mu_.load(std::memory_order_relaxed);
  }
  if ((v & kMuEvent) != 0) {   // we're recording events
    loop_limit = 5;
    while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) {
      if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
                                      std::memory_order_acquire,
                                      std::memory_order_relaxed)) {
        DebugOnlyLockEnter(this);
        PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
        ABSL_TSAN_MUTEX_POST_LOCK(
            this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
        return true;
      }
      loop_limit--;
      v = mu_.load(std::memory_order_relaxed);
    }
    if ((v & kMuEvent) != 0) {
      PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
    }
  }
  ABSL_TSAN_MUTEX_POST_LOCK(this,
                            __tsan_mutex_read_lock | __tsan_mutex_try_lock |
                                __tsan_mutex_try_lock_failed,
                            0);
  return false;
}

ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() {
  ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
  DebugOnlyLockLeave(this);
  intptr_t v = mu_.load(std::memory_order_relaxed);

  if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
    ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
                 static_cast<unsigned>(v));
  }

  // should_try_cas is whether we'll try a compare-and-swap immediately.
  // NOTE: optimized out when kDebugMode is false.
  bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
                          (v & (kMuWait | kMuDesig)) != kMuWait);
  // But, we can use an alternate computation of it, that compilers
  // currently don't find on their own.  When that changes, this function
  // can be simplified.
  intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
  intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
  // Claim: "x == 0 && y > 0" is equal to should_try_cas.
  // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
  // all possible non-zero values for x exceed all possible values for y.
  // Therefore, (x == 0 && y > 0) == (x < y).
  if (kDebugMode && should_try_cas != (x < y)) {
    // We would usually use PRIdPTR here, but is not correctly implemented
    // within the android toolchain.
    ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
                 static_cast<long long>(v), static_cast<long long>(x),
                 static_cast<long long>(y));
  }
  if (x < y &&
      mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
                                  std::memory_order_release,
                                  std::memory_order_relaxed)) {
    // fast writer release (writer with no waiters or with designated waker)
  } else {
    this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
  }
  ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
}

// Requires v to represent a reader-locked state.
static bool ExactlyOneReader(intptr_t v) {
  assert((v & (kMuWriter|kMuReader)) == kMuReader);
  assert((v & kMuHigh) != 0);
  // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
  // on some architectures the following generates slightly smaller code.
  // It may be faster too.
  constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
  return (v & kMuMultipleWaitersMask) == 0;
}

ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() {
  ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
  DebugOnlyLockLeave(this);
  intptr_t v = mu_.load(std::memory_order_relaxed);
  assert((v & (kMuWriter|kMuReader)) == kMuReader);
  if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) {
    // fast reader release (reader with no waiters)
    intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne;
    if (mu_.compare_exchange_strong(v, v - clear,
                                    std::memory_order_release,
                                    std::memory_order_relaxed)) {
      ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
      return;
    }
  }
  this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
  ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
}

// The zap_desig_waker bitmask is used to clear the designated waker flag in
// the mutex if this thread has blocked, and therefore may be the designated
// waker.
static const intptr_t zap_desig_waker[] = {
    ~static_cast<intptr_t>(0),  // not blocked
    ~static_cast<intptr_t>(
        kMuDesig)  // blocked; turn off the designated waker bit
};

// The ignore_waiting_writers bitmask is used to ignore the existence
// of waiting writers if a reader that has already blocked once
// wakes up.
static const intptr_t ignore_waiting_writers[] = {
    ~static_cast<intptr_t>(0),  // not blocked
    ~static_cast<intptr_t>(
        kMuWrWait)  // blocked; pretend there are no waiting writers
};

// Internal version of LockWhen().  See LockSlowWithDeadline()
void Mutex::LockSlow(MuHow how, const Condition *cond, int flags) {
  ABSL_RAW_CHECK(
      this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
      "condition untrue on return from LockSlow");
}

// Compute cond->Eval() and tell race detectors that we do it under mutex mu.
static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
                                          bool locking, bool trylock,
                                          bool read_lock) {
  // Delicate annotation dance.
  // We are currently inside of read/write lock/unlock operation.
  // All memory accesses are ignored inside of mutex operations + for unlock
  // operation tsan considers that we've already released the mutex.
  bool res = false;
#ifdef THREAD_SANITIZER
  const int flags = read_lock ? __tsan_mutex_read_lock : 0;
  const int tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0);
#endif
  if (locking) {
    // For lock we pretend that we have finished the operation,
    // evaluate the predicate, then unlock the mutex and start locking it again
    // to match the annotation at the end of outer lock operation.
    // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
    // will think the lock acquisition is recursive which will trigger
    // deadlock detector.
    ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0);
    res = cond->Eval();
    // There is no "try" version of Unlock, so use flags instead of tryflags.
    ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
    ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
    ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags);
  } else {
    // Similarly, for unlock we pretend that we have unlocked the mutex,
    // lock the mutex, evaluate the predicate, and start unlocking it again
    // to match the annotation at the end of outer unlock operation.
    ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
    ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags);
    ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0);
    res = cond->Eval();
    ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
  }
  // Prevent unused param warnings in non-TSAN builds.
  static_cast<void>(mu);
  static_cast<void>(trylock);
  static_cast<void>(read_lock);
  return res;
}

