about summary refs log blame commit diff
path: root/absl/synchronization/internal/per_thread_sem_test.cc
blob: 61296cfca5021df7e6a882ed31f65ee6f693ddd2 (plain) (tree)























                                                                           
                        





                                                






















































































































































































































                                                                               
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/synchronization/internal/per_thread_sem.h"

#include <atomic>
#include <condition_variable>  // NOLINT(build/c++11)
#include <functional>
#include <limits>
#include <mutex>               // NOLINT(build/c++11)
#include <string>
#include <thread>              // NOLINT(build/c++11)

#include "gtest/gtest.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/malloc_extension.h"
#include "absl/base/internal/thread_identity.h"
#include "absl/strings/str_cat.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"

// In this test we explicitly avoid the use of synchronization
// primitives which might use PerThreadSem, most notably absl::Mutex.

namespace absl {
namespace synchronization_internal {

class SimpleSemaphore {
 public:
  SimpleSemaphore() : count_(0) {}

  // Decrements (locks) the semaphore. If the semaphore's value is
  // greater than zero, then the decrement proceeds, and the function
  // returns, immediately. If the semaphore currently has the value
  // zero, then the call blocks until it becomes possible to perform
  // the decrement.
  void Wait() {
    std::unique_lock<std::mutex> lock(mu_);
    cv_.wait(lock, [this]() { return count_ > 0; });
    --count_;
    cv_.notify_one();
  }

  // Increments (unlocks) the semaphore. If the semaphore's value
  // consequently becomes greater than zero, then another thread
  // blocked Wait() call will be woken up and proceed to lock the
  // semaphore.
  void Post() {
    std::lock_guard<std::mutex> lock(mu_);
    ++count_;
    cv_.notify_one();
  }

 private:
  std::mutex mu_;
  std::condition_variable cv_;
  int count_;
};

struct ThreadData {
  int num_iterations;                 // Number of replies to send.
  SimpleSemaphore identity2_written;  // Posted by thread writing identity2.
  base_internal::ThreadIdentity *identity1;  // First Post()-er.
  base_internal::ThreadIdentity *identity2;  // First Wait()-er.
  KernelTimeout timeout;
};

// Need friendship with PerThreadSem.
class PerThreadSemTest : public testing::Test {
 public:
  static void TimingThread(ThreadData* t) {
    t->identity2 = GetOrCreateCurrentThreadIdentity();
    t->identity2_written.Post();
    while (t->num_iterations--) {
      Wait(t->timeout);
      Post(t->identity1);
    }
  }

  void TestTiming(const char *msg, bool timeout) {
    static const int kNumIterations = 100;
    ThreadData t;
    t.num_iterations = kNumIterations;
    t.timeout = timeout ?
        KernelTimeout(absl::Now() + absl::Seconds(10000))  // far in the future
        : KernelTimeout::Never();
    t.identity1 = GetOrCreateCurrentThreadIdentity();

    // We can't use the Thread class here because it uses the Mutex
    // class which will invoke PerThreadSem, so we use std::thread instead.
    std::thread partner_thread(std::bind(TimingThread, &t));

    // Wait for our partner thread to register their identity.
    t.identity2_written.Wait();

    int64_t min_cycles = std::numeric_limits<int64_t>::max();
    int64_t total_cycles = 0;
    for (int i = 0; i < kNumIterations; ++i) {
      absl::SleepFor(absl::Milliseconds(20));
      int64_t cycles = base_internal::CycleClock::Now();
      Post(t.identity2);
      Wait(t.timeout);
      cycles = base_internal::CycleClock::Now() - cycles;
      min_cycles = std::min(min_cycles, cycles);
      total_cycles += cycles;
    }
    std::string out =
        StrCat(msg, "min cycle count=", min_cycles, " avg cycle count=",
               absl::SixDigits(static_cast<double>(total_cycles) /
                               kNumIterations));
    printf("%s\n", out.c_str());

    partner_thread.join();
  }

 protected:
  static void Post(base_internal::ThreadIdentity *id) {
    PerThreadSem::Post(id);
  }
  static bool Wait(KernelTimeout t) {
    return PerThreadSem::Wait(t);
  }

