// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/synchronization/internal/waiter.h"
#include "absl/base/config.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <pthread.h>
#include <sys/time.h>
#include <unistd.h>
#endif
#ifdef __linux__
#include <linux/futex.h>
#include <sys/syscall.h>
#endif
#ifdef ABSL_HAVE_SEMAPHORE_H
#include <semaphore.h>
#endif
#include <errno.h>
#include <stdio.h>
#include <time.h>
#include <atomic>
#include <cassert>
#include <cstdint>
#include <new>
#include <type_traits>
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/thread_identity.h"
#include "absl/base/optimization.h"
#include "absl/synchronization/internal/kernel_timeout.h"
namespace absl {
namespace synchronization_internal {
static void MaybeBecomeIdle() {
base_internal::ThreadIdentity *identity =
base_internal::CurrentThreadIdentityIfPresent();
assert(identity != nullptr);
const bool is_idle = identity->is_idle.load(std::memory_order_relaxed);
const int ticker = identity->ticker.load(std::memory_order_relaxed);
const int wait_start = identity->wait_start.load(std::memory_order_relaxed);
if (!is_idle && ticker - wait_start > Waiter::kIdlePeriods) {
identity->is_idle.store(true, std::memory_order_relaxed);
}
}
#if ABSL_WAITER_MODE == ABSL_WAITER_MODE_FUTEX
// Some Android headers are missing these definitions even though they
// support these futex operations.
#ifdef __BIONIC__
#ifndef SYS_futex
#define SYS_futex __NR_futex
#endif
#ifndef FUTEX_WAIT_BITSET
#define FUTEX_WAIT_BITSET 9
#endif
#ifndef FUTEX_PRIVATE_FLAG
#define FUTEX_PRIVATE_FLAG 128
#endif
#ifndef FUTEX_CLOCK_REALTIME
#define FUTEX_CLOCK_REALTIME 256
#endif
#ifndef FUTEX_BITSET_MATCH_ANY
#define FUTEX_BITSET_MATCH_ANY 0xFFFFFFFF
#endif
#endif
class Futex {
public:
static int WaitUntil(std::atomic<int32_t> *v, int32_t val,
KernelTimeout t) {
int err = 0;
if (t.has_timeout()) {
// https://locklessinc.com/articles/futex_cheat_sheet/
// Unlike FUTEX_WAIT, FUTEX_WAIT_BITSET uses absolute time.
struct timespec abs_timeout = t.MakeAbsTimespec();
// Atomically check that the futex value is still 0, and if it
// is, sleep until abs_timeout or until woken by FUTEX_WAKE.
err = syscall(
SYS_futex, reinterpret_cast<int32_t *>(v),
FUTEX_WAIT_BITSET | FUTEX_PRIVATE_FLAG | FUTEX_CLOCK_REALTIME, val,
&abs_timeout, nullptr, FUTEX_BITSET_MATCH_ANY);
} else {
// Atomically check that the futex value is still 0, and if it
// is, sleep until woken by FUTEX_WAKE.
err = syscall(SYS_futex, reinterpret_cast<int32_t *>(v),
FUTEX_WAIT | FUTEX_PRIVATE_FLAG, val, nullptr);
}
if (err != 0) {
err = -errno;
}
return err;
}
static int Wake(std::atomic<int32_t> *v, int32_t count) {
int err = syscall(SYS_futex, reinterpret_cast<int32_t *>(v),
FUTEX_WAKE | FUTEX_PRIVATE_FLAG, count);
if (ABSL_PREDICT_FALSE(err < 0)) {
err = -errno;
}
return err;
}
};
void Waiter::Init() {
futex_.store(0, std::memory_order_relaxed);
}
bool Waiter::Wait(KernelTimeout t) {
// Loop until we can atomically decrement futex from a positive
// value, waiting on a futex while we believe it is zero.
while (true) {
int32_t x = futex_.load(std::memory_order_relaxed);
if (x != 0) {
if (!futex_.compare_exchange_weak(x, x - 1,
std::memory_order_acquire,
std::memory_order_relaxed)) {
continue; // Raced with someone, retry.
}
return true; // Consumed a wakeup, we are done.
}
const int err = Futex::WaitUntil(&futex_, 0, t);
if (err != 0) {
if (err == -EINTR || err == -EWOULDBLOCK) {
// Do nothing, the loop will retry.
} else if (err == -ETIMEDOUT) {
return false;
} else {
ABSL_RAW_LOG(FATAL, "Futex operation failed with error %d\n", err);
}
}
MaybeBecomeIdle();
}
}
void Waiter::Post() {
if (futex_.fetch_add(1, std::memory_order_release) == 0) {
// We incremented from 0, need to wake a potential waker.