// Compute cond->Eval() hiding it from race detectors.
// We are hiding it because inside of UnlockSlow we can evaluate a predicate
// that was just added by a concurrent Lock operation; Lock adds the predicate
// to the internal Mutex list without actually acquiring the Mutex
// (it only acquires the internal spinlock, which is rightfully invisible for
// tsan). As the result there is no tsan-visible synchronization between the
// addition and this thread. So if we would enable race detection here,
// it would race with the predicate initialization.
static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) {
  // Memory accesses are already ignored inside of lock/unlock operations,
  // but synchronization operations are also ignored. When we evaluate the
  // predicate we must ignore only memory accesses but not synchronization,
  // because missed synchronization can lead to false reports later.
  // So we "divert" (which un-ignores both memory accesses and synchronization)
  // and then separately turn on ignores of memory accesses.
  ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
  ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
  bool res = cond->Eval();
  ANNOTATE_IGNORE_READS_AND_WRITES_END();
  ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
  static_cast<void>(mu);  // Prevent unused param warning in non-TSAN builds.
  return res;
}

// Internal equivalent of *LockWhenWithDeadline(), where
//   "t" represents the absolute timeout; !t.has_timeout() means "forever".
//   "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
// In flags, bits are ored together:
// - kMuHasBlocked indicates that the client has already blocked on the call so
//   the designated waker bit must be cleared and waiting writers should not
//   obstruct this call
// - kMuIsCond indicates that this is a conditional acquire (condition variable,
//   Await,  LockWhen) so contention profiling should be suppressed.
bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond,
                                 KernelTimeout t, int flags) {
  intptr_t v = mu_.load(std::memory_order_relaxed);
  bool unlock = false;
  if ((v & how->fast_need_zero) == 0 &&  // try fast acquire
      mu_.compare_exchange_strong(
          v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) +
                 how->fast_add,
          std::memory_order_acquire, std::memory_order_relaxed)) {
    if (cond == nullptr ||
        EvalConditionAnnotated(cond, this, true, false, how == kShared)) {
      return true;
    }
    unlock = true;
  }
  SynchWaitParams waitp(
      how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
      nullptr /*no cv_word*/);
  if (!Condition::GuaranteedEqual(cond, nullptr)) {
    flags |= kMuIsCond;
  }
  if (unlock) {
    this->UnlockSlow(&waitp);
    this->Block(waitp.thread);
    flags |= kMuHasBlocked;
  }
  this->LockSlowLoop(&waitp, flags);
  return waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
         cond == nullptr ||
         EvalConditionAnnotated(cond, this, true, false, how == kShared);
}

// RAW_CHECK_FMT() takes a condition, a printf-style format string, and
// the printf-style argument list.   The format string must be a literal.
// Arguments after the first are not evaluated unless the condition is true.
#define RAW_CHECK_FMT(cond, ...)                                   \
  do {                                                             \
    if (ABSL_PREDICT_FALSE(!(cond))) {                             \
      ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
    }                                                              \
  } while (0)

static void CheckForMutexCorruption(intptr_t v, const char* label) {
  // Test for either of two situations that should not occur in v:
  //   kMuWriter and kMuReader
  //   kMuWrWait and !kMuWait
  const uintptr_t w = v ^ kMuWait;
  // By flipping that bit, we can now test for:
  //   kMuWriter and kMuReader in w
  //   kMuWrWait and kMuWait in w
  // We've chosen these two pairs of values to be so that they will overlap,
  // respectively, when the word is left shifted by three.  This allows us to
  // save a branch in the common (correct) case of them not being coincident.
  static_assert(kMuReader << 3 == kMuWriter, "must match");
  static_assert(kMuWait << 3 == kMuWrWait, "must match");
  if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
  RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
                "%s: Mutex corrupt: both reader and writer lock held: %p",
                label, reinterpret_cast<void *>(v));
  RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
                "%s: Mutex corrupt: waiting writer with no waiters: %p",
                label, reinterpret_cast<void *>(v));
  assert(false);
}