  // convenience overload
  static bool Wait(absl::Time t) {
    return Wait(KernelTimeout(t));
  }

  static void Tick(base_internal::ThreadIdentity *identity) {
    PerThreadSem::Tick(identity);
  }
};

namespace {

TEST_F(PerThreadSemTest, WithoutTimeout) {
  PerThreadSemTest::TestTiming("Without timeout: ", false);
}

TEST_F(PerThreadSemTest, WithTimeout) {
  PerThreadSemTest::TestTiming("With timeout:    ", true);
}

TEST_F(PerThreadSemTest, Timeouts) {
  absl::Time timeout = absl::Now() + absl::Milliseconds(50);
  EXPECT_FALSE(Wait(timeout));
  EXPECT_LE(timeout, absl::Now());

  absl::Time negative_timeout = absl::UnixEpoch() - absl::Milliseconds(100);
  EXPECT_FALSE(Wait(negative_timeout));
  EXPECT_LE(negative_timeout, absl::Now());  // trivially true :)

  Post(GetOrCreateCurrentThreadIdentity());
  // The wait here has an expired timeout, but we have a wake to consume,
  // so this should succeed
  EXPECT_TRUE(Wait(negative_timeout));
}

// Test that idle threads properly register themselves as such with malloc.
TEST_F(PerThreadSemTest, Idle) {
  // We can't use gmock because it might use synch calls.  So we do it
  // by hand, messily.  I don't bother hitting every one of the
  // MallocExtension calls because most of them won't get made
  // anyway--if they do we can add them.
  class MockMallocExtension : public base_internal::MallocExtension {
   public:
    MockMallocExtension(base_internal::MallocExtension *real,
                        base_internal::ThreadIdentity *id,
                        std::atomic<int> *idles, std::atomic<int> *busies)
        : real_(real), id_(id), idles_(idles), busies_(busies) {}
    void MarkThreadIdle() override {
      if (base_internal::CurrentThreadIdentityIfPresent() != id_) {
        return;
      }
      idles_->fetch_add(1, std::memory_order_relaxed);
    }

    void MarkThreadBusy() override {
      if (base_internal::CurrentThreadIdentityIfPresent() != id_) {
        return;
      }
      busies_->fetch_add(1, std::memory_order_relaxed);
    }
    size_t GetAllocatedSize(const void* p) override {
      return real_->GetAllocatedSize(p);
    }

   private:
    MallocExtension *real_;
    base_internal::ThreadIdentity *id_;
    std::atomic<int>* idles_;
    std::atomic<int>* busies_;
  };

  base_internal::ThreadIdentity *id = GetOrCreateCurrentThreadIdentity();
  std::atomic<int> idles(0);
  std::atomic<int> busies(0);
  base_internal::MallocExtension *old =
      base_internal::MallocExtension::instance();
  MockMallocExtension mock(old, id, &idles, &busies);
  base_internal::MallocExtension::Register(&mock);
  std::atomic<int> sync(0);

  std::thread t([id, &idles, &sync]() {
    // Wait for the main thread to begin the wait process
    while (0 == sync.load(std::memory_order_relaxed)) {
      SleepFor(absl::Milliseconds(1));
    }
    // Wait for main thread to become idle, then wake it
    // pretend time is passing--enough of these should cause an idling.
    for (int i = 0; i < 100; ++i) {
      Tick(id);
    }
    while (0 == idles.load(std::memory_order_relaxed)) {
      // Keep ticking, just in case.
      Tick(id);
      SleepFor(absl::Milliseconds(1));
    }
    Post(id);
  });

  idles.store(0, std::memory_order_relaxed);  // In case we slept earlier.
  sync.store(1, std::memory_order_relaxed);
  Wait(KernelTimeout::Never());

  // t will wake us once we become idle.
  EXPECT_LT(0, busies.load(std::memory_order_relaxed));
  t.join();
  base_internal::MallocExtension::Register(old);
}

}  // namespace

}  // namespace synchronization_internal
}  // namespace absl