Poke();
}
}
void Waiter::Poke() {
// Wake one thread waiting on the futex.
const int err = Futex::Wake(&futex_, 1);
if (ABSL_PREDICT_FALSE(err < 0)) {
ABSL_RAW_LOG(FATAL, "Futex operation failed with error %d\n", err);
}
}
#elif ABSL_WAITER_MODE == ABSL_WAITER_MODE_CONDVAR
class PthreadMutexHolder {
public:
explicit PthreadMutexHolder(pthread_mutex_t *mu) : mu_(mu) {
const int err = pthread_mutex_lock(mu_);
if (err != 0) {
ABSL_RAW_LOG(FATAL, "pthread_mutex_lock failed: %d", err);
}
}
PthreadMutexHolder(const PthreadMutexHolder &rhs) = delete;
PthreadMutexHolder &operator=(const PthreadMutexHolder &rhs) = delete;
~PthreadMutexHolder() {
const int err = pthread_mutex_unlock(mu_);
if (err != 0) {
ABSL_RAW_LOG(FATAL, "pthread_mutex_unlock failed: %d", err);
}
}
private:
pthread_mutex_t *mu_;
};
void Waiter::Init() {
const int err = pthread_mutex_init(&mu_, 0);
if (err != 0) {
ABSL_RAW_LOG(FATAL, "pthread_mutex_init failed: %d", err);
}
const int err2 = pthread_cond_init(&cv_, 0);
if (err2 != 0) {
ABSL_RAW_LOG(FATAL, "pthread_cond_init failed: %d", err2);
}
waiter_count_.store(0, std::memory_order_relaxed);
wakeup_count_.store(0, std::memory_order_relaxed);
}
bool Waiter::Wait(KernelTimeout t) {
struct timespec abs_timeout;
if (t.has_timeout()) {
abs_timeout = t.MakeAbsTimespec();
}
PthreadMutexHolder h(&mu_);
waiter_count_.fetch_add(1, std::memory_order_relaxed);
// Loop until we find a wakeup to consume or timeout.
while (true) {
int x = wakeup_count_.load(std::memory_order_relaxed);
if (x != 0) {
if (!wakeup_count_.compare_exchange_weak(x, x - 1,
std::memory_order_acquire,
std::memory_order_relaxed)) {
continue; // Raced with someone, retry.
}
// Successfully consumed a wakeup, we're done.
waiter_count_.fetch_sub(1, std::memory_order_relaxed);
return true;
}
// No wakeups available, time to wait.
if (!t.has_timeout()) {
const int err = pthread_cond_wait(&cv_, &mu_);
if (err != 0) {
ABSL_RAW_LOG(FATAL, "pthread_cond_wait failed: %d", err);
}
} else {
const int err = pthread_cond_timedwait(&cv_, &mu_, &abs_timeout);
if (err == ETIMEDOUT) {
waiter_count_.fetch_sub(1, std::memory_order_relaxed);
return false;
}
if (err != 0) {
ABSL_RAW_LOG(FATAL, "pthread_cond_wait failed: %d", err);
}
}
MaybeBecomeIdle();
}
}
void Waiter::Post() {
wakeup_count_.fetch_add(1, std::memory_order_release);
Poke();
}
void Waiter::Poke() {
if (waiter_count_.load(std::memory_order_relaxed) == 0) {
return;
}
// Potentially a waker. Take the lock and check again.
PthreadMutexHolder h(&mu_);
if (waiter_count_.load(std::memory_order_relaxed) == 0) {
return;
}
const int err = pthread_cond_signal(&cv_);
if (err != 0) {
ABSL_RAW_LOG(FATAL, "pthread_cond_signal failed: %d", err);
}
}
#elif ABSL_WAITER_MODE == ABSL_WAITER_MODE_SEM
void Waiter::Init() {
if (sem_init(&sem_, 0, 0) != 0) {
ABSL_RAW_LOG(FATAL, "sem_init failed with errno %d\n", errno);
}
wakeups_.store(0, std::memory_order_relaxed);
}
bool Waiter::Wait(KernelTimeout t) {
struct timespec abs_timeout;
if (t.has_timeout()) {
abs_timeout = t.MakeAbsTimespec();
}
// Loop until we timeout or consume a wakeup.
while (true) {
int x = wakeups_.load(std::memory_order_relaxed);
if (x != 0) {
if (!wakeups_.compare_exchange_weak(x, x - 1,
std::memory_order_acquire,
std::memory_order_relaxed)) {
continue; // Raced with someone, retry.
}
// Successfully consumed a wakeup, we're done.
return true;
}
// Nothing to consume, wait (looping on EINTR).
while (true) {
if (!t.has_timeout()) {
if (sem_wait(&sem_) == 0) break;
if (errno == EINTR) continue;
ABSL_RAW_LOG(FATAL, "sem_wait failed: %d", errno);
} else {
if (sem_timedwait(&sem_, &abs_timeout) == 0) break;
if (errno == EINTR) continue;
if (errno == ETIMEDOUT) return false;
ABSL_RAW_LOG(FATAL, "sem_timedwait failed: %d", errno);
}
}
MaybeBecomeIdle();
}
}
void Waiter::Post() {
wakeups_.fetch_add(1, std::memory_order_release); // Post a wakeup.