void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) {
  int c = 0;
  intptr_t v = mu_.load(std::memory_order_relaxed);
  if ((v & kMuEvent) != 0) {
    PostSynchEvent(this,
         waitp->how == kExclusive?  SYNCH_EV_LOCK: SYNCH_EV_READERLOCK);
  }
  ABSL_RAW_CHECK(
      waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
      "detected illegal recursion into Mutex code");
  for (;;) {
    v = mu_.load(std::memory_order_relaxed);
    CheckForMutexCorruption(v, "Lock");
    if ((v & waitp->how->slow_need_zero) == 0) {
      if (mu_.compare_exchange_strong(
              v, (waitp->how->fast_or |
                  (v & zap_desig_waker[flags & kMuHasBlocked])) +
                     waitp->how->fast_add,
              std::memory_order_acquire, std::memory_order_relaxed)) {
        if (waitp->cond == nullptr ||
            EvalConditionAnnotated(waitp->cond, this, true, false,
                                   waitp->how == kShared)) {
          break;  // we timed out, or condition true, so return
        }
        this->UnlockSlow(waitp);  // got lock but condition false
        this->Block(waitp->thread);
        flags |= kMuHasBlocked;
        c = 0;
      }
    } else {                      // need to access waiter list
      bool dowait = false;
      if ((v & (kMuSpin|kMuWait)) == 0) {   // no waiters
        // This thread tries to become the one and only waiter.
        PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags);
        intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) |
                      kMuWait;
        ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
        if (waitp->how == kExclusive && (v & kMuReader) != 0) {
          nv |= kMuWrWait;
        }
        if (mu_.compare_exchange_strong(
                v, reinterpret_cast<intptr_t>(new_h) | nv,
                std::memory_order_release, std::memory_order_relaxed)) {
          dowait = true;
        } else {            // attempted Enqueue() failed
          // zero out the waitp field set by Enqueue()
          waitp->thread->waitp = nullptr;
        }
      } else if ((v & waitp->how->slow_inc_need_zero &
                  ignore_waiting_writers[flags & kMuHasBlocked]) == 0) {
        // This is a reader that needs to increment the reader count,
        // but the count is currently held in the last waiter.
        if (mu_.compare_exchange_strong(
                v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
                       kMuReader,
                std::memory_order_acquire, std::memory_order_relaxed)) {
          PerThreadSynch *h = GetPerThreadSynch(v);
          h->readers += kMuOne;       // inc reader count in waiter
          do {                        // release spinlock
            v = mu_.load(std::memory_order_relaxed);
          } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
                                              std::memory_order_release,
                                              std::memory_order_relaxed));
          if (waitp->cond == nullptr ||
              EvalConditionAnnotated(waitp->cond, this, true, false,
                                     waitp->how == kShared)) {
            break;  // we timed out, or condition true, so return
          }
          this->UnlockSlow(waitp);           // got lock but condition false
          this->Block(waitp->thread);
          flags |= kMuHasBlocked;
          c = 0;
        }
      } else if ((v & kMuSpin) == 0 &&  // attempt to queue ourselves
                 mu_.compare_exchange_strong(
                     v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
                            kMuWait,
                     std::memory_order_acquire, std::memory_order_relaxed)) {
        PerThreadSynch *h = GetPerThreadSynch(v);
        PerThreadSynch *new_h = Enqueue(h, waitp, v, flags);
        intptr_t wr_wait = 0;
        ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
        if (waitp->how == kExclusive && (v & kMuReader) != 0) {
          wr_wait = kMuWrWait;      // give priority to a waiting writer
        }
        do {                        // release spinlock
          v = mu_.load(std::memory_order_relaxed);
        } while (!mu_.compare_exchange_weak(
            v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
            reinterpret_cast<intptr_t>(new_h),
            std::memory_order_release, std::memory_order_relaxed));
        dowait = true;
      }
      if (dowait) {
        this->Block(waitp->thread);  // wait until removed from list or timeout
        flags |= kMuHasBlocked;
        c = 0;
      }
    }
    ABSL_RAW_CHECK(
        waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
        "detected illegal recursion into Mutex code");
    c = Delay(c, GENTLE);          // delay, then try again
  }
  ABSL_RAW_CHECK(
      waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
      "detected illegal recursion into Mutex code");
  if ((v & kMuEvent) != 0) {
    PostSynchEvent(this,
                   waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING :
                                      SYNCH_EV_READERLOCK_RETURNING);
  }
}

// Unlock this mutex, which is held by the current thread.
// If waitp is non-zero, it must be the wait parameters for the current thread
// which holds the lock but is not runnable because its condition is false
// or it is in the process of blocking on a condition variable; it must requeue
// itself on the mutex/condvar to wait for its condition to become true.
void Mutex::UnlockSlow(SynchWaitParams *waitp) {
  intptr_t v = mu_.load(std::memory_order_relaxed);
  this->AssertReaderHeld();
  CheckForMutexCorruption(v, "Unlock");
  if ((v & kMuEvent) != 0) {
    PostSynchEvent(this,
                (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK);
  }
  int c = 0;
  // the waiter under consideration to wake, or zero
  PerThreadSynch *w = nullptr;
  // the predecessor to w or zero
  PerThreadSynch *pw = nullptr;
  // head of the list searched previously, or zero
  PerThreadSynch *old_h = nullptr;
  // a condition that's known to be false.
  const Condition *known_false = nullptr;
  PerThreadSynch *wake_list = kPerThreadSynchNull;   // list of threads to wake
  intptr_t wr_wait = 0;        // set to kMuWrWait if we wake a reader and a
                               // later writer could have acquired the lock
                               // (starvation avoidance)
  ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
                     waitp->thread->suppress_fatal_errors,
                 "detected illegal recursion into Mutex code");
  // This loop finds threads wake_list to wakeup if any, and removes them from
  // the list of waiters.  In addition, it places waitp.thread on the queue of
  // waiters if waitp is non-zero.
  for (;;) {
    v = mu_.load(std::memory_order_relaxed);
    if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
        waitp == nullptr) {
      // fast writer release (writer with no waiters or with designated waker)
      if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
                                      std::memory_order_release,
                                      std::memory_order_relaxed)) {
        return;
      }
    } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
      // fast reader release (reader with no waiters)
      intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
      if (mu_.compare_exchange_strong(v, v - clear,
                                      std::memory_order_release,
                                      std::memory_order_relaxed)) {
        return;
      }
    } else if ((v & kMuSpin) == 0 &&  // attempt to get spinlock
               mu_.compare_exchange_strong(v, v | kMuSpin,
                                           std::memory_order_acquire,
                                           std::memory_order_relaxed)) {
      if ((v & kMuWait) == 0) {       // no one to wake
        intptr_t nv;
        bool do_enqueue = true;  // always Enqueue() the first time
        ABSL_RAW_CHECK(waitp != nullptr,
                       "UnlockSlow is confused");  // about to sleep
        do {    // must loop to release spinlock as reader count may change
          v = mu_.load(std::memory_order_relaxed);
          // decrement reader count if there are readers
          intptr_t new_readers = (v >= kMuOne)?  v - kMuOne : v;
          PerThreadSynch *new_h = nullptr;
          if (do_enqueue) {
            // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
            // we must not retry here.  The initial attempt will always have
            // succeeded, further attempts would enqueue us against *this due to
            // Fer() handling.
            do_enqueue = (waitp->cv_word == nullptr);
            new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
          }
          intptr_t clear = kMuWrWait | kMuWriter;  // by default clear write bit
          if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) {  // last reader
            clear = kMuWrWait | kMuReader;                    // clear read bit
          }
          nv = (v & kMuLow & ~clear & ~kMuSpin);
          if (new_h != nullptr) {
            nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
          } else {  // new_h could be nullptr if we queued ourselves on a
                    // CondVar
            // In that case, we must place the reader count back in the mutex
            // word, as Enqueue() did not store it in the new waiter.
            nv |= new_readers & kMuHigh;
          }
          // release spinlock & our lock; retry if reader-count changed
          // (writer count cannot change since we hold lock)
        } while (!mu_.compare_exchange_weak(v, nv,
                                            std::memory_order_release,
                                            std::memory_order_relaxed));
        break;
      }

      // There are waiters.
      // Set h to the head of the circular waiter list.
      PerThreadSynch *h = GetPerThreadSynch(v);
      if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
        // a reader but not the last
        h->readers -= kMuOne;  // release our lock
        intptr_t nv = v;       // normally just release spinlock
        if (waitp != nullptr) {  // but waitp!=nullptr => must queue ourselves
          PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
          ABSL_RAW_CHECK(new_h != nullptr,
                         "waiters disappeared during Enqueue()!");
          nv &= kMuLow;
          nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
        }
        mu_.store(nv, std::memory_order_release);  // release spinlock
        // can release with a store because there were waiters
        break;
      }

      // Either we didn't search before, or we marked the queue
      // as "maybe_unlocking" and no one else should have changed it.
      ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
                     "Mutex queue changed beneath us");