Poke();
}
void Waiter::Poke() {
if (sem_post(&sem_) != 0) { // Wake any semaphore waiter.
ABSL_RAW_LOG(FATAL, "sem_post failed with errno %d\n", errno);
}
}
#elif ABSL_WAITER_MODE == ABSL_WAITER_MODE_WIN32
class Waiter::WinHelper {
public:
static SRWLOCK *GetLock(Waiter *w) {
return reinterpret_cast<SRWLOCK *>(&w->mu_storage_);
}
static CONDITION_VARIABLE *GetCond(Waiter *w) {
return reinterpret_cast<CONDITION_VARIABLE *>(&w->cv_storage_);
}
static_assert(sizeof(SRWLOCK) == sizeof(Waiter::SRWLockStorage),
"SRWLockStorage does not have the same size as SRWLOCK");
static_assert(
alignof(SRWLOCK) == alignof(Waiter::SRWLockStorage),
"SRWLockStorage does not have the same alignment as SRWLOCK");
static_assert(sizeof(CONDITION_VARIABLE) ==
sizeof(Waiter::ConditionVariableStorage),
"ABSL_CONDITION_VARIABLE_STORAGE does not have the same size "
"as CONDITION_VARIABLE");
static_assert(alignof(CONDITION_VARIABLE) ==
alignof(Waiter::ConditionVariableStorage),
"ConditionVariableStorage does not have the same "
"alignment as CONDITION_VARIABLE");
// The SRWLOCK and CONDITION_VARIABLE types must be trivially constuctible
// and destructible because we never call their constructors or destructors.
static_assert(std::is_trivially_constructible<SRWLOCK>::value,
"The SRWLOCK type must be trivially constructible");
static_assert(std::is_trivially_constructible<CONDITION_VARIABLE>::value,
"The CONDITION_VARIABLE type must be trivially constructible");
static_assert(std::is_trivially_destructible<SRWLOCK>::value,
"The SRWLOCK type must be trivially destructible");
static_assert(std::is_trivially_destructible<CONDITION_VARIABLE>::value,
"The CONDITION_VARIABLE type must be trivially destructible");
};
class LockHolder {
public:
explicit LockHolder(SRWLOCK* mu) : mu_(mu) {
AcquireSRWLockExclusive(mu_);
}
LockHolder(const LockHolder&) = delete;
LockHolder& operator=(const LockHolder&) = delete;
~LockHolder() {
ReleaseSRWLockExclusive(mu_);
}
private:
SRWLOCK* mu_;
};
void Waiter::Init() {
auto *mu = ::new (static_cast<void *>(&mu_storage_)) SRWLOCK;
auto *cv = ::new (static_cast<void *>(&cv_storage_)) CONDITION_VARIABLE;
InitializeSRWLock(mu);
InitializeConditionVariable(cv);
waiter_count_.store(0, std::memory_order_relaxed);
wakeup_count_.store(0, std::memory_order_relaxed);
}
bool Waiter::Wait(KernelTimeout t) {
SRWLOCK *mu = WinHelper::GetLock(this);
CONDITION_VARIABLE *cv = WinHelper::GetCond(this);
LockHolder h(mu);
waiter_count_.fetch_add(1, std::memory_order_relaxed);
// Loop until we find a wakeup to consume or timeout.
while (true) {
int x = wakeup_count_.load(std::memory_order_relaxed);
if (x != 0) {
if (!wakeup_count_.compare_exchange_weak(x, x - 1,
std::memory_order_acquire,
std::memory_order_relaxed)) {
continue; // Raced with someone, retry.
}
// Successfully consumed a wakeup, we're done.
waiter_count_.fetch_sub(1, std::memory_order_relaxed);
return true;
}
// No wakeups available, time to wait.
if (!SleepConditionVariableSRW(cv, mu, t.InMillisecondsFromNow(), 0)) {
// GetLastError() returns a Win32 DWORD, but we assign to
// unsigned long to simplify the ABSL_RAW_LOG case below. The uniform
// initialization guarantees this is not a narrowing conversion.
const unsigned long err{GetLastError()}; // NOLINT(runtime/int)
if (err == ERROR_TIMEOUT) {
waiter_count_.fetch_sub(1, std::memory_order_relaxed);
return false;
} else {
ABSL_RAW_LOG(FATAL, "SleepConditionVariableSRW failed: %lu", err);
}
}
MaybeBecomeIdle();
}
}
void Waiter::Post() {
wakeup_count_.fetch_add(1, std::memory_order_release);
Poke();
}
void Waiter::Poke() {
if (waiter_count_.load(std::memory_order_relaxed) == 0) {
return;
}
// Potentially a waker. Take the lock and check again.
LockHolder h(WinHelper::GetLock(this));
if (waiter_count_.load(std::memory_order_relaxed) == 0) {
return;
}
WakeConditionVariable(WinHelper::GetCond(this));
}
#else
#error Unknown ABSL_WAITER_MODE
#endif
} // namespace synchronization_internal
} // namespace absl