      // The lock is becoming free, and there's a waiter
      if (old_h != nullptr &&
          !old_h->may_skip) {                  // we used old_h as a terminator
        old_h->may_skip = true;                // allow old_h to skip once more
        ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
        if (h != old_h && MuSameCondition(old_h, old_h->next)) {
          old_h->skip = old_h->next;  // old_h not head & can skip to successor
        }
      }
      if (h->next->waitp->how == kExclusive &&
          Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) {
        // easy case: writer with no condition; no need to search
        pw = h;                       // wake w, the successor of h (=pw)
        w = h->next;
        w->wake = true;
        // We are waking up a writer.  This writer may be racing against
        // an already awake reader for the lock.  We want the
        // writer to usually win this race,
        // because if it doesn't, we can potentially keep taking a reader
        // perpetually and writers will starve.  Worse than
        // that, this can also starve other readers if kMuWrWait gets set
        // later.
        wr_wait = kMuWrWait;
      } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
        // we found a waiter w to wake on a previous iteration and either it's
        // a writer, or we've searched the entire list so we have all the
        // readers.
        if (pw == nullptr) {  // if w's predecessor is unknown, it must be h
          pw = h;
        }
      } else {
        // At this point we don't know all the waiters to wake, and the first
        // waiter has a condition or is a reader.  We avoid searching over
        // waiters we've searched on previous iterations by starting at
        // old_h if it's set.  If old_h==h, there's no one to wakeup at all.
        if (old_h == h) {      // we've searched before, and nothing's new
                               // so there's no one to wake.
          intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait));
          h->readers = 0;
          h->maybe_unlocking = false;   // finished unlocking
          if (waitp != nullptr) {       // we must queue ourselves and sleep
            PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
            nv &= kMuLow;
            if (new_h != nullptr) {
              nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
            }  // else new_h could be nullptr if we queued ourselves on a
               // CondVar
          }
          // release spinlock & lock
          // can release with a store because there were waiters
          mu_.store(nv, std::memory_order_release);
          break;
        }

        // set up to walk the list
        PerThreadSynch *w_walk;   // current waiter during list walk
        PerThreadSynch *pw_walk;  // previous waiter during list walk
        if (old_h != nullptr) {  // we've searched up to old_h before
          pw_walk = old_h;
          w_walk = old_h->next;
        } else {            // no prior search, start at beginning
          pw_walk =
              nullptr;  // h->next's predecessor may change; don't record it
          w_walk = h->next;
        }

        h->may_skip = false;  // ensure we never skip past h in future searches
                              // even if other waiters are queued after it.
        ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");

        h->maybe_unlocking = true;  // we're about to scan the waiter list
                                    // without the spinlock held.
                                    // Enqueue must be conservative about
                                    // priority queuing.

        // We must release the spinlock to evaluate the conditions.
        mu_.store(v, std::memory_order_release);  // release just spinlock
        // can release with a store because there were waiters

        // h is the last waiter queued, and w_walk the first unsearched waiter.
        // Without the spinlock, the locations mu_ and h->next may now change
        // underneath us, but since we hold the lock itself, the only legal
        // change is to add waiters between h and w_walk.  Therefore, it's safe
        // to walk the path from w_walk to h inclusive. (TryRemove() can remove
        // a waiter anywhere, but it acquires both the spinlock and the Mutex)

        old_h = h;        // remember we searched to here

        // Walk the path upto and including h looking for waiters we can wake.
        while (pw_walk != h) {
          w_walk->wake = false;
          if (w_walk->waitp->cond ==
                  nullptr ||  // no condition => vacuously true OR
              (w_walk->waitp->cond != known_false &&
               // this thread's condition is not known false, AND
               //  is in fact true
               EvalConditionIgnored(this, w_walk->waitp->cond))) {
            if (w == nullptr) {
              w_walk->wake = true;    // can wake this waiter
              w = w_walk;
              pw = pw_walk;
              if (w_walk->waitp->how == kExclusive) {
                wr_wait = kMuWrWait;
                break;                // bail if waking this writer
              }
            } else if (w_walk->waitp->how == kShared) {  // wake if a reader
              w_walk->wake = true;
            } else {   // writer with true condition
              wr_wait = kMuWrWait;
            }
          } else {                  // can't wake; condition false
            known_false = w_walk->waitp->cond;  // remember last false condition
          }
          if (w_walk->wake) {   // we're waking reader w_walk
            pw_walk = w_walk;   // don't skip similar waiters
          } else {              // not waking; skip as much as possible
            pw_walk = Skip(w_walk);
          }
          // If pw_walk == h, then load of pw_walk->next can race with
          // concurrent write in Enqueue(). However, at the same time
          // we do not need to do the load, because we will bail out
          // from the loop anyway.
          if (pw_walk != h) {
            w_walk = pw_walk->next;
          }
        }

        continue;  // restart for(;;)-loop to wakeup w or to find more waiters
      }
      ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
      // The first (and perhaps only) waiter we've chosen to wake is w, whose
      // predecessor is pw.  If w is a reader, we must wake all the other
      // waiters with wake==true as well.  We may also need to queue
      // ourselves if waitp != null.  The spinlock and the lock are still
      // held.

      // This traverses the list in [ pw->next, h ], where h is the head,
      // removing all elements with wake==true and placing them in the
      // singly-linked list wake_list.  Returns the new head.
      h = DequeueAllWakeable(h, pw, &wake_list);

      intptr_t nv = (v & kMuEvent) | kMuDesig;
                                             // assume no waiters left,
                                             // set kMuDesig for INV1a

      if (waitp != nullptr) {  // we must queue ourselves and sleep
        h = Enqueue(h, waitp, v, kMuIsCond);
        // h is new last waiter; could be null if we queued ourselves on a
        // CondVar
      }

      ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
                     "unexpected empty wake list");

      if (h != nullptr) {  // there are waiters left
        h->readers = 0;
        h->maybe_unlocking = false;     // finished unlocking
        nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
      }

      // release both spinlock & lock
      // can release with a store because there were waiters
      mu_.store(nv, std::memory_order_release);
      break;  // out of for(;;)-loop
    }
    c = Delay(c, AGGRESSIVE);  // aggressive here; no one can proceed till we do
  }                            // end of for(;;)-loop

  if (wake_list != kPerThreadSynchNull) {
    int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles;
    bool cond_waiter = wake_list->cond_waiter;
    do {
      wake_list = Wakeup(wake_list);              // wake waiters
    } while (wake_list != kPerThreadSynchNull);
    if (!cond_waiter) {
      // Sample lock contention events only if the (first) waiter was trying to
      // acquire the lock, not waiting on a condition variable or Condition.
      int64_t wait_cycles = base_internal::CycleClock::Now() - enqueue_timestamp;
      mutex_tracer("slow release", this, wait_cycles);
      ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
      submit_profile_data(enqueue_timestamp);
      ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
    }
  }
}

// Used by CondVar implementation to reacquire mutex after waking from
// condition variable.  This routine is used instead of Lock() because the
// waiting thread may have been moved from the condition variable queue to the
// mutex queue without a wakeup, by Trans().  In that case, when the thread is
// finally woken, the woken thread will believe it has been woken from the
// condition variable (i.e. its PC will be in when in the CondVar code), when
// in fact it has just been woken from the mutex.  Thus, it must enter the slow
// path of the mutex in the same state as if it had just woken from the mutex.
// That is, it must ensure to clear kMuDesig (INV1b).
void Mutex::Trans(MuHow how) {
  this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
}

// Used by CondVar implementation to effectively wake thread w from the
// condition variable.  If this mutex is free, we simply wake the thread.
// It will later acquire the mutex with high probability.  Otherwise, we
// enqueue thread w on this mutex.
void Mutex::Fer(PerThreadSynch *w) {
  int c = 0;
  ABSL_RAW_CHECK(w->waitp->cond == nullptr,
                 "Mutex::Fer while waiting on Condition");
  ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(),
                 "Mutex::Fer while in timed wait");
  ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
                 "Mutex::Fer with pending CondVar queueing");
  for (;;) {
    intptr_t v = mu_.load(std::memory_order_relaxed);
    // Note: must not queue if the mutex is unlocked (nobody will wake it).
    // For example, we can have only kMuWait (conditional) or maybe
    // kMuWait|kMuWrWait.
    // conflicting != 0 implies that the waking thread cannot currently take
    // the mutex, which in turn implies that someone else has it and can wake
    // us if we queue.
    const intptr_t conflicting =
        kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
    if ((v & conflicting) == 0) {
      w->next = nullptr;
      w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
      IncrementSynchSem(this, w);
      return;
    } else {
      if ((v & (kMuSpin|kMuWait)) == 0) {       // no waiters
        // This thread tries to become the one and only waiter.
        PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond);
        ABSL_RAW_CHECK(new_h != nullptr,
                       "Enqueue failed");  // we must queue ourselves
        if (mu_.compare_exchange_strong(
                v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
                std::memory_order_release, std::memory_order_relaxed)) {
          return;
        }
      } else if ((v & kMuSpin) == 0 &&
                 mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
        PerThreadSynch *h = GetPerThreadSynch(v);
        PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond);
        ABSL_RAW_CHECK(new_h != nullptr,
                       "Enqueue failed");  // we must queue ourselves
        do {
          v = mu_.load(std::memory_order_relaxed);
        } while (!mu_.compare_exchange_weak(
            v,
            (v & kMuLow & ~kMuSpin) | kMuWait |
                reinterpret_cast<intptr_t>(new_h),
            std::memory_order_release, std::memory_order_relaxed));
        return;
      }
    }
    c = Delay(c, GENTLE);
  }
}

void Mutex::AssertHeld() const {
  if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
    SynchEvent *e = GetSynchEvent(this);
    ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
                 static_cast<const void *>(this),
                 (e == nullptr ? "" : e->name));
  }
}

void Mutex::AssertReaderHeld() const {
  if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
    SynchEvent *e = GetSynchEvent(this);
    ABSL_RAW_LOG(
        FATAL, "thread should hold at least a read lock on Mutex %p %s",
        static_cast<const void *>(this), (e == nullptr ? "" : e->name));
  }
}

// -------------------------------- condition variables
static const intptr_t kCvSpin = 0x0001L;   // spinlock protects waiter list
static const intptr_t kCvEvent = 0x0002L;  // record events

static const intptr_t kCvLow = 0x0003L;  // low order bits of CV

// Hack to make constant values available to gdb pretty printer
enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, };

static_assert(PerThreadSynch::kAlignment > kCvLow,
              "PerThreadSynch::kAlignment must be greater than kCvLow");

void CondVar::EnableDebugLog(const char *name) {
  SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
  e->log = true;
  UnrefSynchEvent(e);
}

CondVar::~CondVar() {
  if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) {
    ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin);
  }
}


// Remove thread s from the list of waiters on this condition variable.
void CondVar::Remove(PerThreadSynch *s) {
  intptr_t v;
  int c = 0;
  for (v = cv_.load(std::memory_order_relaxed);;
       v = cv_.load(std::memory_order_relaxed)) {
    if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
        cv_.compare_exchange_strong(v, v | kCvSpin,
                                    std::memory_order_acquire,
                                    std::memory_order_relaxed)) {
      PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
      if (h != nullptr) {
        PerThreadSynch *w = h;
        while (w->next != s && w->next != h) {  // search for thread
          w = w->next;
        }
        if (w->next == s) {           // found thread; remove it
          w->next = s->next;
          if (h == s) {
            h = (w == s) ? nullptr : w;
          }
          s->next = nullptr;
          s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
        }
      }
                                      // release spinlock
      cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
                std::memory_order_release);
      return;
    } else {
      c = Delay(c, GENTLE);            // try again after a delay
    }
  }
}

// Queue thread waitp->thread on condition variable word cv_word using
// wait parameters waitp.
// We split this into a separate routine, rather than simply doing it as part
// of WaitCommon().  If we were to queue ourselves on the condition variable
// before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
// the logging code, or via a Condition function) and might potentially attempt
// to block this thread.  That would be a problem if the thread were already on
// a the condition variable waiter queue.  Thus, we use the waitp->cv_word
// to tell the unlock code to call CondVarEnqueue() to queue the thread on the
// condition variable queue just before the mutex is to be unlocked, and (most
// importantly) after any call to an external routine that might re-enter the
// mutex code.
static void CondVarEnqueue(SynchWaitParams *waitp) {
  // This thread might be transferred to the Mutex queue by Fer() when
  // we are woken.  To make sure that is what happens, Enqueue() doesn't
  // call CondVarEnqueue() again but instead uses its normal code.  We
  // must do this before we queue ourselves so that cv_word will be null
  // when seen by the dequeuer, who may wish immediately to requeue
  // this thread on another queue.
  std::atomic<intptr_t> *cv_word = waitp->cv_word;
  waitp->cv_word = nullptr;

  intptr_t v = cv_word->load(std::memory_order_relaxed);
  int c = 0;
  while ((v & kCvSpin) != 0 ||  // acquire spinlock
         !cv_word->compare_exchange_weak(v, v | kCvSpin,
                                         std::memory_order_acquire,
                                         std::memory_order_relaxed)) {
    c = Delay(c, GENTLE);
    v = cv_word->load(std::memory_order_relaxed);
  }
  ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
  waitp->thread->waitp = waitp;      // prepare ourselves for waiting
  PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
  if (h == nullptr) {  // add this thread to waiter list
    waitp->thread->next = waitp->thread;
  } else {
    waitp->thread->next = h->next;
    h->next = waitp->thread;
  }
  waitp->thread->state.store(PerThreadSynch::kQueued,
                             std::memory_order_relaxed);
  cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
                 std::memory_order_release);
}

bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) {
  bool rc = false;          // return value; true iff we timed-out

  intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
  Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
  ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));

  // maybe trace this call
  intptr_t v = cv_.load(std::memory_order_relaxed);
  cond_var_tracer("Wait", this);
  if ((v & kCvEvent) != 0) {
    PostSynchEvent(this, SYNCH_EV_WAIT);
  }

  // Release mu and wait on condition variable.
  SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
                        Synch_GetPerThreadAnnotated(mutex), &cv_);
  // UnlockSlow() will call CondVarEnqueue() just before releasing the
  // Mutex, thus queuing this thread on the condition variable.  See
  // CondVarEnqueue() for the reasons.
  mutex->UnlockSlow(&waitp);

  // wait for signal
  while (waitp.thread->state.load(std::memory_order_acquire) ==
         PerThreadSynch::kQueued) {
    if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
      this->Remove(waitp.thread);
      rc = true;
    }
  }

  ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
  waitp.thread->waitp = nullptr;  // cleanup

  // maybe trace this call
  cond_var_tracer("Unwait", this);
  if ((v & kCvEvent) != 0) {
    PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
  }

  // From synchronization point of view Wait is unlock of the mutex followed
  // by lock of the mutex. We've annotated start of unlock in the beginning
  // of the function. Now, finish unlock and annotate lock of the mutex.
  // (Trans is effectively lock).
  ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
  ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
  mutex->Trans(mutex_how);  // Reacquire mutex
  ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
  return rc;
}

bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) {
  return WaitWithDeadline(mu, DeadlineFromTimeout(timeout));
}

bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) {
  return WaitCommon(mu, KernelTimeout(deadline));
}

void CondVar::Wait(Mutex *mu) {
  WaitCommon(mu, KernelTimeout::Never());
}

// Wake thread w
// If it was a timed wait, w will be waiting on w->cv
// Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem
// Otherwise, w is transferred to the Mutex mutex via Mutex::Fer().
void CondVar::Wakeup(PerThreadSynch *w) {
  if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) {
    // The waiting thread only needs to observe "w->state == kAvailable" to be
    // released, we must cache "cvmu" before clearing "next".
    Mutex *mu = w->waitp->cvmu;
    w->next = nullptr;
    w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
    Mutex::IncrementSynchSem(mu, w);
  } else {
    w->waitp->cvmu->Fer(w);
  }
}

void CondVar::Signal() {
  ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
  intptr_t v;
  int c = 0;
  for (v = cv_.load(std::memory_order_relaxed); v != 0;
       v = cv_.load(std::memory_order_relaxed)) {
    if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
        cv_.compare_exchange_strong(v, v | kCvSpin,
                                    std::memory_order_acquire,
                                    std::memory_order_relaxed)) {
      PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
      PerThreadSynch *w = nullptr;
      if (h != nullptr) {  // remove first waiter
        w = h->next;
        if (w == h) {
          h = nullptr;
        } else {
          h->next = w->next;
        }
      }
                                      // release spinlock
      cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
                std::memory_order_release);
      if (w != nullptr) {
        CondVar::Wakeup(w);                // wake waiter, if there was one
        cond_var_tracer("Signal wakeup", this);
      }
      if ((v & kCvEvent) != 0) {
        PostSynchEvent(this, SYNCH_EV_SIGNAL);
      }
      ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
      return;
    } else {
      c = Delay(c, GENTLE);
    }
  }
  ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
}

void CondVar::SignalAll () {
  ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
  intptr_t v;
  int c = 0;
  for (v = cv_.load(std::memory_order_relaxed); v != 0;
       v = cv_.load(std::memory_order_relaxed)) {
    // empty the list if spinlock free
    // We do this by simply setting the list to empty using
    // compare and swap.   We then have the entire list in our hands,
    // which cannot be changing since we grabbed it while no one
    // held the lock.
    if ((v & kCvSpin) == 0 &&
        cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
                                    std::memory_order_relaxed)) {
      PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
      if (h != nullptr) {
        PerThreadSynch *w;
        PerThreadSynch *n = h->next;
        do {                          // for every thread, wake it up
          w = n;
          n = n->next;
          CondVar::Wakeup(w);
        } while (w != h);
        cond_var_tracer("SignalAll wakeup", this);
      }
      if ((v & kCvEvent) != 0) {
        PostSynchEvent(this, SYNCH_EV_SIGNALALL);
      }
      ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
      return;
    } else {
      c = Delay(c, GENTLE);           // try again after a delay
    }
  }
  ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
}

void ReleasableMutexLock::Release() {
  ABSL_RAW_CHECK(this->mu_ != nullptr,
                 "ReleasableMutexLock::Release may only be called once");
  this->mu_->Unlock();
  this->mu_ = nullptr;
}

#ifdef THREAD_SANITIZER
extern "C" void __tsan_read1(void *addr);
#else
#define __tsan_read1(addr)  // do nothing if TSan not enabled
#endif

// A function that just returns its argument, dereferenced
static bool Dereference(void *arg) {
  // ThreadSanitizer does not instrument this file for memory accesses.
  // This function dereferences a user variable that can participate
  // in a data race, so we need to manually tell TSan about this memory access.
  __tsan_read1(arg);
  return *(static_cast<bool *>(arg));
}

Condition::Condition() {}   // null constructor, used for kTrue only
const Condition Condition::kTrue;

Condition::Condition(bool (*func)(void *), void *arg)
    : eval_(&CallVoidPtrFunction),
      function_(func),
      method_(nullptr),
      arg_(arg) {}

bool Condition::CallVoidPtrFunction(const Condition *c) {
  return (*c->function_)(c->arg_);
}

Condition::Condition(const bool *cond)
    : eval_(CallVoidPtrFunction),
      function_(Dereference),
      method_(nullptr),
      // const_cast is safe since Dereference does not modify arg
      arg_(const_cast<bool *>(cond)) {}

bool Condition::Eval() const {
  // eval_ == null for kTrue
  return (this->eval_ == nullptr) || (*this->eval_)(this);
}

bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) {
  if (a == nullptr) {
    return b == nullptr || b->eval_ == nullptr;
  }
  if (b == nullptr || b->eval_ == nullptr) {
    return a->eval_ == nullptr;
  }
  return a->eval_ == b->eval_ && a->function_ == b->function_ &&
         a->arg_ == b->arg_ && a->method_ == b->method_;
}

}  // namespace absl